Targeting Autophagy as a Strategy for Developing New Host-Directed Therapeutics Against Nontuberculous Mycobacteria
Abstract
:1. Introduction
2. NTM Overview and Pathogenic Spectrum
3. NTM Disease Risk Factors
4. Challenges in Therapy and the Need for Novel Strategies
5. Types and Mechanisms of Autophagy
5.1. Molecular Regulation of Autophagosome Formation
5.2. LC3-Associated Phagocytosis (LAP): A Non-Canonical Autophagy Pathway
6. NTM and Antimicrobial Responses of Macrophages and Autophagy Targeting Compounds Against NTM Infections
6.1. Mycobacterium avium Complex (MAC) and Autophagy
6.2. Autophagy Targeting Therapeutics Against MAC Infection
6.3. Mycobacterium abscessus Complex (MABC) and Autophagy
6.4. Autophagy Targeting Therapeutics Against M. abscessus Infection
6.5. M. marinum and Autophagy
6.6. Autophagy Targeting Therapeutics Against M. marinum Infection
6.7. M. ulcerans and Autophagy
6.8. Autophagy Targeting Therapeutics Against M. ulcerans Infection
7. Conclusions and Future Perspectives on Autophagy-Targeted Therapies for NTM Infections
Author Contributions
Funding
Conflicts of Interest
References
- Opperman, C.; Steyn, J.; Matthews, M.C.; Singh, S.; Ghebrekristos, Y.; Kerr, T.J.; Miller, M.; Esmail, A.; Cox, H.; Warren, R.; et al. Targeted deep sequencing of mycobacteria species from extrapulmonary sites not identified by routine line probe assays: A retrospective laboratory analysis of stored clinical cultures. IJID Reg. 2024, 13, 100464. [Google Scholar] [CrossRef]
- Honda, J.R.; Virdi, R.; Chan, E.D. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front. Microbiol. 2018, 9, 2029. [Google Scholar] [CrossRef]
- Pereira, A.C.; Ramos, B.; Reis, A.C.; Cunha, M.V. Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches. Microorganisms 2020, 8, 1380. [Google Scholar] [CrossRef]
- Tortoli, E. Clinical manifestations of nontuberculous mycobacteria infections. Clin. Microbiol. Infect. 2009, 15, 906–910. [Google Scholar] [CrossRef]
- Kumar, K.; Ponnuswamy, A.; Capstick, T.G.; Chen, C.; McCabe, D.; Hurst, R.; Morrison, L.; Moore, F.; Gallardo, M.; Keane, J.; et al. Non-tuberculous mycobacterial pulmonary disease (NTM-PD): Epidemiology, diagnosis and multidisciplinary management. Clin. Med. 2024, 24, 100017. [Google Scholar] [CrossRef]
- Bents, S.J.; Mercaldo, R.A.; Powell, C.; Henkle, E.; Marras, T.K.; Prevots, D.R. Nontuberculous mycobacterial pulmonary disease (NTM PD) incidence trends in the United States, 2010–2019. BMC Infect. Dis. 2024, 24, 1094. [Google Scholar] [CrossRef]
- Ford, M.B.; Okulicz, J.F.; Salinas, J.R.; Kiley, J.L. Epidemiology, clinical characteristics, and outcomes of nontuberculous mycobacterial skin, soft tissue, and bone infections from a single center over a 10-year period. J. Clin. Tuberc. Other Mycobact. Dis. 2023, 33, 100403. [Google Scholar] [CrossRef]
- Henkle, E.; Winthrop, K.L. Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin. Chest Med. 2015, 36, 91–99. [Google Scholar] [CrossRef]
- Kumar, K.; Loebinger, M.R. Nontuberculous Mycobacterial Pulmonary Disease: Clinical Epidemiologic Features, Risk Factors, and Diagnosis: The Nontuberculous Mycobacterial Series. Chest 2022, 161, 637–646. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. SnapShot: Macroautophagy. Cell 2008, 132, 162.e1–162.e3. [Google Scholar] [CrossRef]
- Levine, B.; Kroemer, G. Biological Functions of Autophagy Genes: A Disease Perspective. Cell 2019, 176, 11–42. [Google Scholar] [CrossRef] [PubMed]
- Ryter, S.W.; Bhatia, D.; Choi, M.E. Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease. Antioxid. Redox. Signal. 2019, 30, 138–159. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Zhang, S.; Mizushima, N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023, 24, 382–400. [Google Scholar] [CrossRef]
- Sharma, V.; Verma, S.; Seranova, E.; Sarkar, S.; Kumar, D. Selective Autophagy and Xenophagy in Infection and Disease. Front. Cell Dev. Biol. 2018, 6, 147. [Google Scholar] [CrossRef]
- Bradfute, S.B.; Castillo, E.F.; Arko-Mensah, J.; Chauhan, S.; Jiang, S.; Mandell, M.; Deretic, V. Autophagy as an immune effector against tuberculosis. Curr. Opin. Microbiol. 2013, 16, 355–365. [Google Scholar] [CrossRef]
- Deretic, V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021, 54, 437–453. [Google Scholar] [CrossRef] [PubMed]
- Deretic, V.; Wang, F. Autophagy is part of the answer to tuberculosis. Nat. Microbiol. 2023, 8, 762–763. [Google Scholar] [CrossRef]
- Kim, J.J.; Lee, H.M.; Shin, D.M.; Kim, W.; Yuk, J.M.; Jin, H.S.; Lee, S.H.; Cha, G.H.; Kim, J.M.; Lee, Z.W.; et al. Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe 2012, 11, 457–468. [Google Scholar] [CrossRef]
- Kim, J.K.; Silwal, P.; Jo, E.K. Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection. Immune Netw. 2020, 20, e37. [Google Scholar] [CrossRef]
- Kim, Y.S.; Silwal, P.; Kim, S.Y.; Yoshimori, T.; Jo, E.K. Autophagy-activating strategies to promote innate defense against mycobacteria. Exp. Mol. Med. 2019, 51, 1–10. [Google Scholar] [CrossRef]
- Silwal, P.; Kim, I.S.; Jo, E.K. Autophagy and Host Defense in Nontuberculous Mycobacterial Infection. Front. Immunol. 2021, 12, 728742. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Haas, M.K.; Kasperbauer, S.H.; Calado Nogueira de Moura, V.; Eddy, J.J.; Mitchell, J.D.; Khare, R.; Griffith, D.E.; Chan, E.D.; Daley, C.L. Nontuberculous Mycobacterial Pulmonary Disease: Patients, Principles, and Prospects. Clin. Infect. Dis. 2024, 79, e27–e47. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Aguilar, M.; Castillo-Rodal, A.I.; Arredondo-Hernandez, R.; Lopez-Vidal, Y. Non-tuberculous mycobacteria immunopathogenesis: Closer than they appear. a prime of innate immunity trade-off and NTM ways into virulence. Scand. J. Immunol. 2021, 94, e13035. [Google Scholar] [CrossRef]
- Ahmed, S.; Raqib, R.; Guethmundsson, G.H.; Bergman, P.; Agerberth, B.; Rekha, R.S. Host-Directed Therapy as a Novel Treatment Strategy to Overcome Tuberculosis: Targeting Immune Modulation. Antibiotics 2020, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Khare, R.; Brown-Elliott, B.A. Culture, Identification, and Antimicrobial Susceptibility Testing of Pulmonary Nontuberculous Mycobacteria. Clin. Chest Med. 2023, 44, 743–755. [Google Scholar] [CrossRef]
- Tran, T.; Bonham, A.J.; Chan, E.D.; Honda, J.R. A paucity of knowledge regarding nontuberculous mycobacterial lipids compared to the tubercle bacillus. Tuberculosis 2019, 115, 96–107. [Google Scholar] [CrossRef]
- Dhasmana, D.J.; Whitaker, P.; van der Laan, R.; Frost, F. A practical guide to the diagnosis and management of suspected Non-tuberculous Mycobacterial Pulmonary Disease (NTM-PD) in the United Kingdom. NPJ Prim. Care Respir. Med. 2024, 34, 45. [Google Scholar] [CrossRef]
- Jiang, X.; Xue, Y.; Men, P.; Zhao, L.; Jia, J.; Yu, X.; Huang, H. Nontuberculous mycobacterial disease in children: A systematic review and meta-analysis. Heliyon 2024, 10, e31757. [Google Scholar] [CrossRef]
- Dartois, V.; Dick, T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat. Rev. Drug Discov. 2024, 23, 381–403. [Google Scholar] [CrossRef]
- Schmitt, H.; Schnitzler, N.; Riehl, J.; Adam, G.; Sieberth, H.G.; Haase, G. Successful treatment of pulmonary Mycobacterium xenopi infection in a natural killer cell-deficient patient with clarithromycin, rifabutin, and sparfloxacin. Clin. Infect. Dis. 1999, 29, 120–124. [Google Scholar] [CrossRef]
- Biciusca, T.; Zielbauer, A.S.; Anton, T.; Marschall, L.; Idris, R.; Koepsell, J.; Juergens, L.J.; Gotta, J.; Koch, V.; Wichelhaus, T.A.; et al. Differential radiological features of patients infected or colonised with slow-growing non-tuberculous mycobacteria. Sci. Rep. 2024, 14, 13295. [Google Scholar] [CrossRef]
- Matveychuk, A.; Fuks, L.; Priess, R.; Hahim, I.; Shitrit, D. Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Respir. Med. 2012, 106, 1472–1477. [Google Scholar] [CrossRef]
- Yan, M.; Brode, S.K.; Marras, T.K. The Other Nontuberculous Mycobacteria: Clinical Aspects of Lung Disease Caused by Less Common Slowly Growing Nontuberculous Mycobacteria Species. Chest 2023, 163, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Asakura, T.; Okamori, S.; Furuuchi, K.; Yagi, M.; Nakayama, Y.; Kuramoto, J.; Yagi, K.; Hase, I.; Kamata, H.; et al. Distinctive clinical features of radiological pleuroparenchymal fibroelastosis with nontuberculous mycobacterial pulmonary disease: A multicenter retrospective cohort study. Int. J. Infect. Dis. 2024, 148, 107233. [Google Scholar] [CrossRef] [PubMed]
- Baird, T.; Bell, S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin. Chest Med. 2023, 44, 847–860. [Google Scholar] [CrossRef]
- Mehta, N.; Tyagi, M.; Ramam, M.; Khaitan, B.K. Cutaneous Atypical Mycobacterial Infections: A Brief Review. Indian Dermatol. Online J. 2024, 15, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Nohrenberg, M.; Wright, A.; Krause, V. Non-tuberculous mycobacterial skin and soft tissue infections in the Northern Territory, Australia, 1989-2021. Int. J. Infect. Dis. 2023, 135, 125–131. [Google Scholar] [CrossRef]
- Wang, X.Y.; Jia, Q.N.; Li, J. Treatment of non-tuberculosis mycobacteria skin infections. Front. Pharmacol. 2023, 14, 1242156. [Google Scholar] [CrossRef]
- Misch, E.A.; Saddler, C.; Davis, J.M. Skin and Soft Tissue Infections Due to Nontuberculous Mycobacteria. Curr. Infect. Dis. Rep. 2018, 20, 6. [Google Scholar] [CrossRef]
- Wiener, J.; Wanaguru, D.; Currie, B.; Grant, P.; Russell, C.; Palasanthiran, P.; Williams, P.; Belessis, Y.; Soma, M. Mediastinal Nontuberculous Mycobacterial Infection in Children: A Multidisciplinary Approach. Pediatr. Infect. Dis. J. 2024, 43, e225–e230. [Google Scholar] [CrossRef]
- Dahl, V.N.; Molhave, M.; Floe, A.; van Ingen, J.; Schon, T.; Lillebaek, T.; Andersen, A.B.; Wejse, C. Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. Int. J. Infect. Dis. 2022, 125, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Winthrop, K.L.; Marras, T.K.; Adjemian, J.; Zhang, H.; Wang, P.; Zhang, Q. Incidence and Prevalence of Nontuberculous Mycobacterial Lung Disease in a Large U.S. Managed Care Health Plan, 2008–2015. Ann. Am. Thorac. Soc. 2020, 17, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Conyers, L.E.; Saunders, B.M. Treatment for non-tuberculous mycobacteria: Challenges and prospects. Front. Microbiol. 2024, 15, 1394220. [Google Scholar] [CrossRef] [PubMed]
- Honda, J.R.; Alper, S.; Bai, X.; Chan, E.D. Acquired and genetic host susceptibility factors and microbial pathogenic factors that predispose to nontuberculous mycobacterial infections. Curr. Opin. Immunol. 2018, 54, 66–73. [Google Scholar] [CrossRef]
- Kim, B.G.; Shin, S.H.; Lee, S.K.; Kim, S.H.; Lee, H. Risk of incident chronic obstructive pulmonary disease during longitudinal follow-up in patients with nontuberculous mycobacterial pulmonary disease. Respir. Res. 2024, 25, 333. [Google Scholar] [CrossRef]
- Kartalija, M.; Ovrutsky, A.R.; Bryan, C.L.; Pott, G.B.; Fantuzzi, G.; Thomas, J.; Strand, M.J.; Bai, X.; Ramamoorthy, P.; Rothman, M.S.; et al. Patients with nontuberculous mycobacterial lung disease exhibit unique body and immune phenotypes. Am. J. Respir. Crit. Care. Med. 2013, 187, 197–205. [Google Scholar] [CrossRef]
- Becker, K.L.; Arts, P.; Jaeger, M.; Plantinga, T.S.; Gilissen, C.; van Laarhoven, A.; van Ingen, J.; Veltman, J.A.; Joosten, L.A.; Hoischen, A.; et al. MST1R mutation as a genetic cause of Lady Windermere syndrome. Eur. Respir. J. 2017, 49, 1601478. [Google Scholar] [CrossRef]
- Aridgides, D.S.; Mellinger, D.L.; Gwilt, L.L.; Hampton, T.H.; Mould, D.L.; Hogan, D.A.; Ashare, A. Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages. Sci. Rep. 2023, 13, 11995. [Google Scholar] [CrossRef]
- Zhang, S.; Shrestha, C.L.; Kopp, B.T. Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have differential effects on cystic fibrosis macrophage function. Sci. Rep. 2018, 8, 17066. [Google Scholar] [CrossRef]
- Prieto, M.D.; Alam, M.E.; Franciosi, A.N.; Quon, B.S. Global burden of nontuberculous mycobacteria in the cystic fibrosis population: A systematic review and meta-analysis. ERJ Open Res. 2023, 9, 00336–2022. [Google Scholar] [CrossRef]
- Gu, Y.; Nie, W.; Huang, H.; Yu, X. Non-tuberculous mycobacterial disease: Progress and advances in the development of novel candidate and repurposed drugs. Front. Cell Infect. Microbiol. 2023, 13, 1243457. [Google Scholar] [CrossRef]
- Park, Y.; Hong, J.W.; Ahn, E.; Gee, H.Y.; Kang, Y.A. PARK2 as a susceptibility factor for nontuberculous mycobacterial pulmonary disease. Respir. Res. 2024, 25, 310. [Google Scholar] [CrossRef] [PubMed]
- Dartois, V.; Dick, T. Drug development challenges in nontuberculous mycobacterial lung disease: TB to the rescue. J. Exp. Med. 2022, 219, e20220445. [Google Scholar] [CrossRef] [PubMed]
- Diel, R.; Lipman, M.; Hoefsloot, W. High mortality in patients with Mycobacterium avium complex lung disease: A systematic review. BMC Infect. Dis. 2018, 18, 206. [Google Scholar] [CrossRef]
- Kamada, K.; Mitarai, S. Anti-Mycobacterial Drug Resistance in Japan: How to Approach This Problem? Antibiotics 2021, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, M.; Fisher, S.; Story-Roller, E.; Lamichhane, G.; Parrish, N. Activities of Dual Combinations of Antibiotics Against Multidrug-Resistant Nontuberculous Mycobacteria Recovered from Patients with Cystic Fibrosis. Microb. Drug. Resist. 2018, 24, 1191–1197. [Google Scholar] [CrossRef]
- Rindi, L. Efflux Pump Inhibitors Against Nontuberculous Mycobacteria. Int. J. Mol. Sci. 2020, 21, 4191. [Google Scholar] [CrossRef]
- Reil, I.; Spicic, S.; Barbic, L.; Duvnjak, S.; Kompes, G.; Benic, M.; Stojevic, D.; Cvetnic, Z.; Arapovic, J.; Zdelar-Tuk, M. Antimicrobial Resistance in Rapidly Growing Nontuberculous Mycobacteria among Domestic and Wild Animals Emphasizing the Zoonotic Potential. Microorganisms 2023, 11, 2520. [Google Scholar] [CrossRef]
- Clary, G.; Sasindran, S.J.; Nesbitt, N.; Mason, L.; Cole, S.; Azad, A.; McCoy, K.; Schlesinger, L.S.; Hall-Stoodley, L. Mycobacterium abscessus Smooth and Rough Morphotypes Form Antimicrobial-Tolerant Biofilm Phenotypes but Are Killed by Acetic Acid. Antimicrob. Agents Chemother. 2018, 62, 10–128. [Google Scholar] [CrossRef]
- Abukhalid, N.; Islam, S.; Ndzeidze, R.; Bermudez, L.E. Mycobacterium avium Subsp. hominissuis Interactions with Macrophage Killing Mechanisms. Pathogens 2021, 10, 1365. [Google Scholar] [CrossRef]
- Griffith, D.E.; Aksamit, T.; Brown-Elliott, B.A.; Catanzaro, A.; Daley, C.; Gordin, F.; Holland, S.M.; Horsburgh, R.; Huitt, G.; Iademarco, M.F.; et al. An official ATS/IDSA statement: Diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am. J. Respir. Crit. Care Med. 2007, 175, 367–416. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L.; Iaccarino, J.M.; Lange, C.; Cambau, E.; Wallace, R.J.; Andrejak, C.; Bottger, E.C.; Brozek, J.; Griffith, D.E.; Guglielmetti, L.; et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020, 71, 905–913. [Google Scholar] [CrossRef]
- Kilinc, G.; Saris, A.; Ottenhoff, T.H.M.; Haks, M.C. Host-directed therapy to combat mycobacterial infections. Immunol. Rev. 2021, 301, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Hawn, T.R.; Shah, J.A.; Kalman, D. New tricks for old dogs: Countering antibiotic resistance in tuberculosis with host-directed therapeutics. Immunol. Rev. 2015, 264, 344–362. [Google Scholar] [CrossRef]
- Anidi, I.U.; Olivier, K.N. Host-Directed Therapy in Nontuberculous Mycobacterial Pulmonary Disease: Preclinical and Clinical Data Review. Clin. Chest Med. 2023, 44, 839–845. [Google Scholar] [CrossRef]
- Hortle, E.; Oehlers, S.H. Host-directed therapies targeting the tuberculosis granuloma stroma. Pathog. Dis. 2020, 78, ftaa015. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Rao, M.; Wallis, R.S.; Kaufmann, S.H.; Rustomjee, R.; Mwaba, P.; Vilaplana, C.; Yeboah-Manu, D.; Chakaya, J.; Ippolito, G.; et al. Host-directed therapies for infectious diseases: Current status, recent progress, and future prospects. Lancet Infect. Dis. 2016, 16, e47–e63. [Google Scholar] [CrossRef]
- Kim, Y.J.; Park, E.J.; Lee, S.H.; Silwal, P.; Kim, J.K.; Yang, J.S.; Whang, J.; Jang, J.; Kim, J.M.; Jo, E.K. Dimethyl itaconate is effective in host-directed antimicrobial responses against mycobacterial infections through multifaceted innate immune pathways. Cell Biosci. 2023, 13, 49. [Google Scholar] [CrossRef]
- Sil, P.; Muse, G.; Martinez, J. A ravenous defense: Canonical and non-canonical autophagy in immunity. Curr. Opin. Immunol. 2018, 50, 21–31. [Google Scholar] [CrossRef]
- Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 2013, 13, 722–737. [Google Scholar] [CrossRef]
- Yamamoto, H.; Matsui, T. Molecular Mechanisms of Macroautophagy, Microautophagy, and Chaperone-Mediated Autophagy. J. Nippon. Med. Sch. 2024, 91, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.A.; Fraile-Martinez, O.; de Leon-Oliva, D.; Boaru, D.L.; Lopez-Gonzalez, L.; Garcia-Montero, C.; Alvarez-Mon, M.A.; Guijarro, L.G.; Torres-Carranza, D.; Saez, M.A.; et al. Autophagy in Its (Proper) Context: Molecular Basis, Biological Relevance, Pharmacological Modulation, and Lifestyle Medicine. Int. J. Biol. Sci. 2024, 20, 2532–2554. [Google Scholar] [CrossRef]
- Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res. 2014, 24, 24–41. [Google Scholar] [CrossRef] [PubMed]
- Lahiri, V.; Hawkins, W.D.; Klionsky, D.J. Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab. 2019, 29, 803–826. [Google Scholar] [CrossRef]
- Lamark, T.; Johansen, T. Mechanisms of Selective Autophagy. Annu. Rev. Cell Dev. Biol. 2021, 37, 143–169. [Google Scholar] [CrossRef]
- Shaid, S.; Brandts, C.H.; Serve, H.; Dikic, I. Ubiquitination and selective autophagy. Cell Death Differ. 2013, 20, 21–30. [Google Scholar] [CrossRef]
- Cohen-Kaplan, V.; Ciechanover, A.; Livneh, I. p62 at the crossroad of the ubiquitin-proteasome system and autophagy. Oncotarget 2016, 7, 83833–83834. [Google Scholar] [CrossRef] [PubMed]
- Johansen, T.; Lamark, T. Selective autophagy mediated by autophagic adapter proteins. Autophagy 2011, 7, 279–296. [Google Scholar] [CrossRef]
- Long, J.; Gallagher, T.R.; Cavey, J.R.; Sheppard, P.W.; Ralston, S.H.; Layfield, R.; Searle, M.S. Ubiquitin recognition by the ubiquitin-associated domain of p62 involves a novel conformational switch. J. Biol. Chem. 2008, 283, 5427–5440. [Google Scholar] [CrossRef]
- Kimmey, J.M.; Stallings, C.L. Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions. Trends Mol. Med. 2016, 22, 1060–1076. [Google Scholar] [CrossRef]
- Deretic, V.; Delgado, M.; Vergne, I.; Master, S.; De Haro, S.; Ponpuak, M.; Singh, S. Autophagy in immunity against mycobacterium tuberculosis: A model system to dissect immunological roles of autophagy. Curr. Top Microbiol. Immunol. 2009, 335, 169–188. [Google Scholar] [PubMed]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Lin, M.G.; Hurley, J.H. Structure and function of the ULK1 complex in autophagy. Curr. Opin. Cell Biol. 2016, 39, 61–68. [Google Scholar] [CrossRef]
- Hurley, J.H.; Young, L.N. Mechanisms of Autophagy Initiation. Annu. Rev. Biochem. 2017, 86, 225–244. [Google Scholar] [CrossRef]
- Dooley, H.C.; Razi, M.; Polson, H.E.; Girardin, S.E.; Wilson, M.I.; Tooze, S.A. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 2014, 55, 238–252. [Google Scholar] [CrossRef] [PubMed]
- Iriondo, M.N.; Etxaniz, A.; Varela, Y.R.; Ballesteros, U.; Lazaro, M.; Valle, M.; Fracchiolla, D.; Martens, S.; Montes, L.R.; Goni, F.M.; et al. Effect of ATG12-ATG5-ATG16L1 autophagy E3-like complex on the ability of LC3/GABARAP proteins to induce vesicle tethering and fusion. Cell Mol. Life Sci. 2023, 80, 56. [Google Scholar] [CrossRef]
- Schille, S.; Crauwels, P.; Bohn, R.; Bagola, K.; Walther, P.; van Zandbergen, G. LC3-associated phagocytosis in microbial pathogenesis. Int. J. Med. Microbiol. 2018, 308, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhang, Q.; Chen, S.; Yan, M.; Yue, L. LC3-Associated Phagocytosis in Bacterial Infection. Pathogens 2022, 11, 863. [Google Scholar] [CrossRef]
- Koster, S.; Upadhyay, S.; Chandra, P.; Papavinasasundaram, K.; Yang, G.; Hassan, A.; Grigsby, S.J.; Mittal, E.; Park, H.S.; Jones, V.; et al. Mycobacterium tuberculosis is protected from NADPH oxidase and LC3-associated phagocytosis by the LCP protein CpsA. Proc. Natl. Acad. Sci. USA 2017, 114, E8711–E8720. [Google Scholar] [CrossRef]
- Paik, S.; Kim, J.K.; Chung, C.; Jo, E.K. Autophagy: A new strategy for host-directed therapy of tuberculosis. Virulence 2019, 10, 448–459. [Google Scholar] [CrossRef]
- Castillo, E.F.; Dekonenko, A.; Arko-Mensah, J.; Mandell, M.A.; Dupont, N.; Jiang, S.; Delgado-Vargas, M.; Timmins, G.S.; Bhattacharya, D.; Yang, H.; et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl. Acad. Sci. USA 2012, 109, E3168–E3176. [Google Scholar] [CrossRef]
- Deretic, V.; Levine, B. Autophagy balances inflammation in innate immunity. Autophagy 2018, 14, 243–251. [Google Scholar] [CrossRef] [PubMed]
- Zullo, A.J.; Lee, S. Mycobacterial induction of autophagy varies by species and occurs independently of mammalian target of rapamycin inhibition. J. Biol. Chem. 2012, 287, 12668–12678. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; An, D.R.; Song, J.; Yoon, J.Y.; Kim, H.S.; Yoon, H.J.; Im, H.N.; Kim, J.; Kim, D.J.; Lee, S.J.; et al. Mycobacterium tuberculosis Eis protein initiates suppression of host immune responses by acetylation of DUSP16/MKP-7. Proc. Natl. Acad. Sci. USA 2012, 109, 7729–7734. [Google Scholar] [CrossRef]
- Strong, E.J.; Jurcic Smith, K.L.; Saini, N.K.; Ng, T.W.; Porcelli, S.A.; Lee, S. Identification of Autophagy-Inhibiting Factors of Mycobacterium tuberculosis by High-Throughput Loss-of-Function Screening. Infect. Immun. 2020, 88, e00269. [Google Scholar] [CrossRef] [PubMed]
- Strong, E.J.; Ng, T.W.; Porcelli, S.A.; Lee, S. Mycobacterium tuberculosis PE_PGRS20 and PE_PGRS47 Proteins Inhibit Autophagy by Interaction with Rab1A. mSphere 2021, 6, e0054921. [Google Scholar] [CrossRef]
- Strong, E.J.; Wang, J.; Ng, T.W.; Porcelli, S.A.; Lee, S. Mycobacterium tuberculosis PPE51 Inhibits Autophagy by Suppressing Toll-Like Receptor 2-Dependent Signaling. mBio 2022, 13, e0297421. [Google Scholar] [CrossRef]
- Ge, P.; Lei, Z.; Yu, Y.; Lu, Z.; Qiang, L.; Chai, Q.; Zhang, Y.; Zhao, D.; Li, B.; Pang, Y.; et al. M. tuberculosis PknG manipulates host autophagy flux to promote pathogen intracellular survival. Autophagy 2022, 18, 576–594. [Google Scholar] [CrossRef]
- Golovkine, G.R.; Roberts, A.W.; Morrison, H.M.; Rivera-Lugo, R.; McCall, R.M.; Nilsson, H.; Garelis, N.E.; Repasy, T.; Cronce, M.; Budzik, J.; et al. Autophagy restricts Mycobacterium tuberculosis during acute infection in mice. Nat. Microbiol. 2023, 8, 819–832. [Google Scholar] [CrossRef]
- Prasla, Z.; Sutliff, R.L.; Sadikot, R.T. Macrophage Signaling Pathways in Pulmonary Nontuberculous Mycobacteria Infections. Am. J. Respir. Cell Mol. Biol. 2020, 63, 144–151. [Google Scholar] [CrossRef]
- Shamaei, M.; Mirsaeidi, M. Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infect. Immun. 2021, 89, e0081220. [Google Scholar] [CrossRef]
- Kilinc, G.; Boland, R.; Heemskerk, M.T.; Spaink, H.P.; Haks, M.C.; van der Vaart, M.; Ottenhoff, T.H.M.; Meijer, A.H.; Saris, A. Host-directed therapy with amiodarone in preclinical models restricts mycobacterial infection and enhances autophagy. Microbiol. Spectr. 2024, 12, e0016724. [Google Scholar] [CrossRef]
- Bittencourt, T.L.; da Silva Prata, R.B.; de Andrade Silva, B.J.; de Mattos Barbosa, M.G.; Dalcolmo, M.P.; Pinheiro, R.O. Autophagy as a Target for Drug Development Of Skin Infection Caused by Mycobacteria. Front. Immunol. 2021, 12, 674241. [Google Scholar] [CrossRef]
- Poerio, N.; Riva, C.; Olimpieri, T.; Rossi, M.; Lore, N.I.; De Santis, F.; Henrici De Angelis, L.; Ciciriello, F.; D’Andrea, M.M.; Lucidi, V.; et al. Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiol. Spectr. 2022, 10, e0254621. [Google Scholar] [CrossRef] [PubMed]
- Palucci, I.; Salustri, A.; De Maio, F.; Pereyra Boza, M.D.C.; Paglione, F.; Sali, M.; Occhigrossi, L.; D’Eletto, M.; Rossin, F.; Goletti, D.; et al. Cysteamine/Cystamine Exert Anti-Mycobacterium abscessus Activity Alone or in Combination with Amikacin. Int. J. Mol. Sci. 2023, 24, 1203. [Google Scholar] [CrossRef]
- Kim, Y.S.; Kim, J.K.; Hanh, B.T.B.; Kim, S.Y.; Kim, H.J.; Kim, Y.J.; Jeon, S.M.; Park, C.R.; Oh, G.T.; Park, J.W.; et al. The Peroxisome Proliferator-Activated Receptor alpha- Agonist Gemfibrozil Promotes Defense Against Mycobacterium abscessus Infections. Cells 2020, 9, 648. [Google Scholar] [CrossRef]
- Sapkota, A.; Park, E.J.; Kim, Y.J.; Heo, J.B.; Nguyen, T.Q.; Heo, B.E.; Kim, J.K.; Lee, S.H.; Kim, S.I.; Choi, Y.J.; et al. The autophagy-targeting compound V46 enhances antimicrobial responses to Mycobacteroides abscessus by activating transcription factor EB. Biomed. Pharmacother. 2024, 179, 117313. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Inderlied, C.B.; Kolonoski, P.; Chee, C.B.; Aralar, P.; Petrofsky, M.; Parman, T.; Green, C.E.; Lewin, A.H.; Ellis, W.Y.; et al. Identification of (+)-erythro-mefloquine as an active enantiomer with greater efficacy than mefloquine against Mycobacterium avium infection in mice. Antimicrob. Agents Chemother. 2012, 56, 4202–4206. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Kolonoski, P.; Wu, M.; Aralar, P.A.; Inderlied, C.B.; Young, L.S. Mefloquine is active in vitro and in vivo against Mycobacterium avium complex. Antimicrob. Agents Chemother. 1999, 43, 1870–1874. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, S.J.; Jo, Y.K.; Kim, E.S.; Kang, H.; Park, J.H.; Lee, E.H.; Cho, D.H. Suppression of autophagy exacerbates Mefloquine-mediated cell death. Neurosci. Lett. 2012, 515, 162–167. [Google Scholar] [CrossRef]
- Hussain, T.; Zhao, D.; Shah, S.Z.A.; Sabir, N.; Wang, J.; Liao, Y.; Song, Y.; Dong, H.; Hussain Mangi, M.; Ni, J.; et al. Nilotinib: A Tyrosine Kinase Inhibitor Mediates Resistance to Intracellular Mycobacterium Via Regulating Autophagy. Cells 2019, 8, 506. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.W.; Ko, H.J.; Chou, C.H.; Cheng, T.S.; Cheng, H.W.; Liang, Y.H.; Lai, Y.L.; Lin, C.Y.; Wang, C.; Loh, J.K.; et al. Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/beta-Catenin Signaling Pathway in Glioma Cells. Int. J. Mol. Sci. 2019, 20, 473. [Google Scholar] [CrossRef]
- Deshpande, D.; Srivastava, S.; Musuka, S.; Gumbo, T. Thioridazine as Chemotherapy for Mycobacterium avium Complex Diseases. Antimicrob. Agents Chemother. 2016, 60, 4652–4658. [Google Scholar] [CrossRef]
- Lorente-Torres, B.; Llano-Verdeja, J.; Castanera, P.; Ferrero, H.A.; Fernandez-Martinez, S.; Javadimarand, F.; Mateos, L.M.; Letek, M.; Mourenza, A. Innovative Strategies in Drug Repurposing to Tackle Intracellular Bacterial Pathogens. Antibiotics 2024, 13, 834. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.M.; Pennings, L.J.; Koeken, V.; Schildkraut, J.A.; Hashemi, A.; Wertheim, H.F.L.; Hoefsloot, W.; van Ingen, J. Thioridazine Is an Efflux Pump Inhibitor in Mycobacterium avium Complex but of Limited Clinical Relevance. Antimicrob. Agents Chemother. 2020, 64, e00181. [Google Scholar] [CrossRef]
- Srivastava, S.; Deshpande, D.; Sherman, C.M.; Gumbo, T. A shock and awe thioridazine and moxifloxacin combination-based regimen for pulmonary Mycobacterium avium-intracellulare complex disease. J. Antimicrob. Chemother. 2017, 72 (Suppl. 2), i43–i47. [Google Scholar] [CrossRef]
- Sharma, V.; Makhdoomi, M.; Singh, L.; Kumar, P.; Khan, N.; Singh, S.; Verma, H.N.; Luthra, K.; Sarkar, S.; Kumar, D. Trehalose limits opportunistic mycobacterial survival during HIV co-infection by reversing HIV-mediated autophagy block. Autophagy 2021, 17, 476–495. [Google Scholar] [CrossRef]
- Bai, X.; Bai, A.; Honda, J.R.; Eichstaedt, C.; Musheyev, A.; Feng, Z.; Huitt, G.; Harbeck, R.; Kosmider, B.; Sandhaus, R.A.; et al. Alpha-1-Antitrypsin Enhances Primary Human Macrophage Immunity Against Non-tuberculous Mycobacteria. Front. Immunol. 2019, 10, 1417. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, J.; Gao, Y.; Shi, C.; Guo, X.; Huang, H.; Wang, J.; Huang, X.; Chen, H.; Huang, J.; et al. Degarelix limits the survival of mycobacteria and granuloma formation. Microb. Pathog. 2024, 197, 107046. [Google Scholar] [CrossRef]
- Boland, R.; Heemskerk, M.T.; Forn-Cuni, G.; Korbee, C.J.; Walburg, K.V.; Esselink, J.J.; Carvalho Dos Santos, C.; de Waal, A.M.; van der Hoeven, D.C.M.; van der Sar, E.; et al. Repurposing Tamoxifen as Potential Host-Directed Therapeutic for Tuberculosis. mBio 2023, 14, e0302422. [Google Scholar] [CrossRef]
- Quan, H.; Chung, H.; Je, S.; Hong, J.J.; Kim, B.J.; Na, Y.R.; Seok, S.H. Pyruvate dehydrogenase kinase inhibitor dichloroacetate augments autophagy mediated constraining the replication of Mycobacteroides massiliense in macrophages. Microbes. Infect. 2023, 25, 105139. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, J.; Mendes, A.I.; Pacheco, A.R.; Peixoto, M.J.; Pedrosa, J.; Fraga, A.G. Repurposing of statins for Buruli Ulcer treatment: Antimicrobial activity against Mycobacterium ulcerans. Front. Microbiol. 2023, 14, 1266261. [Google Scholar] [CrossRef] [PubMed]
- Marini, E.; Di Giulio, M.; Ginestra, G.; Magi, G.; Di Lodovico, S.; Marino, A.; Facinelli, B.; Cellini, L.; Nostro, A. Efficacy of carvacrol against resistant rapidly growing mycobacteria in the planktonic and biofilm growth mode. PLoS ONE 2019, 14, e0219038. [Google Scholar] [CrossRef]
- Nowotarska, S.W.; Nowotarski, K.; Grant, I.R.; Elliott, C.T.; Friedman, M.; Situ, C. Mechanisms of Antimicrobial Action of Cinnamon and Oregano Oils, Cinnamaldehyde, Carvacrol, 2,5-Dihydroxybenzaldehyde, and 2-Hydroxy-5-Methoxybenzaldehyde against Mycobacterium avium subsp. paratuberculosis (Map). Foods 2017, 6, 72. [Google Scholar] [CrossRef]
- Spalletta, S.; Flati, V.; Toniato, E.; Di Gregorio, J.; Marino, A.; Pierdomenico, L.; Marchisio, M.; D’Orazi, G.; Cacciatore, I.; Robuffo, I. Carvacrol reduces adipogenic differentiation by modulating autophagy and ChREBP expression. PLoS ONE 2018, 13, e0206894. [Google Scholar] [CrossRef]
- Potocnjak, I.; Gobin, I.; Domitrovic, R. Carvacrol induces cytotoxicity in human cervical cancer cells but causes cisplatin resistance: Involvement of MEK-ERK activation. Phytother. Res. 2018, 32, 1090–1097. [Google Scholar] [CrossRef] [PubMed]
- Renna, M.; Schaffner, C.; Brown, K.; Shang, S.; Tamayo, M.H.; Hegyi, K.; Grimsey, N.J.; Cusens, D.; Coulter, S.; Cooper, J.; et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J. Clin. Investig. 2011, 121, 3554–3563. [Google Scholar] [CrossRef]
- Choules, M.P.; Wolf, N.M.; Lee, H.; Anderson, J.R.; Grzelak, E.M.; Wang, Y.; Ma, R.; Gao, W.; McAlpine, J.B.; Jin, Y.Y.; et al. Rufomycin Targets ClpC1 Proteolysis in Mycobacterium tuberculosis and M. abscessus. Antimicrob. Agents Chemother. 2019, 63, e02204–e02218. [Google Scholar] [CrossRef]
- Park, C.R.; Paik, S.; Kim, Y.J.; Kim, J.K.; Jeon, S.M.; Lee, S.H.; Whang, J.; Cheng, J.; Suh, J.W.; Cao, J.; et al. Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Front. Microbiol. 2021, 12, 695024. [Google Scholar] [CrossRef]
- Bruning, A.; Brem, G.J.; Vogel, M.; Mylonas, I. Tetracyclines cause cell stress-dependent ATF4 activation and mTOR inhibition. Exp. Cell Res. 2014, 320, 281–289. [Google Scholar] [CrossRef]
- Kaushik, A.; Ammerman, N.C.; Martins, O.; Parrish, N.M.; Nuermberger, E.L. In Vitro Activity of New Tetracycline Analogs Omadacycline and Eravacycline against Drug-Resistant Clinical Isolates of Mycobacterium abscessus. Antimicrob. Agents Chemother. 2019, 63, e00470. [Google Scholar] [CrossRef] [PubMed]
- Shoen, C.; Benaroch, D.; Sklaney, M.; Cynamon, M. In Vitro Activities of Omadacycline against Rapidly Growing Mycobacteria. Antimicrob. Agents Chemother. 2019, 63, e02522. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.; Moreira, A.C.; Nazmi, K.; Moniz, T.; Vale, N.; Rangel, M.; Gomes, P.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; et al. Lactoferricin Peptides Increase Macrophages’ Capacity To Kill Mycobacterium avium. mSphere 2017, 2, e00301–e00317. [Google Scholar] [CrossRef]
- Kim, T.S.; Shin, Y.H.; Lee, H.M.; Kim, J.K.; Choe, J.H.; Jang, J.C.; Um, S.; Jin, H.S.; Komatsu, M.; Cha, G.H.; et al. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci. Rep. 2017, 7, 3431. [Google Scholar] [CrossRef]
- Zheng, Q.; Wang, Q.; Wang, S.; Wu, J.; Gao, Q.; Liu, W. Thiopeptide Antibiotics Exhibit a Dual Mode of Action against Intracellular Pathogens by Affecting Both Host and Microbe. Chem. Biol. 2015, 22, 1002–1007. [Google Scholar] [CrossRef]
- Shin, M.K.; Shin, S.J. Genetic Involvement of Mycobacterium avium complex in the Regulation and Manipulation of Innate Immune Functions of Host Cells. Int. J. Mol. Sci. 2021, 22, 3011. [Google Scholar] [CrossRef] [PubMed]
- Daley, C.L. Mycobacterium avium complex Disease. Microbiol. Spectr. 2017, 5, 663–701. [Google Scholar] [CrossRef]
- Danelishvili, L.; Wu, M.; Stang, B.; Harriff, M.; Cirillo, S.L.; Cirillo, J.D.; Bildfell, R.; Arbogast, B.; Bermudez, L.E. Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc. Natl. Acad. Sci. USA 2007, 104, 11038–11043. [Google Scholar] [CrossRef]
- Sturgill-Koszycki, S.; Schlesinger, P.H.; Chakraborty, P.; Haddix, P.L.; Collins, H.L.; Fok, A.K.; Allen, R.D.; Gluck, S.L.; Heuser, J.; Russell, D.G. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994, 263, 678–681. [Google Scholar] [CrossRef]
- Sturgill-Koszycki, S.; Schaible, U.E.; Russell, D.G. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J. 1996, 15, 6960–6968. [Google Scholar] [CrossRef]
- Kelley, V.A.; Schorey, J.S. Mycobacterium’s arrest of phagosome maturation in macrophages requires Rab5 activity and accessibility to iron. Mol. Biol. Cell 2003, 14, 3366–3377. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, L.E.; Young, L.S. Oxidative and non-oxidative intracellular killing of Mycobacterium avium complex. Microb. Pathog. 1989, 7, 289–298. [Google Scholar] [CrossRef]
- Mayer, B.K.; Falkinham, J.O., 3rd. Superoxide dismutase activity of Mycobacterium avium, M. intracellulare, and M. scrofulaceum. Infect. Immun. 1986, 53, 631–635. [Google Scholar] [CrossRef]
- McNamara, M.; Tzeng, S.C.; Maier, C.; Wu, M.; Bermudez, L.E. Surface-exposed proteins of pathogenic mycobacteria and the role of cu-zn superoxide dismutase in macrophages and neutrophil survival. Proteome. Sci. 2013, 11, 45. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.S.; Danelishvili, L.; Rose, S.J.; Bermudez, L.E. MAV_4644 Interaction with the Host Cathepsin Z Protects Mycobacterium avium subsp. hominissuis from Rapid Macrophage Killing. Microorganisms 2019, 7, 144. [Google Scholar] [CrossRef] [PubMed]
- Nepal, R.M.; Mampe, S.; Shaffer, B.; Erickson, A.H.; Bryant, P. Cathepsin L maturation and activity is impaired in macrophages harboring M. avium and M. tuberculosis. Int. Immunol. 2006, 18, 931–939. [Google Scholar] [CrossRef]
- Early, J.; Fischer, K.; Bermudez, L.E. Mycobacterium avium uses apoptotic macrophages as tools for spreading. Microb. Pathog. 2011, 50, 132–139. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, C.; Xu, X.D.; Li, H.; Cheng, M.H.; Liu, J.; Tang, L.J. Levels of miR-125a-5p are altered in Mycobacterium avium-infected macrophages and associate with the triggering of an autophagic response. Microbes. Infect. 2020, 22, 31–39. [Google Scholar] [CrossRef]
- de Chastellier, C.; Thilo, L. Cholesterol depletion in Mycobacterium avium-infected macrophages overcomes the block in phagosome maturation and leads to the reversible sequestration of viable mycobacteria in phagolysosome-derived autophagic vacuoles. Cell Microbiol. 2006, 8, 242–256. [Google Scholar] [CrossRef]
- Greenstein, R.J.; Su, L.; Juste, R.A.; Brown, S.T. On the action of cyclosporine A, rapamycin and tacrolimus on M. avium including subspecies paratuberculosis. PLoS ONE 2008, 3, e2496. [Google Scholar] [CrossRef]
- Heemskerk, M.T.; Korbee, C.J.; Esselink, J.J.; Dos Santos, C.C.; van Veen, S.; Gordijn, I.F.; Vrieling, F.; Walburg, K.V.; Engele, C.G.; Dijkman, K.; et al. Repurposing diphenylbutylpiperidine-class antipsychotic drugs for host-directed therapy of Mycobacterium tuberculosis and Salmonella enterica infections. Sci. Rep. 2021, 11, 19634. [Google Scholar] [CrossRef]
- Silva, T.; Magalhaes, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: Improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother. 2014, 58, 3461–3467. [Google Scholar] [CrossRef] [PubMed]
- Ryan, K.; Byrd, T.F. Mycobacterium abscessus: Shapeshifter of the Mycobacterial World. Front. Microbiol. 2018, 9, 2642. [Google Scholar] [CrossRef]
- Roux, A.L.; Viljoen, A.; Bah, A.; Simeone, R.; Bernut, A.; Laencina, L.; Deramaudt, T.; Rottman, M.; Gaillard, J.L.; Majlessi, L.; et al. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol. 2016, 6, 160185. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Subhadra, B.; Whang, J.; Back, Y.W.; Bae, H.S.; Kim, H.J.; Choi, C.H. Clinical Mycobacterium abscessus strain inhibits autophagy flux and promotes its growth in murine macrophages. Pathog. Dis. 2017, 75, ftx107. [Google Scholar] [CrossRef] [PubMed]
- Pohl, K.; Grimm, X.A.; Caceres, S.M.; Poch, K.R.; Rysavy, N.; Saavedra, M.; Nick, J.A.; Malcolm, K.C. Mycobacterium abscessus Clearance by Neutrophils Is Independent of Autophagy. Infect. Immun. 2020, 88, e00024-20. [Google Scholar] [CrossRef]
- Zhang, L.X.; Li, C.X.; Kakar, M.U.; Khan, M.S.; Wu, P.F.; Amir, R.M.; Dai, D.F.; Naveed, M.; Li, Q.Y.; Saeed, M.; et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021, 143, 112164. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, S.H.; Jeon, S.M.; Silwal, P.; Seo, J.Y.; Hanh, B.T.B.; Park, J.W.; Whang, J.; Lee, M.J.; Heo, J.Y.; et al. Sirtuin 3 is essential for host defense against Mycobacterium abscessus infection through regulation of mitochondrial homeostasis. Virulence 2020, 11, 1225–1239. [Google Scholar] [CrossRef]
- Kim, T.S.; Jin, Y.B.; Kim, Y.S.; Kim, S.; Kim, J.K.; Lee, H.M.; Suh, H.W.; Choe, J.H.; Kim, Y.J.; Koo, B.S.; et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 2019, 15, 1356–1375. [Google Scholar] [CrossRef]
- Lee, J.M.; Wagner, M.; Xiao, R.; Kim, K.H.; Feng, D.; Lazar, M.A.; Moore, D.D. Nutrient-sensing nuclear receptors coordinate autophagy. Nature 2014, 516, 112–115. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, H.M.; Kim, J.K.; Yang, C.S.; Kim, T.S.; Jung, M.; Jin, H.S.; Kim, S.; Jang, J.; Oh, G.T.; et al. PPAR-alpha Activation Mediates Innate Host Defense through Induction of TFEB and Lipid Catabolism. J. Immunol. 2017, 198, 3283–3295. [Google Scholar] [CrossRef] [PubMed]
- Lunge, A.; Gupta, R.; Choudhary, E.; Agarwal, N. The unfoldase ClpC1 of Mycobacterium tuberculosis regulates the expression of a distinct subset of proteins having intrinsically disordered termini. J. Biol. Chem. 2020, 295, 9455–9473. [Google Scholar] [CrossRef]
- Ferrari, E.; Monzani, R.; Villella, V.R.; Esposito, S.; Saluzzo, F.; Rossin, F.; D’Eletto, M.; Tosco, A.; De Gregorio, F.; Izzo, V.; et al. Cysteamine re-establishes the clearance of Pseudomonas aeruginosa by macrophages bearing the cystic fibrosis-relevant F508del-CFTR mutation. Cell Death Dis. 2017, 8, e2544. [Google Scholar] [CrossRef] [PubMed]
- Luciani, A.; Villella, V.R.; Esposito, S.; Brunetti-Pierri, N.; Medina, D.; Settembre, C.; Gavina, M.; Pulze, L.; Giardino, I.; Pettoello-Mantovani, M.; et al. Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. Nat. Cell Biol. 2010, 12, 863–875. [Google Scholar] [CrossRef]
- Villella, V.R.; Esposito, S.; Maiuri, M.C.; Raia, V.; Kroemer, G.; Maiuri, L. Towards a rational combination therapy of cystic fibrosis: How cystamine restores the stability of mutant CFTR. Autophagy 2013, 9, 1431–1434. [Google Scholar] [CrossRef]
- Jahanbakhsh, S.; Howland, J.; Ndayishimiye Uwineza, M.O.; Thwaites, M.T.; Pillar, C.M.; Serio, A.W.; Anastasiou, D.M.; Hufnagel, D.A. Evaluation of omadacycline against intracellular Mycobacterium abscessus in an infection model in human macrophages. JAC Antimicrob. Resist. 2023, 5, dlad104. [Google Scholar] [CrossRef] [PubMed]
- Nicklas, D.A.; Maggioncalda, E.C.; Story-Roller, E.; Eichelman, B.; Tabor, C.; Serio, A.W.; Keepers, T.R.; Chitra, S.; Lamichhane, G. Potency of Omadacycline against Mycobacteroides abscessus Clinical Isolates In Vitro and in a Mouse Model of Pulmonary Infection. Antimicrob. Agents Chemother. 2022, 66, e0170421. [Google Scholar] [CrossRef]
- Rimal, B.; Nicklas, D.A.; Panthi, C.M.; Lippincott, C.K.; Belz, D.C.; Ignatius, E.H.; Deck, D.H.; Serio, A.W.; Lamichhane, G. Efficacy of Omadacycline-Containing Regimen in a Mouse Model of Pulmonary Mycobacteroides abscessus Disease. mSphere 2023, 8, e0066522. [Google Scholar] [CrossRef]
- Aubry, A.; Mougari, F.; Reibel, F.; Cambau, E. Mycobacterium marinum. Microbiol. Spectr. 2017, 5, 735–752. [Google Scholar] [CrossRef]
- Lesley, R.; Ramakrishnan, L. Insights into early mycobacterial pathogenesis from the zebrafish. Curr. Opin Microbiol. 2008, 11, 277–283. [Google Scholar] [CrossRef]
- Shiloh, M.U.; Champion, P.A. To catch a killer. What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis? Curr. Opin. Microbiol. 2010, 13, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Tobin, D.M.; Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol. 2008, 10, 1027–1039. [Google Scholar] [CrossRef] [PubMed]
- Aubry, A.; Chosidow, O.; Caumes, E.; Robert, J.; Cambau, E. Sixty-three cases of Mycobacterium marinum infection: Clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch. Intern. Med. 2002, 162, 1746–1752. [Google Scholar] [CrossRef] [PubMed]
- Parent, L.J.; Salam, M.M.; Appelbaum, P.C.; Dossett, J.H. Disseminated Mycobacterium marinum infection and bacteremia in a child with severe combined immunodeficiency. Clin. Infect. Dis. 1995, 21, 1325–1327. [Google Scholar] [CrossRef]
- Streit, M.; Bohlen, L.M.; Hunziker, T.; Zimmerli, S.; Tscharner, G.G.; Nievergelt, H.; Bodmer, T.; Braathen, L.R. Disseminated Mycobacterium marinum infection with extensive cutaneous eruption and bacteremia in an immunocompromised patient. Eur. J. Dermatol. 2006, 16, 79–83. [Google Scholar]
- Dionne, M.S.; Ghori, N.; Schneider, D.S. Drosophila melanogaster is a genetically tractable model host for Mycobacterium marinum. Infect. Immun. 2003, 71, 3540–3550. [Google Scholar] [CrossRef]
- Guallar-Garrido, S.; Soldati, T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis. Model. Mech. 2024, 17, dmm050698. [Google Scholar] [CrossRef]
- Oh, C.T.; Moon, C.; Choi, T.H.; Kim, B.S.; Jang, J. Mycobacterium marinum infection in Drosophila melanogaster for antimycobacterial activity assessment. J. Antimicrob. Chemother. 2013, 68, 601–609. [Google Scholar] [CrossRef]
- Pozos, T.C.; Ramakrishnan, L. New models for the study of Mycobacterium-host interactions. Curr. Opin. Immunol. 2004, 16, 499–505. [Google Scholar] [CrossRef]
- van Leeuwen, L.M.; van der Sar, A.M.; Bitter, W. Animal models of tuberculosis: Zebrafish. Cold Spring Harb. Perspect. Med. 2014, 5, a018580. [Google Scholar] [CrossRef]
- Lerena, M.C.; Colombo, M.I. Mycobacterium marinum induces a marked LC3 recruitment to its containing phagosome that depends on a functional ESX-1 secretion system. Cell Microbiol. 2011, 13, 814–835. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Sanchez, S.; Varela, M.; van der Vaart, M.; Meijer, A.H. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. Biology 2023, 12, 817. [Google Scholar] [CrossRef]
- Cardenal-Munoz, E.; Arafah, S.; Lopez-Jimenez, A.T.; Kicka, S.; Falaise, A.; Bach, F.; Schaad, O.; King, J.S.; Hagedorn, M.; Soldati, T. Mycobacterium marinum antagonistically induces an autophagic response while repressing the autophagic flux in a TORC1- and ESX-1-dependent manner. PLoS Pathog. 2017, 13, e1006344. [Google Scholar] [CrossRef]
- Bao, Y.; Wang, L.; Sun, J. A Small Protein but with Diverse Roles: A Review of EsxA in Mycobacterium-Host Interaction. Cells 2021, 10, 1645. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shao, X.Y.; Wang, C.; Hua, M.H.; Wang, C.N.; Wang, X.; Wang, Q.J.; Yao, J.Y.; Fan, Y.H.; Qin, Y.W. Mycobacterium marinum Infection in Zebrafish and Microglia Imitates the Early Stage of Tuberculous Meningitis. J. Mol. Neurosci. 2018, 64, 321–330. [Google Scholar] [CrossRef]
- Hosseini, R.; Lamers, G.E.; Hodzic, Z.; Meijer, A.H.; Schaaf, M.J.; Spaink, H.P. Correlative light and electron microscopy imaging of autophagy in a zebrafish infection model. Autophagy 2014, 10, 1844–1857. [Google Scholar] [CrossRef]
- Ramakrishnan, L. Looking within the zebrafish to understand the tuberculous granuloma. Adv. Exp. Med. Biol. 2013, 783, 251–266. [Google Scholar] [PubMed]
- Lopez-Jimenez, A.T.; Cardenal-Munoz, E.; Leuba, F.; Gerstenmaier, L.; Barisch, C.; Hagedorn, M.; King, J.S.; Soldati, T. The ESCRT and autophagy machineries cooperate to repair ESX-1-dependent damage at the Mycobacterium-containing vacuole but have opposite impact on containing the infection. PLoS Pathog. 2018, 14, e1007501. [Google Scholar] [CrossRef]
- Raykov, L.; Mottet, M.; Nitschke, J.; Soldati, T. A TRAF-like E3 ubiquitin ligase TrafE coordinates ESCRT and autophagy in endolysosomal damage response and cell-autonomous immunity to Mycobacterium marinum. eLife 2023, 12, e85727. [Google Scholar] [CrossRef]
- Qin, B.; Yu, S.; Chen, Q.; Jin, L.H. Atg2 Regulates Cellular and Humoral Immunity in Drosophila. Insects 2023, 14, 706. [Google Scholar] [CrossRef]
- Xie, J.; Meijer, A.H. Xenophagy receptors Optn and p62 and autophagy modulator Dram1 independently promote the zebrafish host defense against Mycobacterium marinum. Front. Cell Infect. Microbiol. 2023, 13, 1331818. [Google Scholar] [CrossRef] [PubMed]
- Banducci-Karp, A.; Xie, J.; Engels, S.A.G.; Sarantaris, C.; van Hage, P.; Varela, M.; Meijer, A.H.; van der Vaart, M. DRAM1 Promotes Lysosomal Delivery of Mycobacterium marinum in Macrophages. Cells 2023, 12, 828. [Google Scholar] [CrossRef]
- Meijer, A.H.; van der Vaart, M. DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy 2014, 10, 2389–2391. [Google Scholar] [CrossRef]
- Zhang, R.; Varela, M.; Forn-Cuni, G.; Torraca, V.; van der Vaart, M.; Meijer, A.H. Deficiency in the autophagy modulator Dram1 exacerbates pyroptotic cell death of Mycobacteria-infected macrophages. Cell Death Dis. 2020, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Calistri, A.; Reale, A.; Palu, G.; Parolin, C. Why Cells and Viruses Cannot Survive without an ESCRT. Cells 2021, 10, 483. [Google Scholar] [CrossRef]
- Gerstenmaier, L.; Colasanti, O.; Behrens, H.; Kolonko, M.; Hammann, C.; Hagedorn, M. Recruitment of both the ESCRT and autophagic machineries to ejecting Mycobacterium marinum. Mol. Microbiol. 2024, 121, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Skowyra, M.L.; Schlesinger, P.H.; Naismith, T.V.; Hanson, P.I. Triggered recruitment of ESCRT machinery promotes endolysosomal repair. Science 2018, 360, eaar5078. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, M.; Zhang, Y.Y.; Zhao, S.Z.; Gu, S. The endosomal sorting complex required for transport repairs the membrane to delay cell death. Front. Oncol. 2022, 12, 1007446. [Google Scholar] [CrossRef]
- Sengupta, S.; Nayak, B.; Meuli, M.; Sander, P.; Mishra, S.; Sonawane, A. Mycobacterium tuberculosis Phosphoribosyltransferase Promotes Bacterial Survival in Macrophages by Inducing Histone Hypermethylation in Autophagy-Related Genes. Front. Cell Infect. Microbiol. 2021, 11, 676456. [Google Scholar] [CrossRef]
- Cardenal-Munoz, E.; Barisch, C.; Lefrancois, L.H.; Lopez-Jimenez, A.T.; Soldati, T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front. Cell Infect. Microbiol. 2017, 7, 529. [Google Scholar] [CrossRef]
- Gerstenmaier, L.; Pilla, R.; Herrmann, L.; Herrmann, H.; Prado, M.; Villafano, G.J.; Kolonko, M.; Reimer, R.; Soldati, T.; King, J.S.; et al. The autophagic machinery ensures nonlytic transmission of mycobacteria. Proc. Natl. Acad. Sci. USA 2015, 112, E687–E692. [Google Scholar] [CrossRef] [PubMed]
- Radulovic, M.; Schink, K.O.; Wenzel, E.M.; Nahse, V.; Bongiovanni, A.; Lafont, F.; Stenmark, H. ESCRT-mediated lysosome repair precedes lysophagy and promotes cell survival. EMBO J. 2018, 37, e99753. [Google Scholar] [CrossRef]
- Smith, J.; Manoranjan, J.; Pan, M.; Bohsali, A.; Xu, J.; Liu, J.; McDonald, K.L.; Szyk, A.; LaRonde-LeBlanc, N.; Gao, L.Y. Evidence for pore formation in host cell membranes by ESX-1-secreted ESAT-6 and its role in Mycobacterium marinum escape from the vacuole. Infect. Immun. 2008, 76, 5478–5487. [Google Scholar] [CrossRef]
- Collins, C.A.; De Maziere, A.; van Dijk, S.; Carlsson, F.; Klumperman, J.; Brown, E.J. Atg5-independent sequestration of ubiquitinated mycobacteria. PLoS Pathog. 2009, 5, e1000430. [Google Scholar] [CrossRef]
- Gauthier, T.; Chen, W. Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Front. Immunol. 2022, 13, 780839. [Google Scholar] [CrossRef]
- Kan, Y.; Meng, L.; Xie, L.; Liu, L.; Dong, W.; Feng, J.; Yan, Y.; Zhao, C.; Peng, G.; Wang, D.; et al. Temporal modulation of host aerobic glycolysis determines the outcome of Mycobacterium marinum infection. Fish Shellfish Immunol. 2020, 96, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Guarner, J. Buruli Ulcer: Review of a Neglected Skin Mycobacterial Disease. J. Clin. Microbiol. 2018, 56, e01507–e01517. [Google Scholar] [CrossRef] [PubMed]
- Roltgen, K.; Pluschke, G. Buruli Ulcer: History and Disease Burden. In Buruli Ulcer: Mycobacterium Ulcerans Disease; Pluschke, G., Roltgen, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 1–41. [Google Scholar]
- Roltgen, K.; Pluschke, G.; Spencer, J.S.; Brennan, P.J.; Avanzi, C. The immunology of other mycobacteria: M. ulcerans, M. leprae. Semin. Immunopathol. 2020, 42, 333–353. [Google Scholar] [CrossRef]
- Demangel, C. Immunity against Mycobacterium ulcerans: The subversive role of mycolactone. Immunol. Rev. 2021, 301, 209–221. [Google Scholar] [CrossRef]
- Guenin-Mace, L.; Ruf, M.T.; Pluschke, G.; Demangel, C. Mycolactone: More than Just a Cytotoxin. In Buruli Ulcer: Mycobacterium Ulcerans Disease; Pluschke, G., Roltgen, K., Eds.; Springer: Cham, Switzerland, 2019; pp. 117–134. [Google Scholar]
- Ricci, D.; Demangel, C. From Bacterial Toxin to Therapeutic Agent: The Unexpected Fate of Mycolactone. Toxins 2023, 15, 369. [Google Scholar] [CrossRef]
- Demangel, C.; High, S. Sec61 blockade by mycolactone: A central mechanism in Buruli ulcer disease. Biol. Cell 2018, 110, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.S.; Dos Santos, S.J.; Hsieh, L.T.; Manifava, M.; Ruf, M.T.; Pluschke, G.; Ktistakis, N.; Simmonds, R.E. Inhibition of the SEC61 translocon by mycolactone induces a protective autophagic response controlled by EIF2S1-dependent translation that does not require ULK1 activity. Autophagy 2022, 18, 841–859. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Phillips, R.; Wansbrough-Jones, M.; Simmonds, R.E. Recent advances: Role of mycolactone in the pathogenesis and monitoring of Mycobacterium ulcerans infection/Buruli ulcer disease. Cell Microbiol. 2016, 18, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Ogbechi, J.; Hall, B.S.; Sbarrato, T.; Taunton, J.; Willis, A.E.; Wek, R.C.; Simmonds, R.E. Inhibition of Sec61-dependent translocation by mycolactone uncouples the integrated stress response from ER stress, driving cytotoxicity via translational activation of ATF4. Cell Death Dis. 2018, 9, 397. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.T.; Hall, B.S.; Newcombe, J.; Mendum, T.A.; Varela, S.S.; Umrania, Y.; Deery, M.J.; Shi, W.Q.; Diaz-Delgado, J.; Salguero, F.J.; et al. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025, 12, RP86931. [Google Scholar] [CrossRef]
- Strong, E.; Hart, B.; Wang, J.; Orozco, M.G.; Lee, S. Induced Synthesis of Mycolactone Restores the Pathogenesis of Mycobacterium ulcerans In Vitro and In Vivo. Front. Immunol. 2022, 13, 750643. [Google Scholar] [CrossRef]
- Capela, C.; Dossou, A.D.; Silva-Gomes, R.; Sopoh, G.E.; Makoutode, M.; Menino, J.F.; Fraga, A.G.; Cunha, C.; Carvalho, A.; Rodrigues, F.; et al. Genetic Variation in Autophagy-Related Genes Influences the Risk and Phenotype of Buruli Ulcer. PLoS Negl. Trop. Dis. 2016, 10, e0004671. [Google Scholar] [CrossRef]
- Manry, J. Human genetics of Buruli ulcer. Hum. Genet. 2020, 139, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Manry, J.; Vincent, Q.B.; Johnson, C.; Chrabieh, M.; Lorenzo, L.; Theodorou, I.; Ardant, M.F.; Marion, E.; Chauty, A.; Marsollier, L.; et al. Genome-wide association study of Buruli ulcer in rural Benin highlights role of two LncRNAs and the autophagy pathway. Commun. Biol. 2020, 3, 177. [Google Scholar] [CrossRef]
- Bruiners, N.; Dutta, N.K.; Guerrini, V.; Salamon, H.; Yamaguchi, K.D.; Karakousis, P.C.; Gennaro, M.L. The anti-tubercular activity of simvastatin is mediated by cholesterol-driven autophagy via the AMPK-mTORC1-TFEB axis. J. Lipid Res. 2020, 61, 1617–1628. [Google Scholar] [CrossRef]
- Napier, R.J.; Rafi, W.; Cheruvu, M.; Powell, K.R.; Zaunbrecher, M.A.; Bornmann, W.; Salgame, P.; Shinnick, T.M.; Kalman, D. Imatinib-sensitive tyrosine kinases regulate mycobacterial pathogenesis and represent therapeutic targets against tuberculosis. Cell Host Microbe 2011, 10, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Cleverley, T.L.; Peddineni, S.; Guarner, J.; Cingolani, F.; Garcia, P.K.; Koehler, H.; Mocarski, E.S.; Kalman, D. The host-directed therapeutic imatinib mesylate accelerates immune responses to Mycobacterium marinum infection and limits pathology associated with granulomas. PLoS Pathog. 2023, 19, e1011387. [Google Scholar] [CrossRef] [PubMed]
- Smyth, R.; Sun, J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front. Immunol. 2021, 12, 702142. [Google Scholar] [CrossRef] [PubMed]
- Adikesavalu, H.; Gopalaswamy, R.; Kumar, A.; Ranganathan, U.D.; Shanmugam, S. Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. Medicina 2021, 57, 522. [Google Scholar] [CrossRef]
Therapeutic Agent | Original Drug Use/Classification | Mechanism of Action | Target NTMs | Reference |
---|---|---|---|---|
HDTs | ||||
Apoptotic body-like liposomes loaded with phosphatidylinositol 5-phosphate | Experimental nanocarrier system | Stimulate phagolysosome biogenesis and enhance intracellular bacterial killing | M. abscessus | [104] |
Cysteamine | FDA-approved for nephropathic cystinosis | Promotes autophagy, stabilizes CFTR function, and inhibits tissue transglutaminase | M. abscessus | [105] |
Gemfibrozil | Lipid-lowering agent (fibrate class) | Induces autophagy via PPARα-TFEB pathway activation | M. abscessus | [106] |
Resveratrol and V46 | Resveratrol: Natural polyphenol (grapes, berries) V46: SIRT3 activator (experimental) | Activate SIRT3 and stimulate autophagy through AMPK signaling | M. abscessus | [107] |
Amiodarone | Class III antiarrhythmic drug | Enhances autophagy through transcription factor EB (TFEB) activation | M. avium M. marinum | [102] |
Mefloquine | Antimalarial drug (quinoline derivative) | Strongly induces autophagosome formation, especially in neuroblastoma cells | M. avium complex | [108,109,110] |
Nilotinib | Tyrosine kinase inhibitor for chronic myeloid leukemia (CML) | Inhibits PI3K/Akt/mTOR via c-ABL; activates parkin-mediated autophagy | M. avium | [111] |
Thioridazine | Typical antipsychotic (phenothiazine class) | Stimulates autophagy by increasing AMPK activity | M. avium | [112,113,114,115,116] |
Trehalose | Naturally occurring disaccharide sugar | Induces xenophagy flux and reverses HIV-induced autophagy blockade | M. avium | [117] |
Alpha-1-antitrypsin | Protein replacement therapy | Promotes autophagy and enhances phagosome–lysosome fusion | M. intracellulare | [118] |
Degarelix | GnRH receptor antagonist for advanced prostate cancer | Triggers autophagy initiation via PI3K activation and lowers bacterial survival | M. marinum | [119] |
Tamoxifen | Selective estrogen receptor modulator (SERM) for breast cancer | Stimulates lysosomal activity and promotes autophagy | M. marinum | [120] |
Dichloroacetate | Investigational drug for metabolic disorders and cancer | Reprograms metabolism via AMPK activation, leading to autophagy induction | M. massiliense | [121] |
Statins | HMG-CoA reductase inhibitors for hypercholesterolemia | Promote autophagy and synergize with antibiotics to improve efficacy | M. ulcerans | [122] |
Carvacrol | Natural monoterpenoid phenol found in oregano and thyme | Inhibits MEK/mTOR signaling to promote autophagy; suppresses autophagy during adipogenic differentiation | M. abscessus, M. chelonae, M. fortuitum, M. mucogenicum, M. avium | [123,124,125,126] |
Antibiotics | ||||
Azithromycin | Macrolide antibiotics used to treat respiratory tract and intracellular infections | Inhibits lysosomal acidification, impairing autophagosome degradation; exhibits direct antimycobacterial activity | M. abscessus | [127] |
Rufomycin | Ansamycin antibiotic; under investigation for antimycobacterial activity | Binds ClpC1 protease, activates TFEB, and upregulates autophagy-related gene expression | M. abscessus | [128,129] |
Tetracycline | Broad-spectrum bacteriostatic antibiotic (inhibits protein synthesis) | Inhibits mTOR signaling, thereby activating autophagy | M. abscessus, M. chelonae, M. fortuitum | [130,131,132] |
Lactoferricin (D-LFcin17–30 | Antimicrobial peptide derived from bovine lactoferrin | Activates lysosomal pathways and promotes autophagy | M. avium complex | [133] |
Ohmyungsamycins | Cyclic peptides from marine Streptomyces species with antimicrobial properties | Induce autophagy through activation of AMPK signaling | M. marinum | [134] |
Thiostrepton (TSR) | Natural thiopeptide antibiotic with both antimicrobial and antitumor properties | Induces ER stress, leading to activation of autophagy | M. marinum | [135] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Lee, S. Targeting Autophagy as a Strategy for Developing New Host-Directed Therapeutics Against Nontuberculous Mycobacteria. Pathogens 2025, 14, 472. https://doi.org/10.3390/pathogens14050472
Wang J, Lee S. Targeting Autophagy as a Strategy for Developing New Host-Directed Therapeutics Against Nontuberculous Mycobacteria. Pathogens. 2025; 14(5):472. https://doi.org/10.3390/pathogens14050472
Chicago/Turabian StyleWang, Jia, and Sunhee Lee. 2025. "Targeting Autophagy as a Strategy for Developing New Host-Directed Therapeutics Against Nontuberculous Mycobacteria" Pathogens 14, no. 5: 472. https://doi.org/10.3390/pathogens14050472
APA StyleWang, J., & Lee, S. (2025). Targeting Autophagy as a Strategy for Developing New Host-Directed Therapeutics Against Nontuberculous Mycobacteria. Pathogens, 14(5), 472. https://doi.org/10.3390/pathogens14050472