Simultaneous Detection of Classical and African Swine Fever Viruses by Duplex Taqman Real-Time PCR Assay in Pigs Infected with Both Diseases
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell and Viruses
2.2. Nucleic Acid Extraction and CSFV and ASFV Molecular Detection
2.3. CSF-ASF Duplex RT-qPCR Analytical Sensitivity
2.4. Analytic Specificity Determination of the Duplex RT-qPCR Assay
2.5. Validation of the Duplex RT-qPCR Using Samples from Inter-Laboratory Comparison Test (ILCT) Panels
2.6. Duplex RT-qPCR Validation in Samples from Experimentally Infected Pigs
2.7. Reproducibility of the Duplex RT-qPCR
3. Results
3.1. Analytical Sensitivity of the Duplex RT-qPCR Assay
3.2. Analytical Specificity of the Duplex RT-qPCR Assay
3.3. Validation of the Duplex RT-qPCR Assay
3.4. Intra- and Inter-Assay Variability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Urbano, A.C.; Ferreira, F. African Swine Fever Control and Prevention: An Update on Vaccine Development. Emerg. Microbes Infect. 2022, 11, 2021–2033. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.; Perera, C.L.; Rios, L.; Frías, M.T.; Pérez, L.J. A Critical Review about Different Vaccines against Classical Swine Fever Virus and Their Repercussions in Endemic Regions. Vaccines 2021, 9, 154. [Google Scholar] [CrossRef] [PubMed]
- World Organisation for Animal Health (WOAH). Classical Swine Fever Virus (Infection with Classical Swine Fever Virus). In WOAH Terrestrial Manual; WOAH: Paris, France, 2022; Chapter 3.9.3. [Google Scholar]
- WOAH. African Swine Fever (Infection with African Swine Fever Virus). In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals; World Organisation for Animal Health: Paris, France, 2019; Chapter 3.8.1; pp. 1–8. [Google Scholar]
- Galindo, I.; Alonso, C. African Swine Fever Virus: A Review. Viruses 2017, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Stahl, K.; Jori, F.; Vial, L.; Pfeiffer, D.U. African Swine Fever Epidemiology and Control. Annu. Rev. Anim. Biosci. 2020, 8, 221–246. [Google Scholar] [CrossRef]
- Juszkiewicz, M.; Walczak, M.; Woźniakowski, G.; Podgórska, K. African Swine Fever: Transmission, Spread, and Control through Biosecurity and Disinfection, Including Polish Trends. Viruses 2023, 15, 2275. [Google Scholar] [CrossRef]
- Schambow, R.A.; Hussain, S.; Antognoli, M.C.; Kreindel, S.; Reyes, R.; Perez, A.M. Epidemiological Assessment of African Swine Fever Spread in the Dominican Republic. Pathogens 2023, 12, 1414. [Google Scholar] [CrossRef]
- Gonzales, W.; Moreno, C.; Duran, U.; Henao, N.; Bencosme, M.; Lora, P.; Reyes, R.; Núñez, R.; De Gracia, A.; Perez, A.M. African Swine Fever in the Dominican Republic. Transbound. Emerg. Dis. 2021, 68, 3018–3019. [Google Scholar] [CrossRef]
- Sauter-Louis, C.; Conraths, F.J.; Probst, C.; Blohm, U.; Schulz, K.; Sehl, J.; Fischer, M.; Forth, J.H.; Zani, L.; Depner, K.; et al. African Swine Fever in Wild Boar in Europe—A Review. Viruses 2021, 13, 1717. [Google Scholar] [CrossRef]
- Tautz, N.; Tews, B.A.; Meyers, G. The Molecular Biology of Pestiviruses. Adv. Virus Res. 2015, 93, 47–160. [Google Scholar] [CrossRef]
- Fan, J.; Liao, Y.; Zhang, M.; Liu, C.; Li, Z.; Li, Y.; Li, X.; Wu, K.; Yi, L.; Ding, H.; et al. Anti-Classical Swine Fever Virus Strategies. Microorganisms 2021, 9, 761. [Google Scholar] [CrossRef]
- Hu, Z.; Tian, X.; Lai, R.; Wang, X.; Li, X. Current Detection Methods of African Swine Fever Virus. Front. Vet. Sci. 2023, 10, 1289676. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, O.I.; Titov, I.A.; Gogin, A.E.; Sevskikh, T.A.; Korennoy, F.I.; Kolbasov, D.V.; Abrahamyan, L.; Blokhin, A.A. African Swine Fever in the Russian Far East (2019–2020): Spatio-Temporal Analysis and Implications for Wild Ungulates. Front. Vet. Sci. 2021, 8, 723081. [Google Scholar] [CrossRef] [PubMed]
- Ganges, L.; Crooke, H.R.; Bohórquez, J.A.; Postel, A.; Sakoda, Y.; Becher, P.; Ruggli, N. Classical Swine Fever Virus: The Past, Present and Future. Virus Res. 2020, 289, 198151. [Google Scholar] [CrossRef]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African Swine Fever in Domestic Pigs and European Wild Boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Blome, S.; Staubach, C.; Henke, J.; Carlson, J.; Beer, M. Classical Swine Fever—An Updated Review. Viruses 2017, 9, 86. [Google Scholar] [CrossRef]
- Gallardo, C.; Nurmoja, I.; Soler, A.; Delicad, V.; Simón, A.; Martin, E.; Perez, C.; Nieto, R.; Arias, M. Evolution in Europe of African Swine Fever Genotype II Viruses from Highly to Moderately Virulent. Vet. Microbiol. 2018, 219, 70–79. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H.A. Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Wensvoort, G.; Terpstra, C.; Boonstra, J.; Bloemraad, M.; Van Zaane, D. Production of Monoclonal Antibodies against Swine Fever Virus and Their Use in Laboratory Diagnosis. Vet. Microbiol. 1986, 12, 101–108. [Google Scholar] [CrossRef]
- Fernández-Pinero, J.; Gallardo, C.; Elizalde, M.; Robles, A.; Gómez, C.; Bishop, R.; Heath, L.; Couacy-Hymann, E.; Fasina, F.O.; Pelayo, V.; et al. Molecular Diagnosis of African Swine Fever by a New Real-Time PCR Using Universal Probe Library. Transbound. Emerg. Dis. 2013, 60, 48–58. [Google Scholar] [CrossRef]
- Hoffmann, B.; Beer, M.; Schelp, C.; Schirrmeier, H.; Depner, K. Validation of a Real-Time RT-PCR Assay for Sensitive and Specific Detection of Classical Swine Fever. J. Virol. Methods 2005, 130, 36–44. [Google Scholar] [CrossRef]
- Muñoz-González, S.; Ruggli, N.; Rosell, R.; Pérez, L.J.; Frías-Leuporeau, M.T.; Fraile, L.; Montoya, M.; Cordoba, L.; Domingo, M.; Ehrensperger, F.; et al. Postnatal Persistent Infection with Classical Swine Fever Virus and Its Immunological Implications. PLoS ONE 2015, 10, e0125692. [Google Scholar] [CrossRef] [PubMed]
- Cabezón, O.; Muñoz-González, S.; Colom-Cadena, A.; Pérez-Simó, M.; Rosell, R.; Lavín, S.; Marco, I.; Fraile, L.; de la Riva, P.M.; Rodríguez, F.; et al. African Swine Fever Virus Infection in Classical Swine Fever Subclinically Infected Wild Boars. BMC Vet. Res. 2017, 13, 227. [Google Scholar] [CrossRef] [PubMed]
- Pavone, S.; Iscaro, C.; Dettori, A.; Feliziani, F. African Swine Fever: The State of the Art in Italy. Animals 2023, 13, 2998. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.-W.; Vu, T.T.H.; Le, V.P.; Yeom, M.; Song, D.; Jeong, D.G.; Park, S.-K. Advanced Strategies for Developing Vaccines and Diagnostic Tools for African Swine Fever. Viruses 2023, 15, 2169. [Google Scholar] [CrossRef]
- Caliendo, A.M. Multiplex PCR and Emerging Technologies for the Detection of Respiratory Pathogens. Clin. Infect. Dis. 2011, 52, S326–S330. [Google Scholar] [CrossRef]
- Rios, L.; Perera, C.L.; Coronado, L.; Relova, D.; Álvarez, A.M.; Ganges, L.; de Arce, H.D.; Núñez, J.I.; Pérez, L.J. Multi-Target Strategy for Pan/Foot-and-Mouth Disease Virus (FMDV) Detection: A Combination of Sequences Analysis, in Silico Predictions and Laboratory Diagnostic Evaluation. Front. Vet. Sci. 2018, 5, 160. [Google Scholar] [CrossRef]
- Gao, Y.-Y.; Wang, Q.; Zhang, S.; Zhao, J.; Bao, D.; Zhao, H.; Wang, K.; Hu, G.-X.; Gao, F.-S. Establishment and Preliminary Application of Duplex Fluorescence Quantitative PCR for Porcine Circoviruses Type 2 and Type 3. Heliyon 2024, 10, e31779. [Google Scholar] [CrossRef]
- Lazov, C.M.; Papetti, A.; Belsham, G.J.; Bøtner, A.; Rasmussen, T.B.; Boniotti, M.B. Multiplex Real-Time RT-PCR Assays for Detection and Differentiation of Porcine Enteric Coronaviruses. Pathogens 2023, 12, 1040. [Google Scholar] [CrossRef]
- Su, Y.; Liu, Y.; Chen, Y.; Xing, G.; Hao, H.; Wei, Q.; Liang, Y.; Xie, W.; Li, D.; Huang, H.; et al. A Novel Duplex TaqMan Probe-Based Real-Time RT-QPCR for Detecting and Differentiating Classical and Variant Porcine Epidemic Diarrhea Viruses. Mol. Cell. Probes 2018, 37, 6–11. [Google Scholar] [CrossRef]
Virus | ILCT | Reference Strain/ Genotype | Sample ID | (Ct Value) EURL | (Ct Value) Duplex RT-qPCR |
---|---|---|---|---|---|
ASFV | ASF EURL (2019) | Arm07/II | Nº 1 | 27.2 | 24.53 |
Arm07/II | Nº 2 | 27.7 | 21.38 | ||
Porcine blood negative | Nº 3 | undet. | undet. | ||
Porcine blood negative | Nº 4 | undet. | undet. | ||
Arm07/II | Nº 5 | 27.2 | 24.66 | ||
Arm07/II | Nº 6 | 23.9 | 20.29 | ||
Arm07/II | Nº 7 | 20.09 | 17.02 | ||
Arm07/II | Nº 8 | 27.7 | 23.65 | ||
Arm07/II | Nº 9 | 23.9 | 20.82 | ||
Arm07/II | Nº 10 | 20.09 | 17.32 | ||
ASF EURL (2020) | Arm07/II | 03-01 | 23.9 | 21.19 | |
Arm07/II | 03-02 | 27.5 | 25.33 | ||
Porcine blood negative | 03-03 | undet. | undet. | ||
Arm07/II | 03-04 | 20.7 | 17.55 | ||
Arm07/II | 03-05 | 23.9 | 21.06 | ||
Arm07/II | 03-06 | 27.5 | 24.04 | ||
Porcine blood negative | 03-07 | undet. | undet. | ||
Arm07/II | 03-08 | 20.7 | 17.14 | ||
Arm07/II | 03-09 | 23.9 | 21.82 | ||
Arm07/II | 03-10 | 27.5 | 25.49 | ||
CSFV | CSF EURL (2019) | CSF1053(21dpi)/2.3 | Viro A | 33 | 26.52 |
CSF0864(25dpi)/2.3 | Viro B | 27 | 26.06 | ||
CSF1053(21dpi)/2.3 | Viro C | 33 | 26.83 | ||
CSF1045(17dpi)/2.3 | Viro D | 21 | 15.67 | ||
Porcine blood negative | Viro E | undet. | undet. | ||
CSF0309/3.4 | Viro F | 31 | 23.81 | ||
CSF1047/2.1 | Viro G | 18 | 14.43 | ||
Porcine blood negative | Viro H | undet. | undet. | ||
CSF EURL (2020) | Koslov/1.1 | Viro A | 22 | 16.13 | |
CSF1060(14dpi)/2.2 | Viro B | 31 | 25.9 | ||
CSF0864(20dpi)/2.3 | Viro C | 25 | 21.83 | ||
CSF1060(14dpi)/2.2 | Viro D | 21 | 16.15 | ||
Porcine blood negative | Viro E | undet. | undet. | ||
CSF1060(14dpi)/2.2 | Viro F | 28 | 22.08 | ||
CSF0864(20dpi)/2.3 | Viro G | 25 | 20.46 | ||
CSF1060(14dpi)/2.2 | Viro H | 25 | 17.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coronado, L.; Muñoz-Aguilera, A.; Wang, M.; Muñoz, I.; Riquelme, C.; Heredia, S.; Stępniewska, K.; Gallardo, C.; Ganges, L. Simultaneous Detection of Classical and African Swine Fever Viruses by Duplex Taqman Real-Time PCR Assay in Pigs Infected with Both Diseases. Pathogens 2025, 14, 473. https://doi.org/10.3390/pathogens14050473
Coronado L, Muñoz-Aguilera A, Wang M, Muñoz I, Riquelme C, Heredia S, Stępniewska K, Gallardo C, Ganges L. Simultaneous Detection of Classical and African Swine Fever Viruses by Duplex Taqman Real-Time PCR Assay in Pigs Infected with Both Diseases. Pathogens. 2025; 14(5):473. https://doi.org/10.3390/pathogens14050473
Chicago/Turabian StyleCoronado, Liani, Adriana Muñoz-Aguilera, Miaomiao Wang, Iván Muñoz, Cristina Riquelme, Saray Heredia, Katarzyna Stępniewska, Carmina Gallardo, and Llilianne Ganges. 2025. "Simultaneous Detection of Classical and African Swine Fever Viruses by Duplex Taqman Real-Time PCR Assay in Pigs Infected with Both Diseases" Pathogens 14, no. 5: 473. https://doi.org/10.3390/pathogens14050473
APA StyleCoronado, L., Muñoz-Aguilera, A., Wang, M., Muñoz, I., Riquelme, C., Heredia, S., Stępniewska, K., Gallardo, C., & Ganges, L. (2025). Simultaneous Detection of Classical and African Swine Fever Viruses by Duplex Taqman Real-Time PCR Assay in Pigs Infected with Both Diseases. Pathogens, 14(5), 473. https://doi.org/10.3390/pathogens14050473