Global Landscape of Molecular and Immunological Diagnostic Tests for Human Leishmaniasis: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol
2.2. Information Sources and Search Strategy
2.3. Selection Criteria and Data Extraction
2.4. Statistical Analysis
3. Results
3.1. Data Sources and Study Selection
3.2. Descriptive Analysis of Included Studies
3.3. Meta-Analysis of Diagnostic Performance of Laboratory Tests for Leishmaniasis
3.3.1. Tegumentary Leishmaniasis
Analyzed Tests
Other Diagnostic Tests
Summary ROC Curves (sROC)
3.3.2. Visceral Leishmaniasis
Analyzed Tests
Other Diagnostic Tests
Summary ROC Curves (sROC)
4. Discussion
4.1. Summary of Main Findings
4.2. Interpretation of Findings in the Context of Existing Literature
4.3. Strengths and Limitations
4.4. Recommendations for Standardization and Future Research
4.5. Health Policy Perspectives and Technological Development
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AUC | Area under the curve |
| AUCFPR | Area under the curve restricted to the false positive rates |
| CI | Confidence interval |
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| DBEI | Dot blot enzyme immunoassay |
| DFAT | Direct fluorescent antibody test |
| DOR | Diagnostic likelihood ratio |
| DRIHT | Direct rapid immunohistochemical test |
| ELISA | Enzyme-linked immunosorbent assay |
| FAVNT | Fluorescent antibody virus neutralization test |
| FN | False negatives |
| FP | False positives |
| ICA | Immunochromatographic assay |
| INPLASY | International Platform of Registered Systematic Review and Meta-analysis Protocols |
| IHT | Immunohistochemical tests |
| IIFT | Indirect immunofluorescence test |
| IPIA | Immunoperoxidase inhibition assay |
| IPT | Immunoperoxidase tests |
| LAT | Latex agglutination test |
| LF | Lateral flow |
| LR− | Negative likelihood ratio |
| LR+ | Positive likelihood ratio |
| MeSH | Medical subject headings |
| MIT | Mouse inoculation test |
| NCBI | National Center for Biotechnology Information |
| NGS | Next generation sequencing |
| PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
| RTCIT | Rabies tissue culture infection test |
| RFFIT | Rapid fluorescent focus inhibition test |
| RIA | Rapid immunodiagnostic assay |
| RIT | Rapid immunochromatographic tests |
| RNA | Ribonucleic Acid |
| RNAT | Rapid neutralizing antibody test |
| RT-LAMP | Loop-mediated isothermal amplification |
| RT-PCR | Reverse transcription polymerase chain reaction |
| RT-qPCR | Reverse transcription real-time polymerase chain reaction |
| RT-RPA | Reverse transcription recombinase polymerase amplification |
| Se | Sensibility |
| Sp | Specificity |
| sROC | Summary receiver operating characteristics |
| TN | True negatives |
| TP | True positives |
| WHO | World Health Organization |
References
- Akhoundi, M.; Kuhls, K.; Cannet, A.; Votýpka, J.; Marty, P.; Delaunay, P.; Sereno, D. A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Neglected Trop. Dis. 2016, 10, e0004349. [Google Scholar] [CrossRef]
- Maroli, M.; Feliciangeli, M.D.; Bichaud, L.; Charrel, R.N.; Gradoni, L. Phlebotomine Sandflies and the Spreading of Leishmaniases and Other Diseases of Public Health Concern. Med. Vet. Entomol. 2013, 27, 123–147. [Google Scholar] [CrossRef] [PubMed]
- de Vries, H.J.C.; Schallig, H.D. Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. Am. J. Clin. Dermatol. 2022, 23, 823–840. [Google Scholar] [CrossRef]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M.; WHO Leishmaniasis Control Team. Leishmaniasis Worldwide and Global Estimates of Its Incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- World Health Organization Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 7 February 2025).
- Palatnik-de-Sousa, C.B.; Day, M.J. One Health: The Global Challenge of Epidemic and Endemic Leishmaniasis. Parasites Vectors 2011, 4, 197. [Google Scholar] [CrossRef]
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Kaye, P.M.; Cruz, I.; Picado, A.; Van Bocxlaer, K.; Croft, S.L. Leishmaniasis Immunopathology—Impact on Design and Use of Vaccines, Diagnostics and Drugs. Semin. Immunopathol. 2020, 42, 247–264. [Google Scholar] [CrossRef]
- Reithinger, R.; Dujardin, J.-C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous Leishmaniasis. Lancet Infect. Dis. 2007, 7, 581–596. [Google Scholar] [CrossRef]
- Giorgio, S.; Gallo-Francisco, P.H.; Roque, G.A.S.; Flóro e Silva, M. Granulomas in Parasitic Diseases: The Good and the Bad. Parasitol. Res. 2020, 119, 3165–3180. [Google Scholar] [CrossRef] [PubMed]
- Kaye, P.M.; Matlashewski, G.; Mohan, S.; Le Rutte, E.; Mondal, D.; Khamesipour, A.; Malvolti, S. Vaccine Value Profile for Leishmaniasis. Vaccine 2023, 41, S153–S175. [Google Scholar] [CrossRef] [PubMed]
- Tirelli, F.; Vernal, S.; Roselino, A.M. Final Diagnosis of 86 Cases Included in Differential Diagnosis of American Tegumentary Leishmaniasis in a Brazilian Sample: A Retrospective Cross-Sectional Study. An. Bras. Dermatol. 2017, 92, 642–648. [Google Scholar] [CrossRef] [PubMed]
- Reimão, J.Q.; Coser, E.M.; Lee, M.R.; Coelho, A.C. Laboratory Diagnosis of Cutaneous and Visceral Leishmaniasis: Current and Future Methods. Microorganisms 2020, 8, 1632. [Google Scholar] [CrossRef]
- Gow, I.; Smith, N.C.; Stark, D.; Ellis, J. Laboratory Diagnostics for Human Leishmania Infections: A Polymerase Chain Reaction-Focussed Review of Detection and Identification Methods. Parasites Vectors 2022, 15, 412. [Google Scholar] [CrossRef]
- Rasti, S.; Ghorbanzadeh, B.; Kheirandish, F.; Mousavi, S.G.; Pirozmand, A.; Hooshyar, H.; Abani, B. Comparison of Molecular, Microscopic, and Culture Methods for Diagnosis of Cutaneous Leishmaniasis. J. Clin. Lab. Anal. 2016, 30, 610–615. [Google Scholar] [CrossRef]
- Siddig, M.; Ghalib, H.; Shillington, D.C.; Petersen, E.A. Visceral Leishmaniasis in the Sudan: Comparative Parasitological Methods of Diagnosis. Trans. R. Soc. Trop. Med. Hyg. 1988, 82, 66–68. [Google Scholar] [CrossRef]
- Weigle, K.A.; Labrada, L.A.; Lozano, C.; Santrich, C.; Barker, D.C. PCR-Based Diagnosis of Acute and Chronic Cutaneous Leishmaniasis Caused by Leishmania (Viannia). J. Clin. Microbiol. 2002, 40, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.L.; Rêgo, F.D.; Cota, G.; Pascoal-Xavier, M.A.; Oliveira, E. Potential Antigenic Targets Used in Immunological Tests for Diagnosis of Tegumentary Leishmaniasis: A Systematic Review. PLoS ONE 2021, 16, e0251956. [Google Scholar] [CrossRef]
- Menezes-Souza, D.; de Mendes, T.A.O.; de Gomes, M.S.; Bartholomeu, D.C.; Fujiwara, R.T. Improving Serodiagnosis of Human and Canine Leishmaniasis with Recombinant Leishmania Braziliensis Cathepsin L-like Protein and a Synthetic Peptide Containing Its Linear B-Cell Epitope. PLoS Neglected Trop. Dis. 2015, 9, e3426. [Google Scholar] [CrossRef]
- Fujimori, M.; Valencia-Portillo, R.T.; Lindoso, J.A.L.; Celeste, B.J.; de Almeida, R.P.; Costa, C.H.N.; da Cruz, A.M.; Druzian, A.F.; Duthie, M.S.; Fortaleza, C.M.C.B.; et al. Recombinant Protein KR95 as an Alternative for Serological Diagnosis of Human Visceral Leishmaniasis in the Americas. PLoS ONE 2023, 18, e0282483. [Google Scholar] [CrossRef]
- Lévêque, M.F.; Lachaud, L.; Simon, L.; Battery, E.; Marty, P.; Pomares, C. Place of Serology in the Diagnosis of Zoonotic Leishmaniases With a Focus on Visceral Leishmaniasis Due to Leishmania Infantum. Front. Cell. Infect. Microbiol. 2020, 10, 67. [Google Scholar] [CrossRef] [PubMed]
- Ortalli, M.; Lorrai, D.; Gaibani, P.; Rossini, G.; Vocale, C.; Re, M.C.; Varani, S. Serodiagnosis of Visceral Leishmaniasis in Northeastern Italy: Evaluation of Seven Serological Tests. Microorganisms 2020, 8, 1847. [Google Scholar] [CrossRef]
- Piyasiri, S.B.; Samaranayake, T.N.; Silva, H.; Manamperi, N.H.; Karunaweera, N.D. ELISA-based Evaluation of Antibody Response to Leishmania in a Region Endemic for Cutaneous Leishmaniasis. Parasite Immunol. 2022, 44, e12940. [Google Scholar] [CrossRef]
- Scott, P.; Novais, F.O. Cutaneous Leishmaniasis: Immune Responses in Protection and Pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef]
- Scarpini, S.; Dondi, A.; Totaro, C.; Biagi, C.; Melchionda, F.; Zama, D.; Pierantoni, L.; Gennari, M.; Campagna, C.; Prete, A.; et al. Visceral Leishmaniasis: Epidemiology, Diagnosis, and Treatment Regimens in Different Geographical Areas with a Focus on Pediatrics. Microorganisms 2022, 10, 1887. [Google Scholar] [CrossRef]
- Carstens-Kass, J.; Paulini, K.; Lypaczewski, P.; Matlashewski, G. A Review of the Leishmanin Skin Test: A Neglected Test for a Neglected Disease. PLoS Neglected Trop. Dis. 2021, 15, e0009531. [Google Scholar] [CrossRef]
- Sánchez-Romero, C.; Júnior, H.M.; da Matta, V.L.R.; Freitas, L.M.; de Soares, C.M.; Mariano, F.V.; de Almeida, O.P.; Nascimento de Aquino, S. Immunohistochemical and Molecular Diagnosis of Mucocutaneous and Mucosal Leishmaniasis. Int. J. Surg. Pathol. 2020, 28, 138–145. [Google Scholar] [CrossRef]
- Jara, M.; Adaui, V.; Valencia, B.M.; Martinez, D.; Alba, M.; Castrillon, C.; Cruz, M.; Cruz, I.; Van der Auwera, G.; Llanos-Cuentas, A.; et al. Real-Time PCR Assay for Detection and Quantification of Leishmania (Viannia) Organisms in Skin and Mucosal Lesions: Exploratory Study of Parasite Load and Clinical Parameters. J. Clin. Microbiol. 2013, 51, 1826–1833. [Google Scholar] [CrossRef]
- Galluzzi, L.; Ceccarelli, M.; Diotallevi, A.; Menotta, M.; Magnani, M. Real-Time PCR Applications for Diagnosis of Leishmaniasis. Parasites Vectors 2018, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Thakur, L.; Singh, K.K.; Shanker, V.; Negi, A.; Jain, A.; Matlashewski, G.; Jain, M. Atypical Leishmaniasis: A Global Perspective with Emphasis on the Indian Subcontinent. PLoS Neglected Trop. Dis. 2018, 12, e0006659. [Google Scholar] [CrossRef] [PubMed]
- Mesa, L.E.; Manrique, R.; Muskus, C.; Robledo, S.M. Test Accuracy of Polymerase Chain Reaction Methods against Conventional Diagnostic Techniques for Cutaneous Leishmaniasis (CL) in Patients with Clinical or Epidemiological Suspicion of CL: Systematic Review and Meta-Analysis. PLoS Neglected Trop. Dis. 2020, 14, e0007981. [Google Scholar] [CrossRef] [PubMed]
- Makau-Barasa, L.K.; Ochol, D.; Yotebieng, K.A.; Adera, C.B.; de Souza, D.K. Moving from Control to Elimination of Visceral Leishmaniasis in East Africa. Front. Trop. Dis. 2022, 3, 965609. [Google Scholar] [CrossRef]
- Hagos, D.G.; Kiros, Y.K.; Abdulkader, M.; Schallig, H.D.F.H.; Wolday, D. Comparison of the Diagnostic Performances of Five Different Tests in Diagnosing Visceral Leishmaniasis in an Endemic Region of Ethiopia. Diagnostics 2024, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Sereno, D.; Oury, B.; Geiger, A.; Vela, A.; Karmaoui, A.; Desquesnes, M. Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. Int. J. Mol. Sci. 2022, 23, 7543. [Google Scholar] [CrossRef]
- Bharadwaj, M.; Bengtson, M.; Golverdingen, M.; Waling, L.; Dekker, C. Diagnosing Point-of-Care Diagnostics for Neglected Tropical Diseases. PLoS Neglected Trop. Dis. 2021, 15, e0009405. [Google Scholar] [CrossRef] [PubMed]
- Castellanos-Gonzalez, A.; Cossio, A.; Jojoa, J.; Moen, S.; Travi, B.L. MiniPCR as a Portable Equipment for the Molecular Diagnosis of American Cutaneous Leishmaniasis. Acta Trop. 2023, 243, 106926. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-Based Clustering of Publications Using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef]
- Lee, J.; Kim, K.W.; Choi, S.H.; Huh, J.; Park, S.H. Systematic Review and Meta-Analysis of Studies Evaluating Diagnostic Test Accuracy: A Practical Review for Clinical Researchers-Part II. Statistical Methods of Meta-Analysis. Korean J. Radiol. 2015, 16, 1188–1196. [Google Scholar] [CrossRef]
- Kuo, K.-M.; Talley, P.C.; Chang, C.-S. The Accuracy of Machine Learning Approaches Using Non-Image Data for the Prediction of COVID-19: A Meta-Analysis. Int. J. Med. Inform. 2022, 164, 104791. [Google Scholar] [CrossRef]
- Shim, S.R.; Kim, S.-J.; Lee, J. Diagnostic Test Accuracy: Application and Practice Using R Software. Epidemiol. Health 2019, 41, e2019007. [Google Scholar] [CrossRef]
- Eusebi, P. Diagnostic Accuracy Measures. Cerebrovasc. Dis. 2013, 36, 267–272. [Google Scholar] [CrossRef]
- Reitsma, J.B.; Glas, A.S.; Rutjes, A.W.S.; Scholten, R.J.P.M.; Bossuyt, P.M.; Zwinderman, A.H. Bivariate Analysis of Sensitivity and Specificity Produces Informative Summary Measures in Diagnostic Reviews. J. Clin. Epidemiol. 2005, 58, 982–990. [Google Scholar] [CrossRef]
- Walter, S.D. Properties of the Summary Receiver Operating Characteristic (SROC) Curve for Diagnostic Test Data. Stat. Med. 2002, 21, 1237–1256. [Google Scholar] [CrossRef]
- Doebler, P.; Holling, H.; Sousa-Pinto, B. Meta-Analysis of Diagnostic Accuracy with Mada. 2022, pp. 1–24. Available online: https://cran.r-project.org/web/packages/mada/vignettes/mada.pdf (accessed on 21 December 2021).
- Gomes, C.M.; de Paula, N.A.; Cesetti, M.V.; Roselino, A.M.; Sampaio, R.N.R. Mucocutaneous Leishmaniasis: Accuracy and Molecular Validation of Noninvasive Procedures in a L. (V.) Braziliensis-Endemic Area. Diagn. Microbiol. Infect. Dis. 2014, 79, 413–418. [Google Scholar] [CrossRef]
- Soares, K.A.; Urdapilleta, A.A.A.; dos Santos, G.M.; Carneiro, A.L.; Gomes, C.M.; Roselino, A.M.; Sampaio, R.N.R. Field Validation of a Leishmania (Leishmania) Mexicana Exo-Antigens ELISA for Diagnosing Tegumentary Leishmaniasis in Regions of Leishmania (Viannia) Predominance. Braz. J. Infect. Dis. 2015, 19, 302–307. [Google Scholar] [CrossRef]
- Garcia, A.L.; Parrado, R.; De Doncker, S.; Bermudez, H.; Dujardin, J.-C. American Tegumentary Leishmaniasis: Direct Species Identification of Leishmania in Non-Invasive Clinical Samples. Trans. R. Soc. Trop. Med. Hyg. 2007, 101, 368–371. [Google Scholar] [CrossRef]
- Neitzke-Abreu, H.C.; Venazzi, M.S.; Bernal, M.V.Z.; Reinhold-Castro, K.R.; Vagetti, F.; Mota, C.A.; Silva, N.R.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Detection of DNA from Leishmania (Viannia): Accuracy of Polymerase Chain Reaction for the Diagnosis of Cutaneous Leishmaniasis. PLoS ONE 2013, 8, e62473. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.H.S.; Armelin, I.M.; Menon, S.Z.; Pereira-Chioccola, V.L. Leishmania (V.) Braziliensis: Detection by PCR in Biopsies from Patients with Cutaneous Leishmaniasis. Exp. Parasitol. 2008, 119, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.M.R.S.; Costa, L.E.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lima, M.P.; Chávez-Fumagalli, M.A.; Silvestre, B.T.; Portela, Á.S.B.; Roatt, B.M.; et al. An ELISA Immunoassay Employing a Conserved Leishmania Hypothetical Protein for the Serodiagnosis of Visceral and Tegumentary Leishmaniasis in Dogs and Humans. Cell. Immunol. 2017, 318, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.J.; de Gouvêa Viana, L.; de Oliveira, E.J.; Rabello, A. Comparative Evaluation of Direct Agglutination Test, RK39 and Soluble Antigen ELISA and IFAT for the Diagnosis of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2008, 102, 172–178. [Google Scholar] [CrossRef]
- Szargiki, R.; de Castro, E.A.; Luz, E.; Kowalthuk, W.; Machado, A.M.; Thomaz-Soccol, V. Comparison of Serological and Parasitological Methods for Cutaneous Leishmaniasis Diagnosis in the State of Paraná, Brazil. Braz. J. Infect. Dis. 2009, 13, 47–52. [Google Scholar] [CrossRef]
- Salotra, P.; Sreenivas, G.; Beena, K.R.; Mukherjee, A.; Ramesh, V. Parasite Detection in Patients with Post Kala-Azar Dermal Leishmaniasis in India: A Comparison between Molecular and Immunological Methods. J. Clin. Pathol. 2003, 56, 840–843. [Google Scholar] [CrossRef]
- Duarte, M.C.; Pimenta, D.C.; Menezes-Souza, D.; Magalhães, R.D.M.; Diniz, J.L.C.P.; Costa, L.E.; Chávez-Fumagalli, M.A.; Lage, P.S.; Bartholomeu, D.C.; Alves, M.J.M.; et al. Proteins Selected in Leishmania (Viannia) Braziliensis by an Immunoproteomic Approach with Potential Serodiagnosis Applications for Tegumentary Leishmaniasis. Clin. Vaccine Immunol. 2015, 22, 1187–1196. [Google Scholar] [CrossRef]
- Cataldo, J.I.; de Queiroz Mello, F.C.; Mouta-Confort, E.; de Fátima Madeira, M.; de Oliveira Schubach, A.; da Silva Genestra, M.; Ribeiro, F.C.; de Fátima Moreira-Venâncio, C.; Passos, S.R.L. Immunoenzymatic Assay for the Diagnosis of American Tegumentary Leishmaniasis Using Soluble and Membrane-Enriched Fractions from Infectious Leishmania (Viannia) Braziliensis. J. Clin. Lab. Anal. 2010, 24, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.P.; Soto, M.; Costa, J.M.L.; Boaventura, V.S.; de Oliveira, C.I.; Cristal, J.R.; Barral-Netto, M.; Barral, A. Towards a More Precise Serological Diagnosis of Human Tegumentary Leishmaniasis Using Leishmania Recombinant Proteins. PLoS ONE 2013, 8, e66110. [Google Scholar] [CrossRef]
- Montoya, Y.; Leon, C.; Talledo, M.; Nolasco, O.; Padilla, C.; Muñoz-Najar, U.; Barker, D.C. Recombinant Antigens for Specific and Sensitive Serodiagnosis of Latin American Tegumentary Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1997, 91, 674–676. [Google Scholar] [CrossRef]
- Redhu, N.S.; Dey, A.; Balooni, V.; Singh, S. Use of Immunoglobulin g Avidity to Determine the Course of Disease in Visceral and Post-Kala-Azar Dermal Leishmaniasis Patients. Clin. Vaccine Immunol. 2006, 13, 969–971. [Google Scholar] [CrossRef] [PubMed]
- Mosleh, I.M.; Saliba, E.K.; Al-Khateeb, M.S.; Bisharat, Z.; Oumeish, O.Y.; Bitar, W. Serodiagnosis of Cutaneous Leishmaniasis in Jordan Using Indirect Fluorescent Antibody Test and the Enzyme-Linked Immunosorbent Assay. Acta Trop. 1995, 59, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Zeyrek, F.Y.; Korkmaz, M.; Ozbel, Y. Serodiagnosis of Anthroponotic Cutaneous Leishmaniasis (ACL) Caused by Leishmania Tropica in Sanliurfa Province, Turkey, Where ACL Is Highly Endemic. Clin. Vaccine Immunol. 2007, 14, 1409–1415. [Google Scholar] [CrossRef]
- Rodrigues, M.R.; Santos, L.M.O.; Miyazaki, C.K.; Martins, V.T.; Ludolf, F.R.; Kursancew, A.C.; Ramos, F.F.; Dias, D.S.; Oliveira, J.S.; Vieira, P.M.A.; et al. Immunodiagnosis of Human and Canine Visceral Leishmaniasis Using Recombinant Leishmania Infantum Prohibitin Protein and a Synthetic Peptide Containing Its Conformational B-Cell Epitope. J. Immunol. Methods 2019, 474, 112641. [Google Scholar] [CrossRef]
- Deepachandi, B.; Weerasinghe, S.; Ranasinghe, S.; Andrahennadi, T.P.; Wickramanayake, M.N.; Siri, S.; Karunaweera, N.; Chandrasekharan, V.; Chatterjee, M.; Soysa, P.; et al. First Serological Study Revealing High Humoral Response and Evidence for Antigenic Heterogeneity in Leishmania Donovani Induced CL in Sri Lanka. BioMed Res. Int. 2020, 2020, 5271657. [Google Scholar] [CrossRef]
- Ribeiro, P.A.F.; Dias, D.S.; Lage, D.P.; Costa, L.E.; Salles, B.C.S.; Steiner, B.T.; Ramos, F.F.; Lima, M.P.; Santos, T.T.O.; Chaves, A.T.; et al. A Conserved Leishmania Hypothetical Protein Evaluated for the Serodiagnosis of Canine and Human Visceral and Tegumentary Leishmaniasis, as Well as a Serological Marker for the Posttreatment Patient Follow-Up. Diagn. Microbiol. Infect. Dis. 2018, 92, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa Lima, M.; Costa, L.E.; Costa Duarte, M.; Menezes-Souza, D.; Silveira Salles, B.C.; de Oliveira Santos, T.T.; Ramos, F.F.; Chávez-Fumagalli, M.A.; Kursancew Silva, A.C.; Ambrósio, R.P.; et al. Evaluation of a Hypothetical Protein for Serodiagnosis and as a Potential Marker for Post-Treatment Serological Evaluation of Tegumentary Leishmaniasis Patients. Parasitol. Res. 2017, 116, 1197–1206. [Google Scholar] [CrossRef]
- Massae Sato, C.; Arroyo Sanchez, M.C.; Celeste, B.J.; Duthie, M.S.; Guderian, J.; Reed, S.G.; de Brito, M.E.F.; Campos, M.B.; de Souza Encarnação, H.V.; Guerra, J.; et al. Use of Recombinant Antigens for Sensitive Serodiagnosis of American Tegumentary Leishmaniasis Caused by Different Leishmania Species. J. Clin. Microbiol. 2017, 55, 495–503. [Google Scholar] [CrossRef]
- Bracamonte, M.E.; Álvarez, A.M.; Sosa, A.M.; Hoyos, C.L.; Lauthier, J.J.; Cajal, S.P.; Juarez, M.; Uncos, R.E.; Sánchez-Valdéz, F.J.; Acuña, L.; et al. High Performance of an Enzyme Linked Immunosorbent Assay for American Tegumentary Leishmaniasis Diagnosis with Leishmania (Viannia) Braziliensis Amastigotes Membrane Crude Antigens. PLoS ONE 2020, 15, e0232829. [Google Scholar] [CrossRef]
- Garcia-Miss, M.R.; Andrade-Narvaez, F.J.; Esquivel-Viñas, R.E.; Simmonds-Diaz, E.B.; Canto-Lara, S.B.; Cruz-Ruiz, A.L. Localized Cutaneous Leishmaniasis (Chiclero’s Ulcer) in Mexico: Sensitivity and Specificity of ELISA for IgG Antibodies to Leishmania Mexicana Mexicana. Trans. R. Soc. Trop. Med. Hyg. 1990, 84, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Souza, D.; de Mendes, T.A.O.; Nagem, R.A.P.; Santos, T.T.d.O.; Silva, A.L.T.; Santoro, M.M.; de Carvalho, S.F.G.; Coelho, E.A.F.; Bartholomeu, D.C.; Fujiwara, R.T. Mapping B-Cell Epitopes for the Peroxidoxin of Leishmania (Viannia) Braziliensis and Its Potential for the Clinical Diagnosis of Tegumentary and Visceral Leishmaniasis. PLoS ONE 2014, 9, e99216. [Google Scholar] [CrossRef] [PubMed]
- Pedras, M.J.; Orsini, M.; Castro, M.; Passos, V.M.A.; Rabello, A. Antibody Subclass Profile against Leishmania Braziliensis and Leishmania Amazonensis in the Diagnosis and Follow-up of Mucosal Leishmaniasis. Diagn. Microbiol. Infect. Dis. 2003, 47, 477–485. [Google Scholar] [CrossRef]
- Rocha, R.D.R.; Gontijo, C.M.F.; Elói-Santos, S.M.; Teixeira-Carvalho, A.; Corrêa-Oliveira, R.; Ferrari, T.C.A.; Marques, M.J.; Mayrink, W.; Martins-Filho, O.A. Clinical Value of Anti-Live Leishmania (Viannia) Braziliensis Immunoglobulin G Subclasses, Detected by Flow Cytometry, for Diagnosing Active Localized Cutaneous Leishmaniasis. Trop. Med. Int. Health 2006, 11, 156–166. [Google Scholar] [CrossRef]
- Gonçalves, C.C.M.; Reiche, E.M.V.; De Abreu Filho, B.A.; Silveira, T.G.V.; Felizardo, T.C.; Maia, K.R.; Costacurta, R.; Padovesi, E.J.; Dias Filho, B.P.; Jankevicius, S.I.; et al. Evaluation of Antigens from Various Leishmania Species in a Western Blot for Diagnosis of American Tegumentary Leishmaniasis. Am. J. Trop. Med. Hyg. 2002, 66, 91–102. [Google Scholar] [CrossRef]
- Azmi, K.; Nasereddin, A.; Ereqat, S.; Schnur, L.; Schonian, G.; Abdeen, Z. Methods Incorporating a Polymerase Chain Reaction and Restriction Fragment Length Polymorphism and Their Use as a “gold Standard” in Diagnosing Old World Cutaneous Leishmaniasis. Diagn. Microbiol. Infect. Dis. 2011, 71, 151–155. [Google Scholar] [CrossRef]
- Fagundes, A.; Schubach, A.; de Paula, C.C.; Bogio, A.; de Antonio, L.F.; Schiavoni, P.B.; de Monteiro, V.S.; de Madeira, M.F.; Quintella, L.P.; Valete-Rosalino, C.M.; et al. Evaluation of Polymerase Chain Reaction in the Routine Diagnosis for Tegumentary Leishmaniasis in a Referral Centre. Mem. Inst. Oswaldo Cruz 2010, 105, 109–112. [Google Scholar] [CrossRef]
- Cruz, I.; Cañavate, C.; Rubio, J.M.; Morales, M.A.; Chicharro, C.; Laguna, F.; Jiménez-Mejías, M.; Sirera, G.; Videla, S.; Alvar, J.; et al. A Nested Polymerase Chain Reaction (Ln-PCR) for Diagnosing and Monitoring Leishmania Infantum Infection in Patients Co-Infected with Human Immunodeficiency Virus. Trans. R. Soc. Trop. Med. Hyg. 2002, 96 (Suppl. S1), S185–S189. [Google Scholar] [CrossRef]
- Lemrani, M.; Hamdi, S.; Laamrani, A.; Hassar, M. PCR Detection of Leishmania in Skin Biopsies. J. Infect. Dev. Ctries. 2009, 3, 115–122. [Google Scholar] [CrossRef]
- Srivastava, P.; Mehrotra, S.; Tiwary, P.; Chakravarty, J.; Sundar, S. Diagnosis of Indian Visceral Leishmaniasis by Nucleic Acid Detection Using PCR. PLoS ONE 2011, 6, e19304. [Google Scholar] [CrossRef]
- Isaza, D.M.; Arboleda, M.; Restrepo, M.; McCann, S.H.E.; Barker, D.C. Validation of the Polymerase Chain Reaction for the Diagnosis of Human Cutaneous Leishmaniasis in North-West Colombia. Trans. R. Soc. Trop. Med. Hyg. 2002, 96 (Suppl. S1), S165–S168. [Google Scholar] [CrossRef] [PubMed]
- Mouttaki, T.; Morales-Yuste, M.; Merino-Espinosa, G.; Chiheb, S.; Fellah, H.; Martin-Sanchez, J.; Riyad, M. Molecular Diagnosis of Cutaneous Leishmaniasis and Identification of the Causative Leishmania Species in Morocco by Using Three PCR-Based Assays. Parasites Vectors 2014, 7, 420. [Google Scholar] [CrossRef]
- Muñoz, E.B.; Santander, S.; Rojas-Silva, P.; Cardenas, P.A.; Fornasini, M.; Cifuentes, S.C.; Salvador, D.; Baldeón, M.E. Diagnostic Efficacy of Molecular Techniques for Detection and Identification of Leishmania Species in Human Whole Blood and Skin Samples from Ecuador. Am. J. Trop. Med. Hyg. 2016, 95, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Disch, J.; Pedras, M.J.; Orsini, M.; Pirmez, C.; de Oliveira, M.C.; Castro, M.; Rabello, A. Leishmania (Viannia) Subgenus KDNA Amplification for the Diagnosis of Mucosal Leishmaniasis. Diagn. Microbiol. Infect. Dis. 2005, 51, 185–190. [Google Scholar] [CrossRef]
- Gomes Rodrigues, E.H.; Felinto de Brito, M.E.; Guedes Mendonça, M.; Werkhäuser, R.P.; Coutinho, E.M.; Souza, W.V.; de Militão de Albuquerque, M.F.P.; Jardim, M.L.; Abath, F.G.C. Evaluation of PCR for Diagnosis of American Cutaneous Leishmaniasis in an Area of Endemicity in Northeastern Brazil. J. Clin. Microbiol. 2002, 40, 3572–3576. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Deplazes, P. PCR and in Vitro Cultivation for Detection of Leishmania Spp. in Diagnostic Samples from Humans and Dogs. J. Clin. Microbiol. 1995, 33, 1145–1149. [Google Scholar] [CrossRef]
- Gangneux, J.-P.; Menotti, J.; Lorenzo, F.; Sarfati, C.; Blanche, H.; Bui, H.; Pratlong, F.; Garin, Y.-J.-F.; Derouin, F. Prospective Value of PCR Amplification and Sequencing for Diagnosis and Typing of Old World Leishmania Infections in an Area of Nonendemicity. J. Clin. Microbiol. 2003, 41, 1419–1422. [Google Scholar] [CrossRef] [PubMed]
- Salotra, P.; Sreenivas, G.; Pogue, G.P.; Lee, N.; Nakhasi, H.L.; Ramesh, V.; Negi, N.S. Development of a Species-Specific PCR Assay for Detection of Leishmania Donovani in Clinical Samples from Patients with Kala-Azar and Post-Kala-Azar Dermal Leishmaniasis. J. Clin. Microbiol. 2001, 39, 849–854. [Google Scholar] [CrossRef]
- Boni, S.M.; Oyafuso, L.K.; de Soler, R.C.; Lindoso, J.A.L. Efficiency of Noninvasive Sampling Methods (Swab) Together with Polymerase Chain Reaction (PCR) for Diagnosing American Tegumentary Leishmaniasis. Rev. Inst. Med. Trop. Sao Paulo 2017, 59, e38. [Google Scholar] [CrossRef]
- Montalvo, A.M.; Alba, A.; Fraga, J.; Marzoa, A.; Torres, C.; Muskus, C. Improving the Sensitivity of an Hsp20-Based PCR for Genus Detection of Leishmania Parasites in Cutaneous Clinical Samples: A Proof of Concept. Parasitol. Res. 2020, 119, 345–349. [Google Scholar] [CrossRef]
- Deepachandi, B.; Weerasinghe, S.; Soysa, P.; Karunaweera, N.; Siriwardana, Y. A Highly Sensitive Modified Nested PCR to Enhance Case Detection in Leishmaniasis. BMC Infect. Dis. 2019, 19, 623. [Google Scholar] [CrossRef]
- Ovalle-Bracho, C.; Díaz-Toro, Y.R.; Muvdi-Arenas, S. Polymerase Chain Reaction-Miniexon: A Promising Diagnostic Method for Mucocutaneous Leishmaniasis. Int. J. Dermatol. 2016, 55, 531–539. [Google Scholar] [CrossRef] [PubMed]
- Safaei, A.; Motazedian, M.H.; Vasei, M. Polymerase Chain Reaction for Diagnosis of Cutaneous Leishmaniasis in Histologically Positive, Suspicious and Negative Skin Biopsies. Dermatology 2002, 205, 18–24. [Google Scholar] [CrossRef]
- Ovalle Bracho, C.; Porras de Quintana, L.; Muvdi Arenas, S.; Rios Parra, M. Polymerase Chain Reaction with Two Molecular Targets in Mucosal Leishmaniasis’ Diagnosis: A Validation Study. Mem. Inst. Oswaldo Cruz 2007, 102, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Gomes, C.M.; Cesetti, M.V.; de Paula, N.A.; Vernal, S.; Gupta, G.; Sampaio, R.N.R.; Roselino, A.M. Field Validation of SYBR Green- and TaqMan-Based Real-Time PCR Using Biopsy and Swab Samples To Diagnose American Tegumentary Leishmaniasis in an Area Where Leishmania (Viannia) Braziliensis Is Endemic. J. Clin. Microbiol. 2017, 55, 526–534. [Google Scholar] [CrossRef]
- Verma, S.; Bhandari, V.; Avishek, K.; Ramesh, V.; Salotra, P. Reliable Diagnosis of Post-Kala-Azar Dermal Leishmaniasis (PKDL) Using Slit Aspirate Specimen to Avoid Invasive Sampling Procedures. Trop. Med. Int. Health 2013, 18, 268–275. [Google Scholar] [CrossRef]
- de Morais, R.C.S.; de Melo, M.G.N.; de Goes, T.C.; Pessoa, E.; Silva, R.; de Morais, R.F.; de Guerra, J.A.O.; de Brito, M.E.F.; Brandão-Filho, S.P.; de Paiva Cavalcanti, M. Duplex QPCR for Leishmania Species Identification Using Lesion Imprint on Filter Paper. Exp. Parasitol. 2020, 219, 108019. [Google Scholar] [CrossRef]
- De Silva, G.; Somaratne, V.; Senaratne, S.; Vipuladasa, M.; Wickremasinghe, R.; Wickremasinghe, R.; Ranasinghe, S. Efficacy of a New Rapid Diagnostic Test Kit to Diagnose Sri Lankan Cutaneous Leishmaniasis Caused by Leishmania Donovani. PLoS ONE 2017, 12, e0187024. [Google Scholar] [CrossRef]
- Hailu, A. The Use of Direct Agglutination Test (DAT) in Serological Diagnosis of Ethiopian Cutaneous Leishmaniasis. Diagn. Microbiol. Infect. Dis. 2002, 42, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Subba Raju, B.V.; Jain, R.K.; Salotra, P. Potential of Direct Agglutination Test Based on Promastigote and Amastigote Antigens for Serodiagnosis of Post-Kala-Azar Dermal Leishmaniasis. Clin. Vaccine Immunol. 2005, 12, 1191–1194. [Google Scholar] [CrossRef] [PubMed]
- Bangert, M.; Flores-Chávez, M.D.; Llanes-Acevedo, I.P.; Arcones, C.; Chicharro, C.; García, E.; Ortega, S.; Nieto, J.; Cruz, I. Validation of RK39 Immunochromatographic Test and Direct Agglutination Test for the Diagnosis of Mediterranean Visceral Leishmaniasis in Spain. PLoS Neglected Trop. Dis. 2018, 12, e0006277. [Google Scholar] [CrossRef] [PubMed]
- Akhoundi, B.; Mohebali, M.; Babakhan, L.; Edrissian, G.-H.; Eslami, M.-B.; Keshavarz, H.; Malekafzali, H. Rapid Detection of Human Leishmania Infantum Infection: A Comparative Field Study Using the Fast Agglutination Screening Test and the Direct Agglutination Test. Travel Med. Infect. Dis. 2010, 8, 305–310. [Google Scholar] [CrossRef]
- Oliveira, E.; Saliba, S.W.; Saliba, J.W.; Rabello, A. Validation of a Direct Agglutination Test Prototype Kit for the Diagnosis of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2013, 107, 243–247. [Google Scholar] [CrossRef]
- Lita, G.; Davachi, F.; Sulcebe, G.; Bregu, H.; Basha, M. Pediatric Visceral Leishmaniasis in Albania. Int. J. Infect. Dis. 2002, 6, 66–68. [Google Scholar] [CrossRef]
- Osman, H.A.; Mahamoud, A.; Abass, E.M.; Madi, R.R.; Semiao-Santos, S.J.; El Harith, A. Local Production of a Liquid Direct Agglutination Test as a Sustainable Measure for Control of Visceral Leishmaniasis in Sudan. Am. J. Trop. Med. Hyg. 2016, 94, 982–986. [Google Scholar] [CrossRef]
- Oliveira, E.; Saliba, S.W.; de Andrade, C.F.; Rabello, A. Direct Agglutination Test (DAT): Improvement of Biosafety for Laboratory Diagnosis of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Hasnain, M.G.; Ghosh, P.; Baker, J.; Mondal, D. An Evaluation of the Performance of Direct Agglutination Test on Filter Paper Blood Sample for the Diagnosis of Visceral Leishmaniasis. Am. J. Trop. Med. Hyg. 2014, 91, 342–344. [Google Scholar] [CrossRef]
- Bimal, S.; Das, V.N.R.; Sinha, P.K.; Gupta, A.K.; Verma, N.; Ranjan, A.; Singh, S.K.; Sen, A.; Bhattacharya, S.K.; Das, P. Usefulness of the Direct Agglutination Test in the Early Detection of Subclinical Leishmania Donovani Infection: A Community-Based Study. Ann. Trop. Med. Parasitol. 2005, 99, 743–749. [Google Scholar] [CrossRef]
- el Harith, A.; Chowdhury, S.; Al-Masum, A.; Semião-Santos, S.; Karim, E.; El-Safi, S.; Haque, I. Evaluation of Cleaving Agents Other than Trypsin in Direct Agglutination Test for Further Improving Diagnosis of Visceral Leishmaniasis. J. Clin. Microbiol. 1995, 33, 1984–1988. [Google Scholar] [CrossRef]
- Oliveira, E.; Pedras, M.J.; de Assis, I.E.M.; Rabello, A. Improvement of Direct Agglutination Test (DAT) for Laboratory Diagnosis of Visceral Leishmaniasis in Brazil. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1279–1281. [Google Scholar] [CrossRef] [PubMed]
- Rijal, S.; Boelaert, M.; Regmi, S.; Karki, B.M.S.; Jacquet, D.; Singh, R.; Chance, M.L.; Chappuis, F.; Hommel, M.; Desjeux, P.; et al. Evaluation of a Urinary Antigen-Based Latex Agglutination Test in the Diagnosis of Kala-Azar in Eastern Nepal. Trop. Med. Int. Health 2004, 9, 724–729. [Google Scholar] [CrossRef]
- Vogt, F.; Mengesha, B.; Asmamaw, H.; Mekonnen, T.; Fikre, H.; Takele, Y.; Adem, E.; Mohammed, R.; Ritmeijer, K.; Adriaensen, W.; et al. Antigen Detection in Urine for Noninvasive Diagnosis and Treatment Monitoring of Visceral Leishmaniasis in Human Immunodeficiency Virus Coinfected Patients: An Exploratory Analysis from Ethiopia. Am. J. Trop. Med. Hyg. 2018, 99, 957–966. [Google Scholar] [CrossRef]
- Abdallah, K.A.A.; Nour, B.Y.M.; Schallig, H.D.F.H.; Mergani, A.; Hamid, Z.; Elkarim, A.A.; Saeed, O.K.; Mohamadani, A.A. Evaluation of the Direct Agglutination Test Based on Freeze-Dried Leishmania Donovani Promastigotes for the Serodiagnosis of Visceral Leishmaniasis in Sudanese Patients. Trop. Med. Int. Health 2004, 9, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Singla, N.; Singh, G.S.; Sundar, S.; Vinayak, V.K. Evaluation of the Direct Agglutination Test as an Immunodiagnostic Tool for Kala-Azar in India. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 276–278. [Google Scholar] [CrossRef]
- Oskam, L.; Nieuwenhuijs, J.L.; Hailu, A. Evaluation of the Direct Agglutination Test (DAT) Using Freeze-Dried Antigen for the Detection of Anti-Leishmania Antibodies in Stored Sera from Various Patient Groups in Ethiopia. Trans. R. Soc. Trop. Med. Hyg. 1999, 93, 275–277. [Google Scholar] [CrossRef]
- Meredith, S.E.; Kroon, N.C.; Sondorp, E.; Seaman, J.; Goris, M.G.; van Ingen, C.W.; Oosting, H.; Schoone, G.J.; Terpstra, W.J.; Oskam, L. Leish-KIT, a Stable Direct Agglutination Test Based on Freeze-Dried Antigen for Serodiagnosis of Visceral Leishmaniasis. J. Clin. Microbiol. 1995, 33, 1742–1745. [Google Scholar] [CrossRef]
- Moody, A.H.; El-Safi, S.H. A Latex Agglutination Test for the Serodiagnosis of Visceral Leishmaniasis in Sudan. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 522. [Google Scholar] [CrossRef]
- Schoone, G.J.; Hailu, A.; Kroon, C.C.; Nieuwenhuys, J.L.; Schallig, H.D.; Oskam, L. A Fast Agglutination Screening Test (FAST) for the Detection of Anti-Leishmania Antibodies. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 400–401. [Google Scholar] [CrossRef]
- Lourenço Freire, M.; Machado de Assis, T.; Oliveira, E.; Moreira de Avelar, D.; Siqueira, I.C.; Barral, A.; Rabello, A.; Cota, G. Performance of Serological Tests Available in Brazil for the Diagnosis of Human Visceral Leishmaniasis. PLoS Neglected Trop. Dis. 2019, 13, e0007484. [Google Scholar] [CrossRef]
- Machado de Assis, T.S.; Rabello, A.; Werneck, G.L. Latent Class Analysis of Diagnostic Tests for Visceral Leishmaniasis in Brazil. Trop. Med. Int. Health 2012, 17, 1202–1207. [Google Scholar] [CrossRef]
- Abass, E.M.; Mansour, D.; El Mutasim, M.; Hussein, M.; El Harith, A. Beta-Mercaptoethanol-Modified ELISA for Diagnosis of Visceral Leishmaniasis. J. Med. Microbiol. 2006, 55, 1193–1196. [Google Scholar] [CrossRef] [PubMed]
- Bagchi, A.K.; Tiwari, S.; Gupta, S.; Katiyar, J.C. The Latex Agglutination Test: Standardization and Comparison with Direct Agglutination and Dot-ELISA in the Diagnosis of Visceral Leishmaniasis in India. Ann. Trop. Med. Parasitol. 1998, 92, 159–163. [Google Scholar] [CrossRef]
- Oliveira, E.; Oliveira, D.; Cardoso, F.A.; Barbosa, J.R.; Marcelino, A.P.; Dutra, T.; Araujo, T.; Fernandes, L.; Duque, D.; Rabello, A. Multicentre Evaluation of a Direct Agglutination Test Prototype Kit (DAT-LPC) for Diagnosis of Visceral Leishmaniasis. Parasitology 2017, 144, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Pai, K.; Kumar, P.; Pandey, H.P.; Sundar, S. Sero-Epidemiological Study of Kala-Azar in a Village of Varanasi District, India. Trop. Med. Int. Health 2006, 11, 41–48. [Google Scholar] [CrossRef]
- Abass, E.; Bollig, N.; Reinhard, K.; Camara, B.; Mansour, D.; Visekruna, A.; Lohoff, M.; Steinhoff, U. RKLO8, a Novel Leishmania Donovani—Derived Recombinant Immunodominant Protein for Sensitive Detection of Visceral Leishmaniasis in Sudan. PLoS Neglected Trop. Dis. 2013, 7, e2322. [Google Scholar] [CrossRef] [PubMed]
- Okong’o-Odera, E.A.; Wamachi, A.; Kagai, J.M.; Kurtzhals, J.A.; Githure, J.I.; Hey, A.S.; Were, J.B.; Koech, D.K.; Mitema, E.S.; Kharazmi, A. Field Application of an ELISA Using Redefined Leishmania Antigens for the Detection of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 1993, 87, 423–424. [Google Scholar] [CrossRef] [PubMed]
- Attar, Z.J.; Chance, M.L.; El-Safi, S.; Carney, J.; Azazy, A.; El-Hadi, M.; Dourado, C.; Hommel, M. Latex Agglutination Test for the Detection of Urinary Antigens in Visceral Leishmaniasis. Acta Trop. 2001, 78, 11–16. [Google Scholar] [CrossRef]
- Cañavate, C.; Herrero, M.; Nieto, J.; Cruz, I.; Chicharro, C.; Aparicio, P.; Mulugeta, A.; Argaw, D.; Blackstock, A.J.; Alvar, J.; et al. Evaluation of Two RK39 Dipstick Tests, Direct Agglutination Test, and Indirect Fluorescent Antibody Test for Diagnosis of Visceral Leishmaniasis in a New Epidemic Site in Highland Ethiopia. Am. J. Trop. Med. Hyg. 2011, 84, 102–106. [Google Scholar] [CrossRef]
- Chappuis, F.; Rijal, S.; Singh, R.; Acharya, P.; Karki, B.M.S.; Das, M.L.; Bovier, P.A.; Desjeux, P.; Le Ray, D.; Koirala, S.; et al. Prospective Evaluation and Comparison of the Direct Agglutination Test and an RK39-Antigen-Based Dipstick Test for the Diagnosis of Suspected Kala-Azar in Nepal. Trop. Med. Int. Health 2003, 8, 277–285. [Google Scholar] [CrossRef]
- Bern, C.; Jha, S.N.; Joshi, A.B.; Thakur, G.D.; Bista, M.B. Use of the Recombinant K39 Dipstick Test and the Direct Agglutination Test in a Setting Endemic for Visceral Leishmaniasis in Nepal. Am. J. Trop. Med. Hyg. 2000, 63, 153–157. [Google Scholar] [CrossRef]
- do Vale, I.N.P.C.; Saliba, J.W.; Fonseca, G.S.F.; Peruhype-Magalhães, V.; de Araújo, F.F.; Pascoal-Xavier, M.A.; Teixeira-Carvalho, A.; Campos, F.M.F.; Andrade, M.C.; Lula, J.F.; et al. Laboratorial Algorithm for Serological Diagnosis of Visceral Leishmaniasis Using RK39-ICT, DAT-LPC and FC-Simplex IgG1. J. Immunol. Methods 2020, 480, 112765. [Google Scholar] [CrossRef]
- Ayelign, B.; Jemal, M.; Negash, M.; Genetu, M.; Wondmagegn, T.; Zeleke, A.J.; Worku, L.; Bayih, A.G.; Shumie, G.; Behaksra, S.W.; et al. Validation of In-House Liquid Direct Agglutination Test Antigen: The Potential Diagnostic Test in Visceral Leishimaniasis Endemic Areas of Northwest Ethiopia. BMC Microbiol. 2020, 20, 90. [Google Scholar] [CrossRef]
- Schallig, H.D.F.H.; Canto-Cavalheiro, M.; da Silva, E.S. Evaluation of the Direct Agglutination Test and the RK39 Dipstick Test for the Sero-Diagnosis of Visceral Leishmaniasis. Mem. Inst. Oswaldo Cruz 2002, 97, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Ben-Abid, M.; Galaï, Y.; Habboul, Z.; Ben-Abdelaziz, R.; Ben-Sghaier, I.; Aoun, K.; Bouratbine, A. Diagnosis of Mediterranean Visceral Leishmaniasis by Detection of Leishmania-Related Antigen in Urine and Oral Fluid Samples. Acta Trop. 2017, 167, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.D.; Oliveira, B.C.; Oliveira, A.P.; Santos, W.J.T.; Diniz, G.T.; de Melo Neto, O.P.; Costa, C.H.N.; Silva, M.R.B.; Andrade, L.D.; Medeiros, Z.M.; et al. Performance Evaluation of Anti-Fixed Leishmania Infantum Promastigotes Immunoglobulin G (IgG) Detected by Flow Cytometry as a Diagnostic Tool for Visceral Leishmaniasis. J. Immunol. Methods 2019, 469, 18–25. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, R.K.; Maurya, R.; Kumar, B.; Chhabra, A.; Singh, V.; Rai, M. Serological Diagnosis of Indian Visceral Leishmaniasis: Direct Agglutination Test versus RK39 Strip Test. Trans. R. Soc. Trop. Med. Hyg. 2006, 100, 533–537. [Google Scholar] [CrossRef]
- Sinha, P.K.; Bimal, S.; Pandey, K.; Singh, S.K.; Ranjan, A.; Kumar, N.; Lal, C.S.; Barman, S.B.; Verma, R.B.; Jeyakumar, A.; et al. A Community-Based, Comparative Evaluation of Direct Agglutination and RK39 Strip Tests in the Early Detection of Subclinical Leishmania Donovani Infection. Ann. Trop. Med. Parasitol. 2008, 102, 119–125. [Google Scholar] [CrossRef]
- Abass, E.; Kang, C.; Martinkovic, F.; Semião-Santos, S.J.; Sundar, S.; Walden, P.; Piarroux, R.; El Harith, A.; Lohoff, M.; Steinhoff, U. Heterogeneity of Leishmania Donovani Parasites Complicates Diagnosis of Visceral Leishmaniasis: Comparison of Different Serological Tests in Three Endemic Regions. PLoS ONE 2015, 10, e0116408. [Google Scholar] [CrossRef] [PubMed]
- Mansour, D.; Abass, E.M.; El Mutasim, M.; Mahamoud, A.; El Harith, A. Use of a Newly Developed Beta-Mercaptoethanol Enzyme-Linked Immunosorbent Assay to Diagnose Visceral Leishmaniasis in Patients in Eastern Sudan. Clin. Vaccine Immunol. 2007, 14, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Chappuis, F.; Rijal, S.; Jha, U.K.; Desjeux, P.; Karki, B.M.S.; Koirala, S.; Loutan, L.; Boelaert, M. Field Validity, Reproducibility and Feasibility of Diagnostic Tests for Visceral Leishmaniasis in Rural Nepal. Trop. Med. Int. Health 2006, 11, 31–40. [Google Scholar] [CrossRef]
- Akhoundi, B.; Mohebali, M.; Shojaee, S.; Jalali, M.; Kazemi, B.; Bandehpour, M.; Keshavarz, H.; Edrissian, G.H.; Eslami, M.B.; Malekafzali, H.; et al. Rapid Detection of Human and Canine Visceral Leishmaniasis: Assessment of a Latex Agglutination Test Based on the A2 Antigen from Amastigote Forms of Leishmania Infantum. Exp. Parasitol. 2013, 133, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Salam, M.A.; Khan, M.G.M.; Mondal, D. Urine Antigen Detection by Latex Agglutination Test for Diagnosis and Assessment of Initial Cure of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 269–272. [Google Scholar] [CrossRef]
- de Assis, T.S.M.; da Braga, A.S.C.; Pedras, M.J.; Oliveira, E.; Barral, A.; de Siqueira, I.C.; Costa, C.H.N.; Costa, D.L.; Holanda, T.A.; Soares, V.Y.R.; et al. Multi-Centric Prospective Evaluation of Rk39 Rapid Test and Direct Agglutination Test for the Diagnosis of Visceral Leishmaniasis in Brazil. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 81–85. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, R.K.; Bimal, S.K.; Gidwani, K.; Mishra, A.; Maurya, R.; Singh, S.K.; Manandhar, K.D.; Boelaert, M.; Rai, M. Comparative Evaluation of Parasitology and Serological Tests in the Diagnosis of Visceral Leishmaniasis in India: A Phase III Diagnostic Accuracy Study. Trop. Med. Int. Health 2007, 12, 284–289. [Google Scholar] [CrossRef]
- Hossain, F.; Picado, A.; Owen, S.I.; Ghosh, P.; Chowdhury, R.; Maruf, S.; Khan, M.A.A.; Rashid, M.U.; Nath, R.; Baker, J.; et al. Evaluation of LoopampTM Leishmania Detection Kit and Leishmania Antigen ELISA for Post-Elimination Detection and Management of Visceral Leishmaniasis in Bangladesh. Front. Cell. Infect. Microbiol. 2021, 11, 670759. [Google Scholar] [CrossRef]
- Salles, B.C.S.; Costa, L.E.; Alves, P.T.; Dias, A.C.S.; Vaz, E.R.; Menezes-Souza, D.; Ramos, F.F.; Duarte, M.C.; Roatt, B.M.; Chávez-Fumagalli, M.A.; et al. Leishmania Infantum Mimotopes and a Phage-ELISA Assay as Tools for a Sensitive and Specific Serodiagnosis of Human Visceral Leishmaniasis. Diagn. Microbiol. Infect. Dis. 2017, 87, 219–225. [Google Scholar] [CrossRef]
- Machado, A.S.; Ramos, F.F.; Santos, T.T.O.; Costa, L.E.; Ludolf, F.; Lage, D.P.; Bandeira, R.S.; Tavares, G.S.V.; Oliveira-da-Silva, J.A.; Steiner, B.T.; et al. A New Leishmania Hypothetical Protein Can Be Used for Accurate Serodiagnosis of Canine and Human Visceral Leishmaniasis and as a Potential Prognostic Marker for Human Disease. Exp. Parasitol. 2020, 216, 107941. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.S.; Ribeiro, P.A.F.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lage, D.P.; Costa, L.E.; Portela, A.S.B.; Carvalho, G.B.; Chávez-Fumagalli, M.A.; et al. Serological Diagnosis and Prognostic of Tegumentary and Visceral Leishmaniasis Using a Conserved Leishmania Hypothetical Protein. Parasitol. Int. 2018, 67, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Dos Santos, A.R.; Vieira Serufo, Â.; Figueiredo, M.M.; Carvalho Godoi, L.; Vitório, J.G.; Marcelino, A.P.; de Avelar, D.M.; Rodrigues, F.T.G.; Machado-Coelho, G.L.L.; Medeiros, F.A.C.; et al. Evaluation of Three Recombinant Proteins for the Development of ELISA and Immunochromatographic Tests for Visceral Leishmaniasis Serodiagnosis. Mem. Inst. Oswaldo Cruz 2019, 114, e180405. [Google Scholar] [CrossRef] [PubMed]
- Abdus Salam, M.; Mamun Huda, M.; Musawwir Khan, M.G.; Shomik, M.S.; Mondal, D. Evidence-Based Diagnostic Algorithm for Visceral Leishmaniasis in Bangladesh. Parasitol. Int. 2021, 80, 102230. [Google Scholar] [CrossRef] [PubMed]
- Saliba, J.W.; Lopes, K.F.; Silva-Pereira, R.A.; Teixeira, L.A.S.; Oliveira, E. Leishmania Infantum Exo-Antigens: Application toward Serological Diagnosis of Visceral Leishmaniasis. Parasitol. Res. 2019, 118, 2317–2323. [Google Scholar] [CrossRef]
- Costa, L.E.; Salles, B.C.S.; Santos, T.T.O.; Ramos, F.F.; Lima, M.P.; Lima, M.I.S.; Portela, Á.S.B.; Chávez-Fumagalli, M.A.; Duarte, M.C.; Menezes-Souza, D.; et al. Antigenicity of Phage Clones and Their Synthetic Peptides for the Serodiagnosis of Canine and Human Visceral Leishmaniasis. Microb. Pathog. 2017, 110, 14–22. [Google Scholar] [CrossRef]
- Oliveira-da-Silva, J.A.; Machado, A.S.; Ramos, F.F.; Tavares, G.S.V.; Lage, D.P.; Ludolf, F.; Steiner, B.T.; Reis, T.A.R.; Santos, T.T.O.; Costa, L.E.; et al. Evaluation of Leishmania Infantum Pyridoxal Kinase Protein for the Diagnosis of Human and Canine Visceral Leishmaniasis. Immunol. Lett. 2020, 220, 11–20. [Google Scholar] [CrossRef]
- Abeijon, C.; Alves, F.; Monnerat, S.; Mbui, J.; Viana, A.G.; Almeida, R.M.; Bueno, L.L.; Fujiwara, R.T.; Campos-Neto, A. Urine-Based Antigen Detection Assay for Diagnosis of Visceral Leishmaniasis Using Monoclonal Antibodies Specific for Six Protein Biomarkers of Leishmania Infantum/Leishmania Donovani. PLoS Neglected Trop. Dis. 2020, 14, e0008246. [Google Scholar] [CrossRef]
- Abeijon, C.; Alves, F.; Monnerat, S.; Wasunna, M.; Mbui, J.; Viana, A.G.; Bueno, L.L.; Siqueira, W.F.; Carvalho, S.G.; Agrawal, N.; et al. Development of a Multiplexed Assay for Detection of Leishmania Donovani and Leishmania Infantum Protein Biomarkers in Urine Samples of Patients with Visceral Leishmaniasis. J. Clin. Microbiol. 2019, 57, 10.1128. [Google Scholar] [CrossRef]
- Braz, R.F.S.; Nascimento, E.T.; Martins, D.R.A.; Wilson, M.E.; Pearson, R.D.; Reed, S.G.; Jeronimo, S.M.B. The Sensitivity and Specificity of Leishmania Chagasi Recombinant K39 Antigen in the Diagnosis of American Visceral Leishmaniasis and in Differentiating Active from Subclinical Infection. Am. J. Trop. Med. Hyg. 2002, 67, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Daprà, F.; Scalone, A.; Mignone, W.; Ferroglio, E.; Mannelli, A.; Biglino, A.; Zanatta, R.; Gradoni, L.; Rosati, S. Validation of a Recombinant Based Antibody ELISA for Diagnosis of Human and Canine Leishmaniasis. J. Immunoass. Immunochem. 2008, 29, 244–256. [Google Scholar] [CrossRef]
- Vallur, A.C.; Tutterrow, Y.L.; Mohamath, R.; Pattabhi, S.; Hailu, A.; Abdoun, A.O.; Ahmed, A.E.; Mukhtar, M.; Salam, M.A.; Almeida, M.L.; et al. Development and Comparative Evaluation of Two Antigen Detection Tests for Visceral Leishmaniasis. BMC Infect. Dis. 2015, 15, 384. [Google Scholar] [CrossRef]
- Vaish, M.; Bhatia, A.; Reed, S.G.; Chakravarty, J.; Sundar, S. Evaluation of RK28 Antigen for Serodiagnosis of Visceral Leishmaniasis in India. Clin. Microbiol. Infect. 2012, 18, 81–85. [Google Scholar] [CrossRef]
- Ghosh, P.; Bhaskar, K.R.H.; Hossain, F.; Khan, M.A.A.; Vallur, A.C.; Duthie, M.S.; Hamano, S.; Salam, M.A.; Huda, M.M.; Khan, M.G.M.; et al. Evaluation of Diagnostic Performance of RK28 ELISA Using Urine for Diagnosis of Visceral Leishmaniasis. Parasites Vectors 2016, 9, 383. [Google Scholar] [CrossRef]
- Vaish, M.; Singh, O.P.; Chakravarty, J.; Sundar, S. RK39 Antigen for the Diagnosis of Visceral Leishmaniasis by Using Human Saliva. Am. J. Trop. Med. Hyg. 2012, 86, 598–600. [Google Scholar] [CrossRef] [PubMed]
- De Doncker, S.; Hutse, V.; Abdellati, S.; Rijal, S.; Singh Karki, B.M.; Decuypere, S.; Jacquet, D.; Le Ray, D.; Boelaert, M.; Koirala, S.; et al. A New PCR-ELISA for Diagnosis of Visceral Leishmaniasis in Blood of HIV-Negative Subjects. Trans. R. Soc. Trop. Med. Hyg. 2005, 99, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.M.; Penido, M.; dos Santos, M.S.; Doro, D.; de Freitas, E.; Michalick, M.S.M.; Grimaldi, G.; Gazzinelli, R.T.; Fernandes, A.P. Improved Canine and Human Visceral Leishmaniasis Immunodiagnosis Using Combinations of Synthetic Peptides in Enzyme-Linked Immunosorbent Assay. PLoS Neglected Trop. Dis. 2012, 6, e1622. [Google Scholar] [CrossRef]
- Maache, M.; Azzouz, S.; Diaz de la Guardia, R.; Alvarez, P.; Gil, R.; de Pablos, L.M.; Osuna, A. Host Humoral Immune Response to Leishmania Lipid-Binding Protein. Parasite Immunol. 2005, 27, 227–234. [Google Scholar] [CrossRef]
- Abeijon, C.; Campos-Neto, A. Potential Non-Invasive Urine-Based Antigen (Protein) Detection Assay to Diagnose Active Visceral Leishmaniasis. PLoS Neglected Trop. Dis. 2013, 7, e2161. [Google Scholar] [CrossRef]
- Fonseca, A.M.; Faria, A.R.; Rodrigues, F.T.G.; Nagem, R.A.P.; Magalhães, R.D.M.; Cunha, J.L.R.; Bartholomeu, D.C.; de Andrade, H.M. Evaluation of Three Recombinant Leishmania Infantum Antigens in Human and Canine Visceral Leishmaniasis Diagnosis. Acta Trop. 2014, 137, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, S.; Chatterjee, M.; Pal, S.; Waller, R.F.; Sundar, S.; McConville, M.J.; Mandal, C. Purification, Characterization of O-Acetylated Sialoglycoconjugates-Specific IgM, and Development of an Enzyme-Linked Immunosorbent Assay for Diagnosis and Follow-up of Indian Visceral Leishmaniasis Patients. Diagn. Microbiol. Infect. Dis. 2004, 50, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, T.M.; Singh, D.P.; Sen, M.R.; Bharti, K.; Sundar, S. Compararative Evaluation of RK9, RK26 and RK39 Antigens in the Serodiagnosis of Indian Visceral Leishmaniasis. J. Infect. Dev. Ctries. 2010, 4, 114–117. [Google Scholar] [CrossRef]
- Galaï, Y.; Chabchoub, N.; Ben-Abid, M.; Ben-Abda, I.; Ben-Alaya-Bouafif, N.; Amri, F.; Aoun, K.; Bouratbine, A. Diagnosis of Mediterranean Visceral Leishmaniasis by Detection of Leishmania Antibodies and Leishmania DNA in Oral Fluid Samples Collected Using an Oracol Device. J. Clin. Microbiol. 2011, 49, 3150–3153. [Google Scholar] [CrossRef] [PubMed]
- Barbosa-De-Deus, R.; Dos Mares-Guia, M.L.; Nunes, A.Z.; Costa, K.M.; Junqueira, R.G.; Mayrink, W.; Genaro, O.; Tavares, C.A.P. Leishmania Major-like Antigen for Specific and Sensitive Serodiagnosis of Human and Canine Visceral Leishmaniasis. Clin. Vaccine Immunol. 2002, 9, 1361–1366. [Google Scholar] [CrossRef]
- Islam, M.Z.; Itoh, M.; Shamsuzzaman, S.M.; Mirza, R.; Matin, F.; Ahmed, I.; Shamsuzzaman Choudhury, A.K.M.; Hossain, M.A.; Qiu, X.-G.; Begam, N.; et al. Diagnosis of Visceral Leishmaniasis by Enzyme-Linked Immunosorbent Assay Using Urine Samples. Clin. Vaccine Immunol. 2002, 9, 789–794. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, S.; Chakravarty, J.; Sundar, S. A Novel 12.6-KDa Protein of Leishmania Donovani for the Diagnosis of Indian Visceral Leishmaniasis. Vector-Borne Zoonotic Dis. 2011, 11, 1359–1364. [Google Scholar] [CrossRef]
- Celeste, B.J.; Arroyo Sanchez, M.C.; Ramos-Sanchez, E.M.; Castro, L.G.M.; Lima Costa, F.A.; Goto, H. Recombinant Leishmania Infantum Heat Shock Protein 83 for the Serodiagnosis of Cutaneous, Mucosal, and Visceral Leishmaniases. Am. J. Trop. Med. Hyg. 2014, 90, 860–865. [Google Scholar] [CrossRef]
- Moreno, E.C.; Melo, M.N.; Lambertucci, J.R.; Serufo, J.C.; Andrade, A.S.R.; Antunes, C.M.F.; Genaro, O.; Carneiro, M. Diagnosing Human Asymptomatic Visceral Leishmaniasis in an Urban Area of the State of Minas Gerais, Using Serological and Molecular Biology Techniques. Rev. Soc. Bras. Med. Trop. 2006, 39, 421–427. [Google Scholar] [CrossRef]
- Lakhal, S.; Mekki, S.; Ben-Abda, I.; Mousli, M.; Amri, F.; Aoun, K.; Bouratbine, A. Evaluation of an Enzyme-Linked Immunosorbent Assay Based on Crude Leishmania Histone Proteins for Serodiagnosis of Human Infantile Visceral Leishmaniasis. Clin. Vaccine Immunol. 2012, 19, 1487–1491. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Chakravarty, J.; Rai, M.; Sundar, S. Identification and Characterization of a Novel Leishmania Donovani Antigen for Serodiagnosis of Visceral Leishmaniasis. Am. J. Trop. Med. Hyg. 2012, 86, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.G.S.; Magalhães, F.B.; Teixeira, M.C.A.; Pereira, A.M.; Pinheiro, C.G.M.; Santos, L.R.; Nascimento, M.B.; Bedor, C.N.G.; Albuquerque, A.L.; Dos-Santos, W.L.C.; et al. Characterization of Novel Leishmania Infantum Recombinant Proteins Encoded by Genes from Five Families with Distinct Capacities for Serodiagnosis of Canine and Human Visceral Leishmaniasis. Am. J. Trop. Med. Hyg. 2011, 85, 1025–1034. [Google Scholar] [CrossRef] [PubMed]
- Kurkjian, K.M.; Vaz, L.E.; Haque, R.; Cetre-Sossah, C.; Akhter, S.; Roy, S.; Steurer, F.; Amann, J.; Ali, M.; Chowdhury, R.; et al. Application of an Improved Method for the Recombinant k 39 Enzyme-Linked Immunosorbent Assay to Detect Visceral Leishmaniasis Disease and Infection in Bangladesh. Clin. Vaccine Immunol. 2005, 12, 1410–1415. [Google Scholar] [CrossRef]
- Fargeas, C.; Hommel, M.; Maingon, R.; Dourado, C.; Monsigny, M.; Mayer, R. Synthetic Peptide-Based Enzyme-Linked Immunosorbent Assay for Serodiagnosis of Visceral Leishmaniasis. J. Clin. Microbiol. 1996, 34, 241–248. [Google Scholar] [CrossRef]
- Silva, L.A.; Romero, H.D.; Nogueira Nascentes, G.A.; Costa, R.T.; Rodrigues, V.; Prata, A. Antileishmania Immunological Tests for Asymptomatic Subjects Living in a Visceral Leishmaniasis-Endemic Area in Brazil. Am. J. Trop. Med. Hyg. 2011, 84, 261–266. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Chakravarty, J.; Sundar, S. Identification and Characterization of a Novel, 37-Kilodalton Leishmania Donovani Antigen for Diagnosis of Indian Visceral Leishmaniasis. Clin. Vaccine Immunol. 2011, 18, 772–775. [Google Scholar] [CrossRef]
- de Assis, T.S.M.; Caligiorne, R.B.; Romero, G.A.S.; Rabello, A. Detection of Leishmania KDNA in Human Serum Samples for the Diagnosis of Visceral Leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1269–1272. [Google Scholar] [CrossRef]
- Lemos, E.M.; Carvalho, S.F.G.; Corey, R.; Dietze, R. Evaluation of a Rapid Test Using Recombinant K39 Antigen in the Diagnosis of Visceral Leishmaniasis in Brazil. Rev. Soc. Bras. Med. Trop. 2003, 36 (Suppl. S2), 36–38. [Google Scholar] [CrossRef] [PubMed]
- Garcia, L.M.; Coelho-Dos-Reis, J.G.A.; Peruhype-Magalhães, V.; Teixeira-Carvalho, A.; Rocha, R.D.R.; Araújo, M.S.S.; Gomes, I.T.; Carvalho, S.F.G.; Dietze, R.; Lemos, E.M.; et al. Anti-Fixed Leishmania Chagasi Promastigotes IgG Antibodies Detected by Flow Cytometry (FC-AFPA-IgG) as a Tool for Serodiagnosis and for Post-Therapeutic Cure Assessment in American Visceral Leishmaniasis. J. Immunol. Methods 2009, 350, 36–45. [Google Scholar] [CrossRef]
- Vallur, A.C.; Reinhart, C.; Mohamath, R.; Goto, Y.; Ghosh, P.; Mondal, D.; Duthie, M.S.; Reed, S.G. Accurate Serodetection of Asymptomatic Leishmania Donovani Infection by Use of Defined Antigens. J. Clin. Microbiol. 2016, 54, 1025–1030. [Google Scholar] [CrossRef]
- Chauhan, I.S.; Shukla, R.; Krishna, S.; Sekhri, S.; Kaushik, U.; Baby, S.; Pal, C.; Siddiqi, M.I.; Sundar, S.; Singh, N. Recombinant Leishmania Rab6 (RLdRab6) Is Recognized by Sera from Visceral Leishmaniasis Patients. Exp. Parasitol. 2016, 170, 135–147. [Google Scholar] [CrossRef]
- Siqueira, W.F.; Viana, A.G.; Reis Cunha, J.L.; Rosa, L.M.; Bueno, L.L.; Bartholomeu, D.C.; Cardoso, M.S.; Fujiwara, R.T. The Increased Presence of Repetitive Motifs in the KDDR-plus Recombinant Protein, a Kinesin-Derived Antigen from Leishmania Infantum, Improves the Diagnostic Performance of Serological Tests for Human and Canine Visceral Leishmaniasis. PLoS Neglected Trop. Dis. 2021, 15, e0009759. [Google Scholar] [CrossRef]
- Figueiredo, M.M.; Dos Santos, A.R.R.; Godoi, L.C.; de Castro, N.S.; de Andrade, B.C.; Sergio, S.A.R.; Jerônimo, S.M.B.; de Oliveira, E.J.; Valencia-Portillo, R.T.; Bezerra, L.M.; et al. Improved Performance of ELISA and Immunochromatographic Tests Using a New Chimeric A2-Based Protein for Human Visceral Leishmaniasis Diagnosis. J. Immunol. Res. 2021, 2021, 5568077. [Google Scholar] [CrossRef] [PubMed]
- Lévêque, M.F.; Battery, E.; Delaunay, P.; Lmimouni, B.E.; Aoun, K.; L’Ollivier, C.; Bastien, P.; Mary, C.; Pomares, C.; Fillaux, J.; et al. Evaluation of Six Commercial Kits for the Serological Diagnosis of Mediterranean Visceral Leishmaniasis. PLoS Neglected Trop. Dis. 2020, 14, e0008139. [Google Scholar] [CrossRef]
- Iqbal, J.; Hira, P.R.; Saroj, G.; Philip, R.; Al-Ali, F.; Madda, P.J.; Sher, A. Imported Visceral Leishmaniasis: Diagnostic Dilemmas and Comparative Analysis of Three Assays. J. Clin. Microbiol. 2002, 40, 475–479. [Google Scholar] [CrossRef]
- Saghrouni, F.; Gaïed-Meksi, S.; Fathallah, A.; Amri, F.; Ach, H.; Guizani, I.; Ben Saïd, M. Immunochromatographic RK39 Strip Test in the Serodiagnosis of Visceral Leishmaniasis in Tunisia. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1273–1278. [Google Scholar] [CrossRef]
- Rezaei, Z.; Pourabbas, B.; Asaei, S.; Kühne, V.; Sepehrpour, S.; Pouladfar, G.; Keihani, N.; Büscher, P. Pediatric Visceral Leishmaniasis: A Retrospective Study to Propose the Diagnostic Tests Algorithm in Southern Iran. Parasitol. Res. 2021, 120, 1447–1453. [Google Scholar] [CrossRef]
- Gallardo, J.A.; Pineda, J.A.; Macías, J.; Torronteras, R.; Lissen, E. Specificity of a Commercial Indirect Immunofluorescence Technique in the Diagnosis of Visceral Leishmaniasis in Patients Infected with HIV-1. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 383. [Google Scholar] [CrossRef] [PubMed]
- Moura, A.S.; de Lopes, H.M.R.O.; Mourão, M.V.A.; Morais, M.H.F. Performance of a Rapid Diagnostic Test for the Detection of Visceral Leishmaniasis in a Large Urban Setting. Rev. Soc. Bras. Med. Trop. 2013, 46, 589–593. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.; Pandey, K.; Das, V.N.R.; Das, S.; Verma, N.; Ranjan, A.; Lal, S.C.; Topno, K.R.; Singh, S.K.; Verma, R.B.; et al. Evaluation of RK-39 Strip Test Using Urine for Diagnosis of Visceral Leishmaniasis in an Endemic Region of India. Am. J. Trop. Med. Hyg. 2013, 88, 222–226. [Google Scholar] [CrossRef]
- Abdus Salam, M. Diagnostic Laboratory Tests for Visceral Leishmaniasis and Exploration of Genotype and Genetic Diversity of Leishmania donovani Isolates from Kalaazar Patients. 2013. RUCL Institucional Repository. Available online: http://rulrepository.ru.ac.bd/handle/123456789/631 (accessed on 27 October 2025).
- Herrera, G.; Castillo, A.; Ayala, M.S.; Flórez, C.; Cantillo-Barraza, O.; Ramirez, J.D. Evaluation of Four Rapid Diagnostic Tests for Canine and Human Visceral Leishmaniasis in Colombia. BMC Infect. Dis. 2019, 19, 747. [Google Scholar] [CrossRef]
- Siripattanapipong, S.; Kato, H.; Tan-Ariya, P.; Mungthin, M.; Leelayoova, S. Comparison of Recombinant Proteins of Kinesin 39, Heat Shock Protein 70, Heat Shock Protein 83, and Glycoprotein 63 for Antibody Detection of Leishmania Martiniquensis Infection. J. Eukaryot. Microbiol. 2017, 64, 820–828. [Google Scholar] [CrossRef]
- Khan, M.G.M.; Bhaskar, K.R.H.; Salam, M.A.; Akther, T.; Pluschke, G.; Mondal, D. Diagnostic Accuracy of Loop-Mediated Isothermal Amplification (LAMP) for Detection of Leishmania DNA in Buffy Coat from Visceral Leishmaniasis Patients. Parasites Vectors 2012, 5, 280. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.G.M.; Bhaskar, K.R.H.; Kikuchi, M.; Salam, M.A.; Akther, T.; Haque, R.; Mondal, D.; Hamano, S. Comparison of PCR-Based Diagnoses for Visceral Leishmaniasis in Bangladesh. Parasitol. Int. 2014, 63, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Basiye, F.L.; Mbuchi, M.; Magiri, C.; Kirigi, G.; Deborggraeve, S.; Schoone, G.J.; Saad, A.A.; El-Safi, S.; Matovu, E.; Wasunna, M.K. Sensitivity and Specificity of the Leishmania OligoC-TesT and NASBA-Oligochromatography for Diagnosis of Visceral Leishmaniasis in Kenya. Trop. Med. Int. Health 2010, 15, 806–810. [Google Scholar] [CrossRef] [PubMed]
- Motazedian, M.; Fakhar, M.; Motazedian, M.H.; Hatam, G.; Mikaeili, F. A Urine-Based Polymerase Chain Reaction Method for the Diagnosis of Visceral Leishmaniasis in Immunocompetent Patients. Diagn. Microbiol. Infect. Dis. 2008, 60, 151–154. [Google Scholar] [CrossRef]
- Silva Pedrosa, C.M.; de Ximenes, R.A.A.; Pinheiro de Almeida, W.A.; da Rocha, E.M.M. Validity of the Polymerase Chain Reaction in the Diagnosis of Clinically Suspected Cases of American Visceral Leishmaniasis. Braz. J. Infect. Dis. 2013, 17, 319–323. [Google Scholar] [CrossRef]
- Salam, M.A.; Mondal, D.; Kabir, M.; Ekram, A.R.M.S.; Haque, R. PCR for Diagnosis and Assessment of Cure in Kala-Azar Patients in Bangladesh. Acta Trop. 2010, 113, 52–55. [Google Scholar] [CrossRef]
- Vaish, M.; Mehrotra, S.; Chakravarty, J.; Sundar, S. Noninvasive Molecular Diagnosis of Human Visceral Leishmaniasis. J. Clin. Microbiol. 2011, 49, 2003–2005. [Google Scholar] [CrossRef]
- Molina, I.; Fisa, R.; Riera, C.; Falcó, V.; Elizalde, A.; Salvador, F.; Crespo, M.; Curran, A.; López-Chejade, P.; Tebar, S.; et al. Ultrasensitive Real-Time PCR for the Clinical Management of Visceral Leishmaniasis in HIV-Infected Patients. Am. J. Trop. Med. Hyg. 2013, 89, 105–110. [Google Scholar] [CrossRef]
- Kaouech, E.; Kallel, K.; Toumi, N.H.; Belhadj, S.; Anane, S.; Babba, H.; Chaker, E. Pediatric Visceral Leishmaniasis Diagnosis in Tunisia: Comparative Study between Optimised PCR Assays and Parasitological Methods. Parasite 2008, 15, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Nuzum, E.; White, F.; Thakur, C.; Dietze, R.; Wages, J.; Grogl, M.; Berman, J. Diagnosis of Symptomatic Visceral Leishmaniasis by Use of the Polymerase Chain Reaction on Patient Blood. J. Infect. Dis. 1995, 171, 751–754. [Google Scholar] [CrossRef]
- Maurya, R.; Singh, R.K.; Kumar, B.; Salotra, P.; Rai, M.; Sundar, S. Evaluation of PCR for Diagnosis of Indian Kala-Azar and Assessment of Cure. J. Clin. Microbiol. 2005, 43, 3038–3041. [Google Scholar] [CrossRef] [PubMed]
- Lachaud, L.; Dereure, J.; Chabbert, E.; Reynes, J.; Mauboussin, J.M.; Oziol, E.; Dedet, J.P.; Bastien, P. Optimized PCR Using Patient Blood Samples for Diagnosis and Follow-up of Visceral Leishmaniasis, with Special Reference to AIDS Patients. J. Clin. Microbiol. 2000, 38, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Deborggraeve, S.; Boelaert, M.; Rijal, S.; De Doncker, S.; Dujardin, J.-C.; Herdewijn, P.; Büscher, P. Diagnostic Accuracy of a New Leishmania PCR for Clinical Visceral Leishmaniasis in Nepal and Its Role in Diagnosis of Disease. Trop. Med. Int. Health 2008, 13, 1378–1383. [Google Scholar] [CrossRef]
- Disch, J.; Maciel, F.C.; de Oliveira, M.C.; Orsini, M.; Rabello, A. Detection of Circulating Leishmania Chagasi DNA for the Non-Invasive Diagnosis of Human Infection. Trans. R. Soc. Trop. Med. Hyg. 2003, 97, 391–395. [Google Scholar] [CrossRef]
- Hossain, F.; Ghosh, P.; Khan, M.A.A.; Duthie, M.S.; Vallur, A.C.; Picone, A.; Howard, R.F.; Reed, S.G.; Mondal, D. Real-Time PCR in Detection and Quantitation of Leishmania Donovani for the Diagnosis of Visceral Leishmaniasis Patients and the Monitoring of Their Response to Treatment. PLoS ONE 2017, 12, e0185606. [Google Scholar] [CrossRef]
- Brustoloni, Y.M.; Lima, R.B.; da Cunha, R.V.; Dorval, M.E.; Oshiro, E.T.; de Oliveira, A.L.L.; Pirmez, C. Sensitivity and Specificity of Polymerase Chain Reaction in Giemsa-Stained Slides for Diagnosis of Visceral Leishmaniasis in Children. Mem. Inst. Oswaldo Cruz 2007, 102, 497–500. [Google Scholar] [CrossRef]
- Eberhardt, E.; Van den Kerkhof, M.; Bulté, D.; Mabille, D.; Van Bockstal, L.; Monnerat, S.; Alves, F.; Mbui, J.; Delputte, P.; Cos, P.; et al. Evaluation of a Pan-Leishmania Spliced-Leader RNA Detection Method in Human Blood and Experimentally Infected Syrian Golden Hamsters. J. Mol. Diagn. 2018, 20, 253–263. [Google Scholar] [CrossRef]
- World Health Organization Ending the Neglect to Attain the Sustainable Development Goals: A Roadmap for Neglected Tropical Diseases 2021–2030. Available online: https://apps.who.int/gb/ebwha/pdf_files/EB150/B150_10-en.pdf (accessed on 7 February 2025).
- Diotallevi, A.; Buffi, G.; Ceccarelli, M.; Neitzke-Abreu, H.C.; Gnutzmann, L.V.; da Costa Lima, M.S.; Di Domenico, A.; De Santi, M.; Magnani, M.; Galluzzi, L. Real-Time PCR to Differentiate among Leishmania (Viannia) Subgenus, Leishmania (Leishmania) Infantum and Leishmania (Leishmania) Amazonensis: Application on Brazilian Clinical Samples. Acta Trop. 2020, 201, 105178. [Google Scholar] [CrossRef]
- Pfaff, A.W.; Candolfi, E. Immune Responses to Protozoan Parasites and Its Relevance to Diagnosis in Immunocompromised Patients. Eur. J. Protistol. 2003, 39, 428–434. [Google Scholar] [CrossRef]
- Shreffler, J.; Huecker, M.R. Diagnostic Testing Accuracy: Sensitivity, Specificity, Predictive Values and Likelihood Ratios; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Canellas, J.V.d.S.; Ritto, F.G.; Rodolico, A.; Aguglia, E.; de Fernandes, G.V.O.; Figueredo, C.M.d.S.; Vettore, M.V. The International Platform of Registered Systematic Review and Meta-Analysis Protocols (INPLASY) at 3 Years: An Analysis of 4,658 Registered Protocols on Inplasy.Com, Platform Features, and Website Statistics. Front. Res. Metrics Anal. 2023, 8, 1–7. [Google Scholar] [CrossRef]
- Romero, G.A.S.; Costa, D.L.; Costa, C.H.N.; de Almeida, R.P.; de Melo, E.V.; de Carvalho, S.F.G.; Rabello, A.; de Carvalho, A.L.; de Sousa, A.Q.; Leite, R.D.; et al. Efficacy and Safety of Available Treatments for Visceral Leishmaniasis in Brazil: A Multicenter, Randomized, Open Label Trial. PLoS Neglected Trop. Dis. 2017, 11, e0005706. [Google Scholar] [CrossRef] [PubMed]





| Parameters | Diagnostic Techniques | ||||||
|---|---|---|---|---|---|---|---|
| LST | ELISA | IFAT | WB | PCR | qPCR | ||
| Number of scientific articles | 5 | 20 | 6 | 3 | 23 | 4 | |
| Number of records | 5 | 60 | 16 | 12 | 36 | 8 | |
| Number of subjects studied | 735 | 3938 | 920 | 571 | 3380 | 332 | |
| Sensitivity | Range (%) | 88.0–99.1 | 40.3–99.3 | 56.6–97.5 | 76.6–98.7 | 8.30–99.2 | 37.5–99.0 |
| Median (%) | 91.7 | 83.3 | 88.1 | 86.3 | 90.6 | 73.8 | |
| 95% CI | 79.0–98.1 | 71.5–91.6 | 74.7–94.1 | 75.2–92.8 | 76.1–94.6 | 58.0–85.2 | |
| χ2 | 9.71 | 620.85 | 115.23 | 52.62 | 401.61 | 59.07 | |
| df | 4 | 59 | 15 | 11 | 35 | 7 | |
| p-value | 0.04 | 2.00 × 10−16 | 2.00 × 10−16 | 2.10 × 10−7 | 2.00 × 10−16 | 2.32 × 10−10 | |
| Specificity | Range (%) | 63.2–95.0 | 13.6–99.7 | 22.7–96.4 | 59.1–99.4 | 41.7–99.6 | 67.6–98.6 |
| Median (%) | 83.4 | 83.3 | 82.0 | 92.4 | 95.1 | 98.3 | |
| 95% CI | 65.5–87.7 | 70.9–90.1 | 60.7–88.7 | 66.2–97.9 | 78.2–99.3 | 85.9–99.9 | |
| χ2 | 18.39 | 688.59 | 143.33 | 38.48 | 334.26 | 36.37 | |
| df | 4 | 59 | 15 | 11 | 35 | 7 | |
| p-value | 0.001 | 2.00 × 10−16 | 2.00 × 10−16 | 6.49 × 10−5 | 2.00 × 10−16 | 6.18 × 10−6 | |
| Correlation between sensitivities and false positive rates | r | 0.284 | −0.284 | 0.043 | 0.111 | 0.194 | −0.557 |
| 95%CI | −0.798–0.933 | −0.502–−0.032 | −0.462–0.528 | −0.494–0.644 | −0.144–0.491 | −0.906–0.242 | |
| LR+ | Median (%) | 5.31 | 5.00 | 4.95 | 11.42 | 15.45 | 47.72 |
| 95% CI | 1.97–7.22 | 2.72–9.17 | 1.48–7.93 | 1.91–47.07 | 2.22–136.88 | 3.04–749.93 | |
| LR− | Median (%) | 0.09 | 0.20 | 0.21 | 0.15 | 0.13 | 0.27 |
| 95% CI | 0.03–0.25 | 0.11–0.49 | 0.11–0.46 | 0.08–0.28 | 0.06–0.34 | 0.16–0.46 | |
| DOR | Median (%) | 192.07 | 41.18 | 32.97 | 98.20 | 113.38 | 159.84 |
| 95% CI | 11.26–3276.10 | 8.50–154.71 | 5.63–130.97 | 15.15–913.66 | 9.89–2119.91 | 9.80–2829.78 | |
| Supplementary Figure | Figures S1 and S2 | Figures S3 and S4 | Figures S5 and S6 | Figures S7 and S8 | Figures S9 and S10 | Figures S11 and S12 | |
| Parameters | Diagnostic Techniques | |||||||
|---|---|---|---|---|---|---|---|---|
| DAT | ELISA | IFAT | RDT | LAMP | PCR | qPCR | ||
| Number of scientific articles | 23 | 58 | 12 | 33 | 3 | 22 | 5 | |
| Number of records | 77 | 143 | 19 | 61 | 5 | 37 | 6 | |
| Number of subjects studied | 10,561 | 15,142 | 4010 | 9633 | 536 | 4839 | 808 | |
| Sensitivity | Range (%) | 47.8–99.8 | 32.2–99.6 | 30.2–98.9 | 19.6–99.9 | 84.6–95.7 | 17.6–99.0 | 72.2–98.8 |
| Median (%) | 93.8 | 93.0 | 82.0 | 89.1 | 90.1 | 89.8 | 92.9 | |
| 95% CI | 85.7–97.5 | 83.1–97.0 | 71.8–88.3 | 81.4–94.0 | 81.4–95.0 | 78.9–95.1 | 85.2–97.0 | |
| χ2 | 947.23 | 2218.86 | 517.19 | 2182.96 | 7.80 | 839.36 | 35.52 | |
| df | 76 | 142 | 18 | 60 | 4 | 36 | 5 | |
| p-value | 2.00 × 10−16 | 2.00 × 10−16 | 2.00 × 10−16 | 2.00 × 10−16 | 0.10 | 2.00 × 10−16 | 1.18 × 10−16 | |
| Specificity | Range (%) | 43.0–99.9 | 26.8–99.7 | 63.3–99.7 | 40.7–99.9 | 99.4–99.5 | 11.9–99.7 | 89.0–99.7 |
| Median (%) | 96.9 | 95.5 | 95.6 | 95.6 | 99.4 | 98.4 | 99.4 | |
| 95% CI | 89.1–99.0 | 83.3–98.4 | 79.1–98.4 | 86.4–98.9 | 94.4–99.9 | 89.3–99.7 | 94.4–99.9 | |
| χ2 | 1802.87 | 2497.12 | 237.41 | 592.85 | 0.03 | 905.85 | 25.07 | |
| df | 76 | 142 | 18 | 60 | 4 | 36 | 5 | |
| p-value | 2.00 × 10−16 | 2.00 × 10−16 | 2.00 × 10−16 | 2.00 × 10−16 | 1.00 | 2.00 × 10−16 | 1.35 × 10−4 | |
| Correlation between sensitivities and false positive rates | r | −0.177 | −0.297 | −0.468 | −0.023 | 0.263 | 0.164 | 0.392 |
| 95%CI | −0.386–0.049 | −0.440–−0.140 | −0.760–−0.017 | −0.273–0.230 | −0.806–0.930 | −0.169–0.463 | −0.616–0.913 | |
| LR+ | Median (%) | 31.50 | 16.75 | 17.92 | 19.70 | 155.00 | 48.62 | 134.00 |
| 95% CI | 6.15–107.95 | 4.30–53.83 | 3.60–50.23 | 5.40–73.09 | 9.78–2457.87 | 4.68–440.52 | 8.44–2127.86 | |
| LR− | Median (%) | 0.07 | 0.08 | 0.18 | 0.11 | 0.10 | 0.12 | 0.07 |
| 95% CI | 0.03–0.16 | 0.03–0.25 | 0.12–0.34 | 0.07–0.20 | 0.05–0.20 | 0.05–0.23 | 0.03–0.19 | |
| DOR | Median (%) | 440.13 | 372.04 | 79.31 | 215.20 | 1854.07 | 510.21 | 1409.21 |
| 95% CI | 71.04–4196.90 | 32.35–2779.15 | 22.19–1081.73 | 39.86–1549.43 | 104.18–32,998.12 | 46.97–6424.00 | 85.50–26,179.10 | |
| Supplementary Figure | Figures S13 and S14 | Figures S15 and S16 | Figures S17 and S18 | Figures S19 and S20 | Figures S21 and S22 | Figures S23 and S24 | Figures S25 and S26 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candia-Puma, M.A.; Roque-Pumahuanca, B.M.; Machaca-Luque, L.Y.; Pola-Romero, L.; Galdino, A.S.; Machado-de-Ávila, R.A.; Cordeiro Giunchetti, R.; Ferraz Coelho, E.A.; Adaui, V.; Chávez-Fumagalli, M.A. Global Landscape of Molecular and Immunological Diagnostic Tests for Human Leishmaniasis: A Systematic Review and Meta-Analysis. Pathogens 2025, 14, 1123. https://doi.org/10.3390/pathogens14111123
Candia-Puma MA, Roque-Pumahuanca BM, Machaca-Luque LY, Pola-Romero L, Galdino AS, Machado-de-Ávila RA, Cordeiro Giunchetti R, Ferraz Coelho EA, Adaui V, Chávez-Fumagalli MA. Global Landscape of Molecular and Immunological Diagnostic Tests for Human Leishmaniasis: A Systematic Review and Meta-Analysis. Pathogens. 2025; 14(11):1123. https://doi.org/10.3390/pathogens14111123
Chicago/Turabian StyleCandia-Puma, Mayron Antonio, Brychs Milagros Roque-Pumahuanca, Laura Yesenia Machaca-Luque, Leydi Pola-Romero, Alexsandro Sobreira Galdino, Ricardo Andrez Machado-de-Ávila, Rodolfo Cordeiro Giunchetti, Eduardo Antonio Ferraz Coelho, Vanessa Adaui, and Miguel Angel Chávez-Fumagalli. 2025. "Global Landscape of Molecular and Immunological Diagnostic Tests for Human Leishmaniasis: A Systematic Review and Meta-Analysis" Pathogens 14, no. 11: 1123. https://doi.org/10.3390/pathogens14111123
APA StyleCandia-Puma, M. A., Roque-Pumahuanca, B. M., Machaca-Luque, L. Y., Pola-Romero, L., Galdino, A. S., Machado-de-Ávila, R. A., Cordeiro Giunchetti, R., Ferraz Coelho, E. A., Adaui, V., & Chávez-Fumagalli, M. A. (2025). Global Landscape of Molecular and Immunological Diagnostic Tests for Human Leishmaniasis: A Systematic Review and Meta-Analysis. Pathogens, 14(11), 1123. https://doi.org/10.3390/pathogens14111123

