Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000–2019)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Surveillance and Data Collection
2.3. Mosquito Sampling and Identification
2.4. Statistical and Spatial Analysis
2.5. Ethical Considerations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bajwa, W.I. A taxonomic checklist and relative abundance of the mosquitoes of New York City. J. Am. Mosq. Control Assoc. 2018, 34, 138–142. [Google Scholar] [PubMed]
- Bajwa, W.I.; Merlino, M. Application of relational Bayesian networks to vector control in New York City. Int. J. Infect. Dis. Epidemiol. 2021, 2, 45–48. [Google Scholar]
- Fagre, A.C.; Lyons, S.; Staples, J.E.; Lindsey, N. West Nile virus and other nationally notifiable arboviral diseases—United States, 2021. Morb. Mortal. Wkly. Rep. 2023, 72, 901–906. [Google Scholar] [CrossRef]
- Ronca, S.E.; Ruff, J.C.; Murray, K.O. A 20-year historical review of West Nile virus since its initial emergence in North America: Has West Nile virus become a neglected tropical disease? PLoS Neglected Trop. Dis. 2021, 15, e0009190. [Google Scholar] [CrossRef] [PubMed]
- Kramer, L.D.; Ciota, A.T.; Kilpatrick, A.M. Introduction, spread, and establishment of West Nile virus in the Americas. J. Med. Entomol. 2019, 56, 1448–1455. [Google Scholar] [CrossRef]
- Kilpatrick, A.M. Globalization, land use, and the invasion of West Nile virus. Science 2011, 334, 323–327. [Google Scholar] [PubMed]
- Paz, S. Effects of climate change on vector-borne diseases: An updated focus on West Nile virus in humans. Emerg. Top. Life Sci. 2019, 3, 143–152. [Google Scholar] [CrossRef]
- Skaff, N.K.; Cheruvelil, K.S.; Nateghi, R. Predicting the influence of climate change on West Nile virus transmission: A machine learning approach. Environ. Res. 2020, 186, 109527. [Google Scholar] [CrossRef]
- Grubaugh, N.D.; Ladner, J.T.; Kraemer, M.U.; Dudas, G.; Tan, A.L.; Gangavarapu, K.; Wiley, M.R.; White, S.; Thézé, J.; Magnani, D.M.; et al. Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 2017, 546, 401–405. [Google Scholar] [CrossRef]
- Ferraguti, M.; Magallanes, S.; Mora-Rubio, C.; Bravo-Barriga, D.; Marzal, A.; Hernandez-Caballero, I.; Aguilera-Sepúlveda, P.; Llorente, F.; Pérez-Ramírez, E.; Guerrero-Carvajal, F.; et al. Implications of migratory and exotic birds and the mosquito community on West Nile virus transmission. Infect. Dis. 2024, 56, 206–219. [Google Scholar] [CrossRef]
- Mrzljak, A.; Dinjar-Kujundzic, P.; Santini, M.; Barbić, L.; Košuta, I.; Savić, V.; Tabain, I.; Vilibić-Čavlek, T. West Nile virus: An emerging threat in the transplant population. Vector-Borne Zoonotic Dis. 2020, 20, 613–618. [Google Scholar] [CrossRef] [PubMed]
- Carney, R.M.; Ahearn, S.C.; McConchie, A.; Glaser, C.; Jean, C.; Barker, C.; Park, B.; Padgett, K.; Parker, E.; Aquino, E.; et al. Early warning system for West Nile virus risk areas, California, USA. Emerg. Infect. Dis. 2011, 17, 1445–1454. [Google Scholar] [CrossRef]
- DeGroote, J.P.; Sugumaran, R.; Brend, S.M.; Tucker, B.J.; Bartholomay, L.C. Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa, USA. Int. J. Health Geogr. 2008, 7, 19. [Google Scholar] [CrossRef] [PubMed]
- Komar, N. West Nile virus: Epidemiology and ecology in North America. Adv. Virus Res. 2006, 61, 185–234. [Google Scholar] [CrossRef]
- Heidecke, J.; Lavarello Schettini, A.; Rocklöv, J. West Nile virus ecoepidemiology and climate change. PLoS Clim. 2023, 2, e0000129. [Google Scholar] [CrossRef]
- McMillan, J.R.; Chaves, L.F.; Armstrong, P.M. Ecological predictors of mosquito population and arbovirus transmission synchrony estimates. J. Med. Entomol. 2023, 60, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Duggal, N.K.; Langwig, K.E.; Ebel, G.D.; Brault, A.C. On the fly: Interactions between birds, mosquitoes, and the environment that have molded West Nile virus genomic structure over two decades. J. Med. Entomol. 2019, 56, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Bajwa, W.I.; Slavinski, S.; Shah, Z.; Zhou, L.; Bazli, T.V. Comprehensive Mosquito Surveillance and Control Plan; New York City Department of Health and Mental Hygiene: New York, NY, USA, 2025. Available online: https://www.nyc.gov/assets/doh/downloads/pdf/wnv/2025/wnvplan2025.pdf (accessed on 28 March 2025).
- Farajollahi, A.; Fonseca, D.M.; Kramer, L.D.; Kilpatrick, A.M. ‘Bird biting’ mosquitoes and human disease: A review of the role of Culex pipiens complex mosquitoes in epidemiology. Infect. Genet. Evol. 2011, 11, 1577–1585. [Google Scholar] [CrossRef]
- Eder, M.; Cortes, F.; Teixeira de Siqueira Filha, N.; Araújo de França, G.V.; Degroote, S.; Braga, C.; Turchi Martelli, C.M. Scoping review on vector-borne diseases in urban areas: Transmission dynamics, vectorial capacity, and coinfection. Infect. Dis. Poverty 2018, 7, 124. [Google Scholar] [CrossRef]
- Kwan, J.L.; Park, B.; Carpenter, K.; Ngo, T.E.; Civen, R.; Reisen, W.K. Comparison of enzootic risk measures for predicting West Nile disease, Los Angeles, California, USA, 2004–2010. Emerg. Infect. Dis. 2012, 18, 1298–1306. [Google Scholar] [CrossRef]
- Ciota, A.T.; Drummond, C.L.; Ruby, M.A.; Drobnack, J.; Ebel, G.D.; Kramer, L.D. Dispersal of Culex mosquitoes (Diptera: Culicidae) from a wastewater treatment facility. J. Med. Entomol. 2012, 49, 35–42. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E.; Mathis, S.; Martin, S.W.; Staples, J.E.; Fischer, M.; Lindsey, N.P. Surveillance for West Nile virus disease—United States, 2009-2018. MMWR Surveill. Summ. 2021, 70, 1–15. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7949089/ (accessed on 28 March 2025).
- Centers for Disease Control and Prevention. West Nile Virus. U.S. Department of Health & Human Services. Available online: https://www.cdc.gov/west-nile-virus/ (accessed on 28 March 2025).
- Karpati, A.M.; Perrin, M.C.; Matte, T.; Leighton, J.; Schwartz, J.; Barr, R.G. Pesticide spraying for West Nile virus control and emergency department asthma visits in New York City, 2000. Environ. Health Perspect. 2004, 112, 1183–1187. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Campbell, G.L.; Marfin, A.A.; Lanciotti, R.S.; Gubler, D.J. West Nile virus. Lancet Infect. Dis. 2002, 2, 519–529. [Google Scholar]
- Verdonschot, A.M.; Besse-Lototskaya, A.A. Flight distance of mosquitoes (Culicidae): A metadata analysis to support the management of barrier zones around rewetted and newly constructed wetlands. Limnologica 2014, 45, 69–75. [Google Scholar] [CrossRef]
- Hamer, G.L.; Kitron, U.D.; Goldberg, T.L.; Brawn, J.D.; Loss, S.R.; Ruiz, M.O.; Hayes, D.B.; Walker, E.D. Host selection by Culex mosquitoes and its role in arbovirus transmission. J. Vector Ecol. 2008, 33, 89–99. [Google Scholar]
- Kilpatrick, A.M.; Kramer, L.D.; Jones, M.J.; Marra, P.P.; Daszak, P. West Nile virus epidemics in North America are driven by shifts in mosquito feeding behavior. PLoS Biol. 2006, 4, e82. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, A.M.; Pape, W.J. Predicting human West Nile virus infections with mosquito surveillance data. Am. J. Epidemiol. 2013, 178, 829–835. [Google Scholar] [CrossRef]
- Riccetti, N.; Fasano, A.; Ferraccioli, F.; Gomez Ramirez, J.; Stilianakis, N.I. Host selection and forage ratio in West Nile virus–transmitting Culex mosquitoes: Challenges and knowledge gaps. PLoS Neglected Trop. Dis. 2022, 16, e0010819. [Google Scholar] [CrossRef]
- Uelmen, J.A., Jr.; Lamcyzk, B.; Irwin, P.; Bartlett, D.; Stone, C.; Mackay, A.; Arsenault-Benoit, A.; Ryan, S.J.; Mutebi, J.P.; Hamer, G.L.; et al. Human biting mosquitoes and implications for West Nile virus transmission. Parasit. Vectors. 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.M.; Burkett-Cadena, N.D.; Reeves, L.E.; Alto, B.W.; Campbell, L.P. Vector potential index: Bridging competence and contribution as an integrative measure of relative transmission capability. Res. Sq. 2025. [Google Scholar] [CrossRef]
- Weaver, S.C.; Charlier, C.; Vasilakis, N.; Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 2018, 69, 395–408. [Google Scholar] [CrossRef] [PubMed]
- Rochlin, I.; Faraji, A.; Healy, K.; Andreadis, T.G. West Nile virus mosquito vectors in North America. J. Med. Entomol. 2019, 56, 1475–1490. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Canale, A.; Higuchi, A.; Murugan, K.; Pavela, N.M. The recent outbreaks of Zika virus: Mosquito control faces a further challenge. Asian Pac. J. Trop. Dis. 2016, 6, 253–258. [Google Scholar]
- World Health Organization (WHO). Global Strategy for Dengue Prevention and Control 2012–2020; WHO Press: Geneva, Switzerland, 2012; Available online: https://apps.who.int/iris/bitstream/handle/10665/75303/9789241504034_eng.pdf (accessed on 6 April 2025).
Year | Human Cases Classification | Number of Positive Mosquito Pools | Pools Associated with Human Cases *** | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total Cases | Confirmed & Likely Local Cases * | Cases with Positive Mosquito Pools Within a 5-Mile Radius ** | Cx. pipiens & Cx. restuans | Cx. salinarius | Other Species | Total Positive Pools | Cx. pipiens & Cx. restuans | Cx. salinarius | Other Species | Total Associated Positives Pools | |
2000 | 14 | 10 | 9 | 105 | 32 | 28 | 165 | 12 | 21 | 5 | 38 |
2001 | 9 | 5 | 3 | 210 | 24 | 9 | 243 | 9 | 0 | 0 | 9 |
2002 | 29 | 21 | 8 | 151 | 35 | 13 | 199 | 18 | 23 | 0 | 41 |
2003 | 32 | 25 | 22 | 234 | 35 | 8 | 277 | 40 | 33 | 0 | 73 |
2004 | 5 | 1 | 0 | 148 | 10 | 26 | 184 | 0 | 0 | 0 | 0 |
2005 | 14 | 13 | 9 | 119 | 3 | 0 | 122 | 17 | 3 | 0 | 20 |
2006 | 12 | 12 | 9 | 167 | 15 | 14 | 196 | 43 | 11 | 3 | 57 |
2007 | 18 | 17 | 4 | 159 | 12 | 3 | 174 | 9 | 0 | 0 | 9 |
2008 | 15 | 15 | 8 | 182 | 9 | 6 | 197 | 15 | 3 | 1 | 19 |
2009 | 3 | 2 | 0 | 39 | 1 | 0 | 40 | 0 | 0 | 0 | 0 |
2010 | 42 | 41 | 34 | 375 | 18 | 0 | 393 | 108 | 19 | 0 | 127 |
2011 | 11 | 11 | 7 | 170 | 9 | 2 | 181 | 11 | 9 | 1 | 21 |
2012 | 41 | 40 | 24 | 288 | 24 | 0 | 312 | 40 | 17 | 0 | 57 |
2013 | 10 | 9 | 3 | 236 | 11 | 2 | 249 | 6 | 1 | 2 | 9 |
2014 | 15 | 14 | 13 | 350 | 12 | 9 | 371 | 32 | 4 | 1 | 37 |
2015 | 38 | 32 | 26 | 789 | 32 | 6 | 827 | 158 | 31 | 3 | 192 |
2016 | 6 | 6 | 4 | 280 | 2 | 0 | 282 | 6 | 0 | 0 | 6 |
2017 | 21 | 20 | 13 | 759 | 24 | 3 | 786 | 49 | 9 | 0 | 58 |
2018 | 36 | 34 | 31 | 928 | 69 | 27 | 1024 | 119 | 53 | 11 | 183 |
2019 | 10 | 10 | 6 | 370 | 35 | 5 | 410 | 16 | 14 | 0 | 30 |
Total | 381 | 338 | 233 | 6059 | 412 | 161 | 6632 | 708 | 251 | 27 | 986 |
Characteristic | Cx. pipiens & Cx. restuans | Cx. salinarius | Other Species |
---|---|---|---|
Mosquito pools associated with human cases | 708 | 251 | 27 |
Percentage of all positive pools for each species (%) | 11.69% | 60.92% | 16.77% |
Number of human cases associated | 193 | 124 | 21 |
Human cases with only one positive mosquito species | 106 | 38 | 2 |
Average distance to human cases (miles) | 1.25 | 3.22 | 2.47 |
Percentage of mosquito pools associated with human cases within 1 mile (%) | 22.21% | 1.62% | 0.61% |
Percentage within 1–2 miles (%) | 49.59% | 2.33% | 0.91% |
Percentage within 2–5 miles (%) | 0 | 21.5% | 1.22% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajwa, W.I.; Zhou, L. Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000–2019). Pathogens 2025, 14, 364. https://doi.org/10.3390/pathogens14040364
Bajwa WI, Zhou L. Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000–2019). Pathogens. 2025; 14(4):364. https://doi.org/10.3390/pathogens14040364
Chicago/Turabian StyleBajwa, Waheed I., and Liyang Zhou. 2025. "Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000–2019)" Pathogens 14, no. 4: 364. https://doi.org/10.3390/pathogens14040364
APA StyleBajwa, W. I., & Zhou, L. (2025). Epidemiology of West Nile Virus in New York City: Trends and Transmission Dynamics (2000–2019). Pathogens, 14(4), 364. https://doi.org/10.3390/pathogens14040364