Legionella spp. in a Dental Office—Current State of Knowledge
Abstract
:1. Introduction
2. Routes of Infection with L. pneumophila in Dental Practice
3. Characteristics of Legionella pneumophila
4. The Prevalence of Legionella spp. in DUWLs and Dental Office Environments
5. DUWL Biofilm and Legionella spp.
6. Water from DUWLs and Legionella spp.
7. The Air in the Dental Office and Legionella spp.
8. Tests for the Presence of Legionella spp.
9. Prevention of Cross-Infections in the Dental Office, Including L. pneumophila—Selected Aspects
9.1. Dental Office Room
9.2. DUWL Environment
9.3. The Role of Dental Team
9.4. Protective Clothing of Dental Team
10. Ensuring the Proper Microbiological Quality of the DUWL Environment
10.1. Chemical Methods of Improving the Microbiological Quality of Water in DUWLs
10.1.1. Hydrogen Peroxide
10.1.2. Chlorine Dioxide (ClO2)
10.1.3. Chlorine Dioxide (ClO2) and Hypochlorous Acid (HOCl)
10.1.4. Chlorine and/or Hydrogen Peroxide
10.1.5. Chlorogenic Acid Solution
10.1.6. Silver Nanoparticles
10.1.7. Nanosilver and Hydrogen Peroxide Molecules
10.2. Other Methods of Improving the Microbiological Quality of Water in DUWLs
11. Summary
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
16S rRNA | RNA component of the 30S subunit of a prokaryotic ribosome |
AC | Air Cleaner |
ADA | American Dental Association |
AgNPs | Silver Nanoparticles |
ARA | Anti Retraction Adapter |
C-100 | the European Union standard, whose criterion is more than 100 CFU/mL |
CDA | Cultivation-Dependent Analysis |
CDC | American Centers for Disease Control and Prevention |
C-di-GMP | Cyclic Diguanylate |
CFU | Colony-Forming Unit |
CFU/L | colony-Forming Unit in Liter |
CFU/mL | Colony-Forming Unit in Mililiter |
CHX | Chlohexidine |
CIA | Cultivation-Independent Analysis |
ClO2 | Chlorine Dioxide |
DLDD | Daily Low Dose Disinfectant |
DSM | Dip Slide Technique mMethod |
DUWL(s) | Dental Unit Waterline(s) |
E. coli | Escherichia coli |
EDTA | Ethylenediaminetetraacetic Acid |
FCM | Flow Cytometry |
FLA | Free-Living Amoebae |
H2O2 | Hydrogen Peroxide |
HOCL | Hypochlorous Acid |
HPC | Heterotrophic Plate Count |
HVE | High-Volume Evacuation system |
LAMP | Loop-mediated Isothermal Amplification |
L. anisa | Legionella anisa |
L. pneumophila | Legionella pneumophila |
L. rubrilucens | Legionella rubrilucens |
Legionella spp. | several unidentified or not yet described species within a genu of Legionella |
LVE | Low-volume Evacuation system |
MALDI–TOF MS | Mass Spectrometry |
MeSH | Medical Subject Headings |
NTM | Nontuberculous mycobacteria |
OSAP | Organization for Safety, Asepsis, and Prevention |
P. aeruginosa | Pseudomonas aeruginosa |
PCR | Polymerase Chain Reaction |
PP | Polypropylene |
Pseudomonas spp. | Several unidentified or not yet described species within a genu of Pseudomonas |
R2A agar | A culture medium for bacteria from potable water or other environments |
Rpm | Revolutions per minute |
S. aureus | Staphylococvuss aureus |
SEM | Scanning Electron Microscopy |
S-PBC | Sulfonated Pentablock Copolymer |
SSM | Surface Smear Method |
UE | European Union |
UV | Ultraviolet |
WHO | World Health Organization |
References
- Talapko, J.; Frauenheim, E.; Juzbašić, M.; Tomas, M.; Matić, S.; Jukić, M.; Samardžić, M.; Škrlec, I. Legionella pneumophila—Virulence factors and the possibility of infection in dental practice. Microorganisms 2022, 10, 255. [Google Scholar] [CrossRef]
- Assaidi, A.; Ellouali, M.; Latrache, H.; Zahir, H.; Mliji, E.M. Role of biofilms in the survival of Legionella pneumophila to sodium chloride treatment. Iran. J. Microbiol. 2021, 13, 488–494. [Google Scholar] [CrossRef]
- Bayani, M.; Raisolvaezin, K.; Almasi-Hashiani, A.; Mirhoseini, S.H. Bacterial biofilm prevalence in dental unit waterlines: A Systematic review and meta-analysis. BMC Oral Health 2023, 23, 158. [Google Scholar] [CrossRef]
- Han, P.; Li, H.; Walsh, L.J.; Ivanovski, S. Splatters and aerosols contamination in dental aerosol generating procedures. Appl. Sci. 2021, 11, 1914. [Google Scholar] [CrossRef]
- Dahlen, G. Biofilms in dental unit water lines. Monogr. Oral Sci. 2021, 29, 12–18. [Google Scholar]
- Nulty, A.; Lefkaditis, C.; Zachrisson, P.; Van Tonder, Q.; Yar, R. A Clinical study measuring dental aerosols with and without a high-volume extraction device. Br. Dent. J. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Polednik, B. Aerosol and bioaerosol particles in a dental office. Environ. Res. 2014, 134, 405–409. [Google Scholar] [CrossRef]
- Rafiee, A.; Carvalho, R.; Lunardon, D.; Flores-Mir, C.; Major, P.; Quemerais, B.; Altabtbaei, K. Particle size, mass concentration, and microbiota in dental aerosols. J. Dent. Res. 2022, 101, 785–792. [Google Scholar] [CrossRef]
- Bennet, A.M.; Fulford, M.R.; Walker, J.T.; Bradshaw, D.J.; Martin, M.V.; Marsh, P.D. Microbial aerosols in general dental practice. Br. Dent. J. 2000, 189, 664–667. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, X.; Sun, Y. Precise control of digital dental unit to reduce aerosol and splatter production: New challenges for future epidemics. BMC Oral Health 2024, 24, 213. [Google Scholar] [CrossRef]
- Legnani, P.; Checchi, L.; Pelliccioni, G.; D’achille, C. Atmospheric contamination during dental procedures. Quintessence Int. 1994, 25, 435–439. [Google Scholar]
- AteŞ, F.M. Water, salt, hypochlorous acid and infection protection. Bayburt Univ. J. Sci. 2020, 3, 154–160. [Google Scholar]
- Al-Yaseen, W.; Jones, R.; McGregor, S.; Wade, W.; Gallagher, J.; Harris, R.; Johnson, I.; Kc, S.; Robertson, M.; Innes, N. Aerosol and splatter generation with rotary handpieces used in restorative and orthodontic dentistry: A Systematic review. BDJ Open 2022, 8, 26. [Google Scholar] [CrossRef]
- Lizzadro, J.; Mazzotta, M.; Girolamini, L.; Dormi, A.; Pellati, T.; Cristino, S. Comparison between two types of dental unit waterlines: How evaluation of microbiological contamination can support risk containment. Int. J. Environ. Res. Public Health 2019, 16, 328. [Google Scholar] [CrossRef]
- Miller, C.H.; Cottone, J.A. The basic principles of infectious diseases as related to dental practice. Dent. Clin. N. Am. 1993, 37, 1–20. [Google Scholar] [CrossRef]
- Al-Matawah, Q.A.; Al-Zenki, S.F.; Qasem, J.A.; Al-Waalan, T.E.; Ben Heji, A.H. Detection and quantification of Legionella pneumophila from water systems in Kuwait residential facilities. J. Pathog. 2012, 2012, 138389. [Google Scholar] [CrossRef]
- Veena, H.R.; Mahantesha, S.; Joseph, P.A.; Patil, S.R.; Patil, S.H. Dissemination of aerosol and splatter during ultrasonic scaling: A Pilot study. J. Infect. Public Health 2015, 8, 260–265. [Google Scholar] [CrossRef]
- Watanabe, A.; Tamaki, N.; Yokota, K.; Matsuyama, M.; Kokeguchi, S. Use of ATP bioluminescence to survey the spread of aerosol and splatter during dental treatments. J. Hosp. Infect. 2018, 99, 303–305. [Google Scholar] [CrossRef]
- Zemouri, C.; de Soet, H.; Crielaard, W.; Laheij, A. A Scoping review on bio-aerosols in healthcare and the dental environment. PLoS ONE 2017, 12, e0178007. [Google Scholar] [CrossRef]
- Mondino, S.; Schmidt, S.; Rolando, M.; Escoll, P.; Gomez-Valero, L.; Buchrieser, C. Legionnaires’ disease: State of the art knowledge of pathogenesis mechanisms of Legionella. Annu. Rev. Pathol. 2020, 15, 439–466. [Google Scholar] [CrossRef]
- Caruso, G.; Coniglio, M.A.; Laganà, P.; Fasciana, T.; Arcoleo, G.; Arrigo, I.; Di Carlo, P.; Palermo, M.; Giammanco, A. Validation of a loop-mediated isothermal amplification-based kit for the detection of Legionella pneumophila in environmental samples according to ISO/TS 12869:2012. Microorganisms 2024, 12, 961. [Google Scholar] [CrossRef]
- Beauté, J.; The European Legionnaires’ Disease Surveillance Network. Legionnaires’ disease in Europe, 2011 to 2015. Euro Surveill. 2017, 22, 30566. [Google Scholar] [CrossRef]
- Sakamoto, R. Legionnaire’s disease, weather and climate. Bull. World Health Organ. 2015, 93, 435–436. [Google Scholar] [CrossRef]
- Graham, C.I.; MacMartin, T.L.; de Kievit, T.R.; Brassinga, A.K.C. Molecular regulation of virulence in Legionella pneumophila. Mol. Microbiol. 2024, 121, 167–195. [Google Scholar] [CrossRef]
- Kengadaran, S.; Vikraman, R.; Indumathi, K.P.; Sundaragopal, A.K.; Adiraju, V.A.; Anusha, D. Microbial contamination of dental unit waterlines among dental clinics of India—An in vitro study. Indian J. Dent. Res. 2024, 35, 80–83. [Google Scholar] [CrossRef]
- Optenhövel, M.; Mellmann, A.; Kuczius, T. Occurrence and prevalence of Legionella species in dental chair units in Germany with a focus on risk factors. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1235–1244. [Google Scholar] [CrossRef]
- Khajezadeh, M.; Mohseni, F.; Khaledi, A.; Firoozeh, A. Contamination of dental unit water lines (DUWL) with Legionella pneumophila and Pseudomonas aeruginosa; A Middle East systematic review and meta-analysis. Eur. J. Microbiol. Immunol. 2023, 12, 93–99. [Google Scholar] [CrossRef]
- Hoogenkamp, M.A.; Brandt, B.W.; Laheij, A.M.G.A.; de Soet, J.J.; Crielaard, W. The microbiological load and microbiome of the Dutch dental unit; ‘please, hold your breath’. Water Res. 2021, 200, 117205. [Google Scholar] [CrossRef] [PubMed]
- Khaledi, A.; Bahrami, A.; Nabizadel, E.; Amini, Y.; Esmaeili, D. Prevalence of Legionella species in water resources of Iran: A sytematic review and meta-analysis. Iran. J. Med. Sci. 2018, 43, 571–580. [Google Scholar] [PubMed]
- Spagnolo, A.M.; Sartini, M.; Di Cave, D.; Casini, B.; Tuvo, B.; Cristina, M.L. Evaluation of microbiological and free-living protozoa contamiantion in dental unit waterlines. Int. J. Envron Res. Public Health 2019, 16, 2648. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Zeng, J.; Hong, F.; Li, C.; Wang, H.; Yu, X. The Importance of biofilm contamination control for dental unit waterlines: A Multicenter assessment of the microbiota diversity of biofilm in dental unit waterlines. J. Oral Microbiol. 2023, 16, 2299496. [Google Scholar] [CrossRef] [PubMed]
- Hussain Akbar, J.; Behbehani, J.; Karched, M. Biofilm growth and microbial contamination of dental unit waterlines at Kuwait University Dental center. Front. Oral Health 2023, 9, 1071018. [Google Scholar] [CrossRef]
- Carey, C.M.; Mills, S.E.; Vigil, R.; Aungst, M.; Favazzo, L. Application of flow cytometry to analyze microbial quality of dental unit water. JADA Found. Sci. 2024, 3, 100037. [Google Scholar] [CrossRef]
- Spagnolo, A.M.; Sartini, M.; Cristina, M.L. Microbial contamination of dental unit waterlines and potential risk of infection: A Narrative review. Pathogens 2020, 9, 651. [Google Scholar] [CrossRef]
- Gawish, S.; Abbass, A.; Abaza, A. Occurrence and biofilm forming ability of Pseudomonas aeruginosa in the water output of dental unit waterlines in a Dental Center in Alexandria, Egypt. Germs 2019, 9, 71. [Google Scholar] [CrossRef]
- Abu Khweek, A.; Amer, A.O. Factors mediating environment biofilm formation by Legionella pneumophila. Front. Cell. Infect. Microbiol. 2018, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Tuvo, B.; Totaro, M.; Cristina, M.L.; Spagnolo, A.M.; Di Cave, D.; Profeti, S.; Baggiani, A.; Privitera, G.; Casini, B. Prevention and control of Legionella and Pseudomonas spp. colonization in dental units. Pathogens 2020, 9, 305. [Google Scholar] [CrossRef]
- Cervero-Aragó, S.; Rodríguez-Martínez, S.; Puertas-Bennasar, A.; Araujo, R.M. Effect of common drinking water disinfectants, chlorine and heat, on free Legionella and Amoebae-associated Legionella. PLoS ONE 2015, 10, e0134726. [Google Scholar] [CrossRef]
- Zayed, A.R.; Burghal, M.; Butmeh, S.; Samba-Louaka, A.; Steinert, M.; Bitar, D.M. Legionella pneumophila presence in dental unit waterlines: A cultural and molecular investigation in the West Bank, Palestine. Trop. Med. Infect. Dis. 2023, 8, 490. [Google Scholar] [CrossRef]
- Totaro, M.; Badalucco, F.; Papini, F.; Grassi, N.; Mannocci, M.; Baggiani, M.; Tuvo, B.; Casini, B.; Menchini Fabris, G.B.; Baggiani, A. Effectiveness of a water disinfection method based on osmosis and chlorine dioxide for the prevention of microbial contamination in dental practices. Int. J. Envirom Res. Public Health 2022, 19, 10562. [Google Scholar] [CrossRef]
- Kohn, W.G.; Collins, A.S.; Cleveland, J.L.; Harte, J.A.; Eklund, K.J.; Malvitz, D.M. Guidelines for infection control in dental health-care settings—2003. MMWR Recomm. Rep. 2003, 52, 1–61. [Google Scholar] [PubMed]
- Walker, J.T.; Marsh, P.D. Microbial biofilm formation in DUWS and their control using disinfectants. J. Dent. 2007, 35, 721–730. [Google Scholar] [CrossRef] [PubMed]
- NHS National Services Scotland. Literature Review and Recommendations: Management of Dental Unit Waterlines. Version 2. 2019. Available online: https://www.nss.nhs.scot/media/4304/dental-unit-waterlines-v2.pdf (accessed on 12 November 2024).
- Baudet, A.; Lizon, J.; Martrette, J.-M.; Camelot, F.; Florentin, A.; Clément, C. Dental unit waterlines: A survey of practices in Eastern France. Int. J. Environ. Res. Public Health 2019, 16, 4242. [Google Scholar] [CrossRef]
- Yiek, W.K.; Coenen, O.; Nillesen, M.; van Ingen, J.; Bowles, E.; Tostmann, A. Outbreaks of healthcare-associated infections linked to water-containing hospital equipment: A Literature review. Antimicrob. Resist. Infect. Control 2021, 10, 77. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.; Bartram, J.; Chartier, Y. Essential Environmental Health Standards in Health Care. Available online: http://www.who.int/water_sanitation_health/hygiene/settings/ehs_health_care.pdf (accessed on 22 October 2024).
- Vosooghi, K.; Larypoor, M.; Sakhaee, F.; Ghazanfari Jajin, M.; Moghaddam, S.; Samieefar, N.; Rahbari Keramat, R.; Amiri Sabotki, M.; Fateh, A. Distribution of nontuberculous mycobacteria in dental unit waterlines: A Potential health hazard in the dental office. Microb. Pathog. 2024, 196, 106963. [Google Scholar] [CrossRef]
- Lehfeld, A.S.; Reber, F.; Lewandowsky, M.M.; Jahn, H.J.; Lück, C.; Petzold, M.; Schaefer, B.; Germelmann, A.R.; Lorenz, K.; Buchholz, U. Could oral hygiene prevent cases of at-home-acquired Legionnaires’ disease?—Results of a comprehensive case–control study on infection sources, risk, and protective behaviors. Front. Microbiol. 2023, 14, 1199572. [Google Scholar] [CrossRef]
- Vinh, R.; Azzolin, K.A.; Stream, S.E.; Carsten, D.; Eldridge, L.A.; Estrich, C.G.; Lipman, R.D. Dental unit waterline infection control practice and knowledge gaps. J. Am. Dent. Assoc. 2024, 155, 515–525.e1. [Google Scholar] [CrossRef]
- Shuai, T.; Shao, T.; Yi, L.; Han, S.; Jiménez-Herrera, M.F.; Wang, Z.; Li, X. The Effect of different types of water sources on dental unit waterline contamination: A Systematic review and meta analysis. Heliyon 2024, 10, e35745. [Google Scholar] [CrossRef]
- Kettering, J.; Muñoz-Viveros, C.A.; Stephens, J.A.; Naylor, W.P.; Zhang, W. Reducing bacterial counts in dental unit waterlines: Distilled water vs. antimicrobial agents. J. Calif. Dent. Assoc. 2002, 30, 735–741. [Google Scholar] [CrossRef]
- Girolamini, L.; Salaris, S.; Pascale, M.R.; Mazzotta, M.; Cristino, S. Dynamics of Legionella community interactions in response to temperature and disinfection treatment: 7 years of investigation. Microb. Ecol. 2022, 83, 353–362. [Google Scholar] [CrossRef]
- Gonçalves Lomardo, P.; Nunes, M.C.; Arriaga, P.; Antunes, L.A.; Machado, A.; Quinelato, V.; Aguiar, T.R.D.S.; Casado, P.L. Concern about the risk of aerosol contamination from ultrasonic scaler: A systematic review and meta-analysis. BMC Oral Health 2024, 24, 417. [Google Scholar] [CrossRef] [PubMed]
- Malmgren, R.; Välimaa, H.; Oksanen, L.; Sanmark, E.; Nikuri, P.; Heikkilä, P.; Hakala, J.; Ahola, A.; Yli-Urpo, S.; Palomäki, V.; et al. High-volumen evacuation mitigates viral aerosol spread in dental procedures. Sci. Rep. 2023, 13, 18984. [Google Scholar] [CrossRef]
- Allison, J.R.; Currie, C.C.; Edwards, D.C.; Bowes, C.; Coulter, J.; Pickering, K.; Kozhevnikova, E.; Durham, J.; Nile, C.J.; Jakubovics, N.; et al. Evaluating aerosol and splatter following dental procedures: Addressing new challenges for oral health care and rehabilitation. J. Oral Rehabil. 2021, 48, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Van der Weijden, F. Aerosol in the oral health-care setting: A Misty topic. Clin. Oral Investig. 2023, 27 (Suppl. S1), 23–32. [Google Scholar] [CrossRef] [PubMed]
- Chavis, S.E.; Hines, S.E.; Dyalram, D.; Wilken, N.C.; Dalby, R.N. Can extraoral suction units minimize droplet spatter during a simulated dental procedure? J. Am. Dent. Assoc. 2021, 152, 157–165. [Google Scholar] [CrossRef]
- Hamilton, K.A.; Kuppravalli, A.; Heida, A.; Joshi, S.; Haas, C.N.; Verhougstraete, M.; Gerrity, D. Legionnaires’ disease in dental offices: Quantifying aerosol risks to dental workers and patients. J. Occup. Environ. Hyg. 2021, 18, 378–393. [Google Scholar] [CrossRef]
- Yang, G.; Wang, Y.; Chan, K.; Mui, K.W.; Flemmig, T.F.; Ng, S.T.; Chao, C.Y.H.; Fu, S.C. Effectiveness of air cleaner on mitigating the transmission of respiratory disease in a dental clinic environment. Build. Simul. 2024, 17, 1789–1803. [Google Scholar] [CrossRef]
- Marino, F.; Mazzotta, M.; Pascale, M.R.; Derelitto, C.; Girolamini, L.; Cristino, S. First water safety plan approach applied to a dental clinic complex: Identification of new risk factors associated with Legionella and P. aeruginosa contamination, using a novel sampling, maintenance and management program. J. Oral Microbiol. 2023, 15, 2223477. [Google Scholar] [CrossRef]
- Ditommaso, S.; Giacomuzzi, M.; Ricciardi, E.; Zotti, C.M. Cultural and molecular evidence of Legionella spp. Colonization in dental unit waterlines: Which is the best method for risk assessment? Int. J. Environ. Res. Public Health 2016, 13, 211. [Google Scholar] [CrossRef]
- Pascale, M.R.; Mazzotta, M.; Salaris, S.; Girolamini, L.; Grottola, A.; Simone, M.L.; Cordovana, M.; Bisognin, F.; Dal Monte, P.; Bucci Sabattini, M.A.; et al. Evaluation of MALDI-TOF mass spectrometry in diagnostic and environmental surveillance of Legionella species: A comparison with culture and Mip-gene sequencing technique. Front. Microbiol. 2020, 11, 589369. [Google Scholar] [CrossRef]
- Özmen, P.; Erdoğan, H.; Güngördü, A.; Pişkin, B.; Çobankara, F.K.; Sütcü, S.; Şahin, N. Comparison of antimicrobial efficacy of different disinfectants on the biofilm formation in dental unit water systems using dip slide and conventional methods: A pilot study. Microsc. Res. Tech. 2024, 87, 1241–1249. [Google Scholar] [CrossRef]
- Santhosh, S.; Gayathri, R.; Jayalakshmi Somasundaram, V.; Vishnu, P.; Kavitha, S. Assessment of microbial load in the dental chair waterlines using bio luminometer. HIV Nurs. 2023, 23, 105–110. [Google Scholar]
- Organization for Safety, Asepsis and Prevention (OSAP). Dental unit water quality: Organization for safety, asepsis and prevention. White paper and recommendations—2018. J. Dent. Infect. Control Saf. 2018, 1, 5075. [Google Scholar]
- Shah, I.; Jamil, S.; Rehmat, S.; Butt, H.A.; Ali, S.S.; Idrees, M.; Zhan, Y.; Hussain, Z.; Ali, S.; Waseem, M.; et al. Evaluation and identification of essential therapeutic proteins and vaccinomics approach towards multi-epitopes vaccine designing against Legionella pneumophila for immune response instigation. Comput. Biol. Med. 2022, 143, 105291. [Google Scholar] [CrossRef]
- Gund, M.P.; Naim, J.; Rupf, S.; Gärtner, B.; Hannig, M. Bacterial contamination potential of personal protective equipment itself in dental aerosol-producing treatments. Odontology 2024, 112, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Gund, M.P.; Naim, J.; Bayhan, H.M.; Hannig, M.; Gärtner, B.; Halfmann, A.; Boros, G.; Rupf, S. Dental aerosol-producing treatments: Comparison of contamination patterns of face shields and surgical masks. J. Occup. Environ. Hyg. 2024, 21, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Gund, M.P.; Naim, J.; Hannig, M.; Halfmann, A.; Gärtner, B.; Boros, G.; Rupf, S. CHX and a face shield cannot prevent contamination of surgical masks. Front. Med. 2022, 9, 896308. [Google Scholar] [CrossRef]
- Pawar, A.; Garg, S.; Mehta, S.; Dang, R. Breaking the chain of infection: Dental unit water quality control. J. Clin. Diagn. Res. 2016, 10, ZC80–ZC84. [Google Scholar] [CrossRef]
- Lizon, J.; Florentin, A.; Martrette, J.M.; Rivier, A.; Clement, C.; Rabaud, C. Microbial control of dental unit water: Feedback on different disinfection methods experience. Am. J. Infect. Control 2016, 44, 247–249. [Google Scholar] [CrossRef]
- Leoni, E.; Dallolio, L.; Stagni, F.; Sanna, T.; D’Alessandro, G.; Piana, G. Impact of a risk management plan on Legionella contamination of dental unit water. Int. J. Environ. Res. Public Health 2015, 12, 2344–2358. [Google Scholar] [CrossRef]
- Baudet, A.; Lizon, J.; Martrette, J.M.; Camelot, F.; Florentin, A.; Clément, C. Efficacy of BRS and Alpron/Bilpron disinfectants for dental unit waterlines: A six-year study. Int. J. Environ. Res. Public Health 2020, 17, 2634. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Dang, Y.; Wang, C.; Li, X. Effect of using hydrogen peroxide for periodic disinfection combined with continuous disinfection to control contamination in dental unit waterline. J. Sichuan Univ. 2024, 55, 217–223, (In Chinese and Abstract in English). [Google Scholar]
- Krüger, T.I.M.; Herzog, S.; Mellmann, A.; Kuczius, T. Impact of chlorine dioxide on pathogenic waterborn microorganisms occurin in dental chair units. Microorganisms 2023, 11, 1123. [Google Scholar] [CrossRef]
- Yue, C.; Yuya, H.; Zhihuan, L.; Zimo, W.; Jianying, F. Study on the disinfection effect of chlorine dioxide disinfectant (ClO2) on dental unit waterlines and its in vitro safety evaluation. BMC Oral Health 2024, 24, 648. [Google Scholar] [CrossRef]
- Li, N.; Cai, Q.M.; Hu, N.Y.; Jiang, S.L.; Chen, F.Q.; Hu, Q.Q.; Yang, F.; He, C.Z. Pyrosequencing analysis of bacterial community es in dental unit waterlines after chlorogenic acid treatment. Front. Cell. Infect. Microbiol. 2024, 14, 1303099. [Google Scholar]
- Yin, X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef]
- Petti, S.; Polimeni, A.; Allen, M.J. Dental unit water treatment with hydrogen peroxide and monovalent silver ions artificially contaminated with freshly isolated pathogens. Ann. Igiene 2015, 27, 789–798. [Google Scholar]
- Hong, F.; Chen, P.; Yu, X.; Chen, Q. The application of silver to decontaminate dental unit waterlines—A systematic review. Biol. Trace Elem. Res. 2022, 200, 4988–5002. [Google Scholar] [CrossRef]
- Dupuy, M.; Mazoua, S.; Berne, F.; Bodet, C.; Garrec, N.; Herbelin, P.; Ménard-Szczebara, F.; Oberti, S.; Rodier, M.H.; Soreau, S.; et al. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Water Res. 2011, 45, 1087–1094. [Google Scholar] [CrossRef]
- Barbot, V.; Migeot, V.; Querlard, N.; Rodier, M.-H.; Ipert, C. Hartmannella vermiformis can promote proliferation of Candida spp. in tap-water. Water Res. 2012, 46, 5707–5714. [Google Scholar]
- Baudet, A.; Lizon, J.; Florentin, A.; Mortier, É. Initial waterlinie contamination by Pseudomoonas aeruginosa in newely instaled dental chair. Microbiol. Spetr. 2024, 46, 5707–5714. [Google Scholar]
- Baudet, A.; Lizon, J.; Lozniewski, A.; Florentin, A.; Mortier, É. Bacterial contamination of new dental unit waterlines and efficacy of shock disinfection. BMC Microbiol. 2024, 24, 529. [Google Scholar] [CrossRef] [PubMed]
- Subhiksha, S.R.; Arul, B.; Natanasabapathy, V. Efficiency of a high-speed handpiece with anti-retraction adapter to minimize cross-contamination during the routine dental procedure: A clinical study. J. Conserv. Dent. Endod. 2024, 27, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Sciuto, E.L.; Laganà, P.; Filice, S.; Scalese, S.; Libertino, S.; Corso, D.; Faro, G.; Coniglio, M.A. Innovative sntibiofilm smart surface against Legionella for water systems. Microorganisms 2022, 10, 870. [Google Scholar]
- Xing, M.; Zhang, H.; Li, Z.; Zhang, L.; Qian, W. Long-lasting renewable antibacterial N-halamine coating enable dental unit waterlines to prevention and control of contamination of dental treatment water. Front. Mater. 2024, 11, 1399597. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szymańska, J. Legionella spp. in a Dental Office—Current State of Knowledge. Pathogens 2025, 14, 512. https://doi.org/10.3390/pathogens14060512
Szymańska J. Legionella spp. in a Dental Office—Current State of Knowledge. Pathogens. 2025; 14(6):512. https://doi.org/10.3390/pathogens14060512
Chicago/Turabian StyleSzymańska, Jolanta. 2025. "Legionella spp. in a Dental Office—Current State of Knowledge" Pathogens 14, no. 6: 512. https://doi.org/10.3390/pathogens14060512
APA StyleSzymańska, J. (2025). Legionella spp. in a Dental Office—Current State of Knowledge. Pathogens, 14(6), 512. https://doi.org/10.3390/pathogens14060512