Serum Proteomics Reveals Systemic Responses in Didelphis aurita Naturally Infected with Hepatozoon sp.
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Considerations
2.2. Study Area
2.3. Animal Capture, Sample Collection, and Experimental Grouping
2.4. Protein Extraction and Quantification
2.5. Protein Processing by Electrophoresis
2.6. Enzymatic Digestion and Desalting
2.7. Mass Spectrometry
2.8. Mass Spectrometry Data Analysis
2.9. Functional Classification of Proteins
3. Results
3.1. Proteomic Profile Characterization
3.2. Functional Classification of Identified Proteins
3.3. Enrichment of Metabolic Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SDS-PAGE | Sodium dodecyl sulfate–polyacrylamide gel electrophoresis |
| SISBIO | Brazilian Biodiversity Information and Authorization System |
| IBAMA | Brazilian Institute of Environment and Renewable Natural Resources |
| DTT | Dithiothreitol |
| BSA | Bovine serum albumin |
| LC-MS/MS | Liquid chromatography-tandem mass spectrometry |
| FDR | False discovery rate |
| DAVID | Database for Annotation, Visualization and Integrated Discovery |
| GO | Gene Ontology |
| KEGG | Kyoto Encyclopedia of Genes and Genomes |
References
- Rossi, R.; Carmignotto, A.; Brandão de Oliveira, M.; Miranda, C.; Cherem, J. Diversidade e diagnose de espécies de marsupiais brasileiros. In Os Marsupiais do Brasil: Biologia, Ecologia e Conservação; Cáceres, N., Ed.; Editora UFMS: Campo Grande, Brazil, 2012; pp. 23–72. [Google Scholar]
- Carvalho do Nascimento, C.; Horta, M.C. Didelphimorphia (Gambá e Cuíca). In Tratado de Animais Selvagens: Medicina Veterinária; Cubas, Z.S., Silva, J.C.R., Eds.; Roca: São Paulo, Brazil, 2014; pp. 682–706. [Google Scholar]
- Santorini, R.; Lessa, L.; Astúa, D. Alimentação, nutrição e adaptações alimentares de marsupiais brasileiros. In Os Marsupiais do Brasil: Biologia, Ecologia e Conservação; Cáceres, N., Ed.; Editora UFMS: Campo Grande, Brazil, 2012; pp. 385–406. [Google Scholar]
- Drabeck, D.H.; Rucavado, A.; Hingst-Zaher, E.; Cruz, Y.P.; Dean, A.M.; Jansa, S.A. Resistance of South American opossums to vWF-binding venom C-type lectins. Toxicon 2020, 178, 92–99. [Google Scholar] [CrossRef]
- Wang, Z.; Hubbard, G.B.; Clubb, F.J.; Vandeberg, J.L. The laboratory opossum (Monodelphis domestica) as a natural mammalian model for human cancer research. Int. J. Clin. Exp. Pathol. 2009, 2, 286–299. [Google Scholar]
- Vandeberg, J.L. The gray short-tailed opossum (Monodelphis domestica) as a model didelphid species for genetic research. Aust. J. Zool. 1989, 37, 235–247. [Google Scholar] [CrossRef]
- Bermúdez, S.E.; Gottdenker, N.; Krishnvajhala, A.; Fox, A.; Wilder, H.K.; González, K.; Smith, D.; López, M.; Perea, M.; Rigg, C.; et al. Synanthropic mammals as potential hosts of tick-borne pathogens in Panama. PLoS ONE 2017, 12, e0169047. [Google Scholar] [CrossRef]
- Melo, A.L.T.; Aguiar, D.M.D.; Spolidorio, M.G.; Yoshinari, N.H.; Matushima, E.R.; Labruna, M.B.; Horta, M.C. Serological evidence of exposure to tick-borne agents in opossums (Didelphis spp.) in the state of São Paulo, Brazil. Rev. Bras. Parasitol. Vet. 2016, 25, 348–352. [Google Scholar] [CrossRef]
- Horta, M.C.; Sabatini, G.S.; Moraes-Filho, J.; Ogrzewalska, M.; Canal, R.B.; Pacheco, R.C.; Martins, T.F.; Matushima, E.R.; Labruna, M.B. Experimental infection of the opossum Didelphis aurita by Rickettsia felis, Rickettsia bellii, and Rickettsia parkeri and evaluation of the transmission of the infection to ticks Amblyomma cajennense and Amblyomma dubitatum. Vector-Borne Zoonotic Dis. 2010, 10, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Barros-Battesti, D.M.; Arzua, M.; Bechara, G.H. Carrapatos de Importância Médico-Veterinária da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies; Instituto Butantan: São Paulo, Brazil, 2006. [Google Scholar]
- Al-Quraishy, S.; Abdel-Ghaffar, F.; Dkhil, M.A.; Abdel-Gaber, R. Haemogregarines and criteria for identification. Animals 2021, 11, 170. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.; Irwin, P.; Ryan, U. Haemoprotozoan parasites. In Current Therapy in Medicine of Australian Mammals; Vogelnest, L., Portas, T., Eds.; CSIRO: Melbourne, Australia, 2019; pp. 379–392. [Google Scholar]
- Clark, P. Haemoparasites of Australian Mammals; CSIRO: Melbourne, Australia, 2004. [Google Scholar]
- Silva, M.R.L.; Fornazari, F.; Demoner, L.D.C.; Teixeira, C.R.; Langoni, H.; O’Dwyer, L.H. Didelphis albiventris naturally infected with Hepatozoon canis in southeastern Brazil. Ticks Tick-Borne Dis. 2017, 8, 878–881. [Google Scholar] [CrossRef] [PubMed]
- André, M.R.; Calchi, A.C.; Perles, L.; Gonçalves, L.R.; Uccella, L.; Lemes, J.R.B.; Nantes, W.A.G.; Santos, F.M.; Porfírio, G.E.D.O.; Barros-Battesti, D.M.; et al. Novel Ehrlichia and Hepatozoon genotypes in white-eared opossums (Didelphis albiventris) and associated ticks from Brazil. Ticks Tick-Borne Dis. 2022, 13, 102022. [Google Scholar] [CrossRef]
- Orozco, A.M.O.; Bento, L.D.; Souto, P.C.; Girardi, F.M.; Nogueira, B.C.F.; Yamatogi, R.S.; Campos, A.K.; Cray, C.; Montiani-Ferreira, F.; Collere, F.C.M.; et al. ‘Candidatus Mycoplasma haemoalbiventris’ and tick-borne pathogens in black-eared opossum (Didelphis aurita) from southeastern Brazil. Microorganisms 2022, 10, 1955. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Liebler, D.C.; Ham, A.-J.L. Spin filter–based sample preparation for shotgun proteomics. Nat. Methods 2009, 6, 785. [Google Scholar] [CrossRef]
- Resjö, S.; Brus, M.; Ali, A.; Meijer, H.J.G.; Sandin, M.; Govers, F.; Levander, F.; Grenville-Briggs, L.; Andreasson, E. Proteomic analysis of Phytophthora infestans reveals the importance of cell wall proteins in pathogenicity. Mol. Cell. Proteom. 2017, 16, 1958–1971. [Google Scholar] [CrossRef]
- Neuhoff, V.; Stamm, R.; Eibl, H. Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: A systematic analysis. Electrophoresis 1985, 6, 427–448. [Google Scholar] [CrossRef]
- Shevchenko, A.; Tomas, H.; Havli, J.; Olsen, J.V.; Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 2006, 1, 2856–2860. [Google Scholar] [CrossRef]
- Ma, B.; Zhang, K.; Hendrie, C.; Liang, C.; Li, M.; Doherty-Kirby, A.; Lajoie, G. PEAKS: Powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2003, 17, 2337–2342. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the ExPASy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar] [CrossRef]
- Camus, M.; Hirschi, S.; Prevot, G.; Chenard, M.-P.; Mal, H.; Stern, M.; Reynaud-Gaubert, M.; Gilhodes, J.; Burlet-Schiltz, O.; Brousset, P.; et al. Proteomic evidence of specific IGKV1-8 association with cystic lung light chain deposition disease. Blood 2019, 133, 2741–2744. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wang, C.; Sun, X.; Guo, M. Proteomic analysis of whey proteins in the colostrum and mature milk of Xinong Saanen goats. J. Dairy Sci. 2020, 103, 1164–1174. [Google Scholar] [CrossRef] [PubMed]
- Simioni, S.S.; Ribeiro, F.S.; Pardini, R.; Püttker, T. Human–wildlife interactions in urban areas: Case of Didelphis aurita. In American and Australasian Marsupials; Cáceres, N., Dickman, C.R., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–19. [Google Scholar] [CrossRef]
- Xu, X.; Hu, J.; Xue, H.; Hu, Y.; Liu, Y.; Lin, G.; Liu, L.; Xu, R. Applications of human and bovine serum albumins in biomedical engineering: A review. Int. J. Biol. Macromol. 2023, 253, 126914. [Google Scholar] [CrossRef]
- Daraghmeh, D.N.; Karaman, R. The redox process in red blood cells: Balancing oxidants and antioxidants. Antioxidants 2024, 14, 36. [Google Scholar] [CrossRef]
- Ferrari, G.; Girardi, M.; Cagnacci, F.; Devineau, O.; Tagliapietra, V. First record of Hepatozoon spp. in Alpine wild rodents: Implications and perspectives for transmission dynamics across the food web. Microorganisms 2022, 10, 712. [Google Scholar] [CrossRef] [PubMed]
- Úngari, L.P.; Netherlands, E.C.; Santos, A.L.Q.; Viana, L.A.; Da Silva, R.J.; O’Dwyer, L.H. Is there only one species of Hepatozoon infecting Brazilian caimans? Integrative taxonomy unveiling the parasite’s diversity. Braz. J. Biol. 2024, 84, e282989. [Google Scholar] [CrossRef]
- Vilar, R.; Fish, R.J.; Casini, A.; Neerman-Arbez, M. Fibrin (ogen) in human disease: Both friend and foe. Haematologica 2020, 105, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Smith, S.; Morrissey, J. Polyphosphate accelerates factor V activation by factor XIa. Thromb. Haemost. 2015, 113, 599–604. [Google Scholar] [CrossRef]
- Perucci, L.O.; Vago, J.P.; Miles, L.A.; Sousa, L.P. Crosstalk between the plasminogen/plasmin system and inflammation resolution. J. Thromb. Haemost. 2023, 21, 2666–2678. [Google Scholar] [CrossRef] [PubMed]
- Silva-Filho, J.L.; Dos-Santos, J.C.; Judice, C.; Beraldi, D.; Venugopal, K.; Lima, D.; Nakaya, H.I.; De Paula, E.V.; Lopes, S.C.; Lacerda, M.V.; et al. Total parasite biomass but not peripheral parasitaemia is associated with endothelial and haematological perturbations in Plasmodium vivax patients. Elife 2021, 10, e71351. [Google Scholar] [CrossRef]
- Diosdado, A.; Simón, F.; Serrat, J.; González-Miguel, J. Interaction of helminth parasites with the haemostatic system of their vertebrate hosts: A scoping review. Parasite 2022, 29, 35. [Google Scholar] [CrossRef]
- Yeo, T.W.; Weinberg, J.B.; Lampah, D.A.; Kenangalem, E.; Bush, P.; Chen, Y.; Price, R.N.; Young, S.; Zhang, H.Y.; Millington, D.; et al. Glycocalyx breakdown is associated with severe disease and fatal outcome in Plasmodium falciparum malaria. Clin. Infect. Dis. 2019, 69, 1712–1720. [Google Scholar] [CrossRef]
- Rezaie, A.R.; Giri, H. Anticoagulant and signaling functions of antithrombin. J. Thromb. Haemost. 2020, 18, 3142–3153. [Google Scholar] [CrossRef]
- Schlömmer, C.; Brandtner, A.; Bachler, M. Antithrombin and its role in host defense and inflammation. Int. J. Mol. Sci. 2021, 22, 4283. [Google Scholar] [CrossRef]
- McCarthy, C.; Saldova, R.; Wormald, M.R.; Rudd, P.M.; McElvaney, N.G.; Reeves, E.P. The role and importance of glycosylation of acute phase proteins with focus on alpha-1 antitrypsin in acute and chronic inflammatory conditions. J. Proteome Res. 2014, 13, 3131–3143. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Huang, R.; Li, Y.; Yang, C.; Gui, B.; Li, Y.; Liao, L.; Zhu, Z.; Wang, Y. Grass carp SERPINA1 inhibits GCRV infection through degrading CF2. Front. Immunol. 2022, 13, 969517. [Google Scholar] [CrossRef] [PubMed]
- Cabral-Pacheco, G.A.; Garza-Veloz, I.; Castruita-De La Rosa, C.; Ramirez-Acuña, J.M.; Perez-Romero, B.A.; Guerrero-Rodriguez, J.F.; Martinez-Avila, N.; Martinez-Fierro, M.L. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 2020, 21, 9739. [Google Scholar] [CrossRef]
- Burster, T.; Mustafa, Z.; Myrzakhmetova, D.; Zhanapiya, A.; Zimecki, M. Hindrance of the proteolytic activity of neutrophil-derived serine proteases by serine protease inhibitors as a management of cardiovascular diseases and chronic inflammation. Front. Chem. 2021, 9, 784003. [Google Scholar] [CrossRef]
- Fraering, J.; Salnot, V.; Gautier, E.-F.; Ezinmegnon, S.; Argy, N.; Peoc’h, K.; Manceau, H.; Alao, J.; Guillonneau, F.; Migot-Nabias, F.; et al. Infected erythrocytes and plasma proteomics reveal a specific protein signature of severe malaria. EMBO Mol. Med. 2024, 16, 319–333. [Google Scholar] [CrossRef]
- Mule, S.N.; Manchola, N.C.; De Oliveira, G.S.; Pereira, M.; Magalhães, R.D.M.; Teixeira, A.A.; Colli, W.; Alves, M.J.M.; Palmisano, G. Proteome-wide modulation of S-nitrosylation in Trypanosoma cruzi trypomastigotes upon interaction with the host extracellular matrix. J. Proteom. 2021, 231, 104020. [Google Scholar] [CrossRef] [PubMed]
- Aggio, J.B.; Vedam, V.V.; Nisimura, L.M.; Da Silva, R.V.; Lovo-Martins, M.I.; Borges, B.S.; Mörking, P.A.; Batista, M.; Marchini, F.K.; Yamada-Ogatta, S.F.; et al. Trypanosomatid extracellular vesicles as potential immunogens for Chagas disease. Int. J. Mol. Sci. 2025, 26, 1544. [Google Scholar] [CrossRef]
- Oliveira, I.H.R.; Kjeldsen, F.; Melo-Braga, M.N.; Verano-Braga, T.; De Andrade, H.M. Assessing the effects of Leishmania (Leishmania) infantum and L. (L.) amazonensis infections in macrophages using a quantitative proteome approach. Exp. Parasitol. 2022, 243, 108413. [Google Scholar] [CrossRef] [PubMed]
- León, I.R.; Da Costa Neves-Ferreira, A.G.; Da Rocha, S.L.G.; De Oliveira Trugilho, M.R.; Perales, J.; Valente, R.H. Using mass spectrometry to explore the neglected glycan moieties of the antiophidic proteins DM43 and DM64. Proteomics 2012, 12, 2753–2765. [Google Scholar] [CrossRef]
- Raziyeva, K.; Kim, Y.; Zharkinbekov, Z.; Kassymbek, K.; Jimi, S.; Saparov, A. Immunology of acute and chronic wound healing. Biomolecules 2021, 11, 700. [Google Scholar] [CrossRef]
- Morgado, F.N.; Da Silva, A.V.A.; Porrozzi, R. Infectious diseases and the lymphoid extracellular matrix remodeling: A focus on conduit system. Cells 2020, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Dutta Gupta, S.; Pal, N.; Ta, M. Vitronectin regulates focal adhesion turnover and migration of human placenta-derived MSCs under nutrient stress. Eur. J. Cell Biol. 2025, 104, 151477. [Google Scholar] [CrossRef] [PubMed]
- To, W.S.; Midwood, K.S. Plasma and cellular fibronectin: Distinct and independent functions during tissue repair. Fibrogenesis Tissue Repair 2011, 4, 21. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, A.D. The extracellular matrix. In Encyclopedia of Cell Biology; Elsevier: Amsterdam, The Netherlands, 2016; pp. 694–703. [Google Scholar] [CrossRef]
- McDonnell, T.; Wincup, C.; Buchholz, I.; Pericleous, C.; Giles, I.; Ripoll, V.; Cohen, H.; Delcea, M.; Rahman, A. The role of beta-2-glycoprotein I in health and disease associating structure with function: More than just APS. Blood Rev. 2020, 39, 100610. [Google Scholar] [CrossRef]
- Dutra, F.F.; Bozza, M.T. Heme on innate immunity and inflammation. Front. Pharmacol. 2014, 5, 115. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Vijayarangam, V.; Deviparasakthi, M.K.G.; Palaniyandi, T.; Ravi, M.; Natarajan, S.; Viswanathan, S.; Baskar, G.; Wahab, M.R.A.; Surendran, H. Implications and progression of peroxiredoxin 2 (PRDX2) in various human diseases. Pathol. Res. Pract. 2024, 254, 155080. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, G.; Ye, Z.; Hu, G.; Ge, S.; Luo, K.; Li, Z. Feasibility of serum peroxiredoxin 2 as a biochemical indicator for reflecting severity and prognosticating stroke-associated pneumonia, early neurological deterioration and poor neurological outcomes in acute supratentorial intracerebral hemorrhage: An observational analytical clinical study. Neuropsychiatr. Dis. Treat. 2025, 21, 621–640. [Google Scholar] [CrossRef]
- Sundar, I.K.; Li, D.; Rahman, I. Proteomic analysis of plasma-derived extracellular vesicles in smokers and patients with chronic obstructive pulmonary disease. ACS Omega 2019, 4, 10649–10661. [Google Scholar] [CrossRef]
- Catitti, G.; Cufaro, M.C.; De Bellis, D.; Cicalini, I.; Vespa, S.; Tonelli, F.; Miscia, G.; Secondi, L.; Simeone, P.; De Laurenzi, V.; et al. Extracellular vesicles in regenerative processes associated with muscle injury recovery of professional athletes undergoing submaximal strength rehabilitation. Int. J. Mol. Sci. 2022, 23, 14913. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, S.; Johnston, S.D.; Nouwens, A.; Pini, T. Dynamic sperm proteome remodeling during epididymal maturation in a marsupial, Macropus giganteus. Biol. Reprod. 2025, 113, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Assil, S.; Webster, B.; Dreux, M. Regulation of the host antiviral state by intercellular communications. Viruses 2015, 7, 4707–4733. [Google Scholar] [CrossRef] [PubMed]





| N° | Protein ID | Protein | MW (kDa) | Relative Abundance (%) | Group |
|---|---|---|---|---|---|
| 1 | A0A0B4J1D9 | Ig-like domain-containing protein | 12.1 | 2.0 | P, N |
| 2 | A0A1L2DW88 | C3-beta-c | 184.4 | 4.0 | P, N |
| 3 | A0A5F8G1Y1 | Histone H2B | 13.9 | 0.0 | N |
| 4 | A0A5F8G575 | Fibronectin | 263.6 | 1.0 | P |
| 5 | A0A5F8G606 | Glutathione peroxidase | 26.4 | 2.0 | P, N |
| 6 | XP_001364584 | Predicted: serotransferrin | 80.2 | 3.0 | P, N |
| 7 | A0A5F8GEV2 | Transgelin | 22.3 | 0.0 | N |
| 8 | XP_007487476 | PREDICTED: complement component C7 | 88.1 | 1.0 | P |
| 9 | XP_007496052 | PREDICTED: complement factor I isoform X1 | 66.0 | 1.0 | P |
| 10 | XP_001373317 | PREDICTED: fetuin-B | 41.7 | 0.0 | P |
| 11 | A0A5F8GU72 | Serpin family F member 2 | 51.7 | 1.0 | P |
| 12 | A0A5F8GVK6 | C4a anaphylatoxin | 198.8 | 4.0 | P, N |
| 13 | A0A5F8GVX1 | Carboxypeptidase B2 | 47.7 | 0.0 | P |
| 14 | A0A5F8H055 | Thioredoxin domain-containing protein | 22.0 | 0.0 | N |
| 15 | A0A5F8H3J0 | Ig-like domain-containing protein | 21.6 | 1.0 | N |
| 16 | XP_007500536 | PREDICTED: inter-alpha-trypsin inhibitor heavy chain H3 | 93.1 | 1.0 | P |
| 17 | A0A5F8H662 | Gc-globulin | 56.2 | 0.0 | P |
| 18 | XP_001380249 | PREDICTED: inter-alpha-trypsin inhibitor heavy chain H4-like isoform X2 | 71.0 | 1.0 | P |
| 19 | A0A5F8H890 | SERPIN domain-containing protein | 47.8 | 0.0 | P |
| 20 | A0A5F8H8I8 | Inter-alpha-trypsin inhibitor heavy chain 1 | 96.4 | 0.0 | P |
| 21 | A0A5F8HA42 | Apolipoprotein M | 22.1 | 2.0 | N |
| 22 | XP_007491633 | PREDICTED: apolipoprotein E | 33.5 | 1.0 | P, N |
| 23 | A0A5F8HGF5 | Actin-depolymerizing factor | 81.4 | 0.0 | N |
| 24 | A0A5F8HGH4 | Antithrombin-III | 56.8 | 2.0 | P |
| 25 | XP_001380867 | PREDICTED: apolipoprotein A-I | 30.2 | 1.0 | N |
| 26 | F6QPV8 | Apolipoprotein H | 38.6 | 0.0 | P |
| 27 | F6QTH2 | SMB domain-containing protein | 53.6 | 1.0 | P |
| 28 | F6R154 | C-type lectin domain-containing protein | 22.8 | 1.0 | N |
| 29 | XP_001371162 | PREDICTED: ceruloplasmin isoform X2 | 120.2 | 2.0 | P |
| 30 | XP_001380874 | PREDICTED: apolipoprotein A-IV | 42.5 | 0.0 | P |
| 31 | F6UL60 | Vitamin K-dependent protein | 76.1 | 0.0 | P |
| 32 | XP_001369603 | PREDICTED: complement C5 | 185.3 | 2.0 | P |
| 33 | F6UX07 | Clusterin | 56.2 | 1.0 | P |
| 34 | F6W869 | Coagulation factor V | 243.8 | 0.0 | P |
| 35 | F6X165 | ADF-H domain-containing protein | 16.0 | 0.0 | N |
| 36 | XP_001375856 | PREDICTED: proteoglycan 4 isoform X1 | 142.4 | 0.0 | N |
| 37 | F6YK01 | Serpin family D member 1 | 70.6 | 1.0 | P |
| 38 | F6Z008 | Angiotensin 1-10 | 52.6 | 0.0 | P |
| 39 | F7A2F0 | Lysozyme | 16.9 | 0.0 | N |
| 40 | F7B2I8 | Receptor protein-tyrosine kinase | 135.3 | 0.0 | P |
| 41 | XP_007481728 | PREDICTED: LOW QUALITY PROTEIN: C-reactive protein | 10.3 | 0.0 | N |
| 42 | XP_007503682 | PREDICTED: alpha-2-macroglobulin isoform X1 | 165.6 | 3.0 | P |
| 43 | XP_001371538 | PREDICTED: complement component C6 isoform X1 | 105.4 | 0.0 | P |
| 44 | XP_001364858 | PREDICTED: serum albumin | 68.1 | 13.0 | P, N |
| 45 | F7BVM7 | Haptoglobin | 45.9 | 1.0 | P, N |
| 46 | XP_001370529 | PREDICTED: complement C1s subcomponent | 77.6 | 0.0 | P |
| 47 | XP_001365240 | PREDICTED: inter-alpha-trypsin inhibitor heavy chain H2 isoform X1 | 107.5 | 0.0 | P |
| 48 | F7CJ60 | Fibrinogen alpha chain | 91.2 | 1.0 | P, N |
| 49 | F7DMM7 | Profilin | 15.0 | 1.0 | N |
| 50 | F7DSP2 | Coagulation factor X | 58.0 | 0.0 | P |
| 51 | F7EI80 | CN hydrolase domain-containing protein | 56.2 | 0.0 | P |
| 52 | F7EVI4 | NAD(P)-bd_dom domain-containing protein | 22.0 | 0.0 | P, N |
| 53 | F7F243 | Plasminogen | 91.2 | 2.0 | P |
| 54 | F7F3D5 | C3/C5 convertase | 159.7 | 1.0 | P |
| 55 | F7FD92 | Hemopexin | 50.3 | 1.0 | P |
| 56 | F7FPF7 | Serum amyloid A protein | 14.3 | 1.0 | N |
| 57 | F7FZ45 | Peptidyl-prolyl cis-trans isomerase | 17.9 | 0.0 | N |
| 58 | F7G7P1 | Complement component C9 | 70.4 | 1.0 | P |
| 59 | K7E0U3 | Retinol-binding protein | 23.9 | 0.0 | N |
| 60 | P01976 | Hemoglobin subunit alpha | 15.3 | 8.0 | P, N |
| 61 | P02109 | Hemoglobin subunit beta-M | 16.2 | 10.0 | P, N |
| 62 | P11025 | Hemoglobin subunit epsilon-M | 16.3 | 1.0 | N |
| 63 | P49141 | Transthyretin | 16.4 | 1.0 | P, N |
| 64 | P82957 | Venom metalloproteinase inhibitor DM43 | 32.4 | 7.0 | P, N |
| 65 | Q03044 | Alpha-1-antiproteinase | 46.4 | 2.0 | P, N |
| 66 | Q8HYX5 | Venom metalloproteinase inhibitor DM43b | 34.6 | 4.0 | P, N |
| 67 | Q8MIS3 | Venom myotoxin inhibitor DM64 | 56.0 | 7.0 | P, N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orozco, A.M.O.; Ramirez-Lopez, C.J.; Bento, L.D.; Souto, P.C.; Girardi, F.M.; Castro, V.R.; Barros, E.; Oliveira, J.V.G.d.; Carvalho, R.P.R.; Campos, A.K.; et al. Serum Proteomics Reveals Systemic Responses in Didelphis aurita Naturally Infected with Hepatozoon sp. Pathogens 2025, 14, 1042. https://doi.org/10.3390/pathogens14101042
Orozco AMO, Ramirez-Lopez CJ, Bento LD, Souto PC, Girardi FM, Castro VR, Barros E, Oliveira JVGd, Carvalho RPR, Campos AK, et al. Serum Proteomics Reveals Systemic Responses in Didelphis aurita Naturally Infected with Hepatozoon sp. Pathogens. 2025; 14(10):1042. https://doi.org/10.3390/pathogens14101042
Chicago/Turabian StyleOrozco, Andrés Mauricio Ortega, Camilo Jose Ramirez-Lopez, Lucas Drumond Bento, Pollyanna Cordeiro Souto, Fabrícia Modolo Girardi, Veronica Rodrigues Castro, Edvaldo Barros, Joao Vitor Gonçalves de Oliveira, Renner Philipe Rodrigues Carvalho, Artur Kanadani Campos, and et al. 2025. "Serum Proteomics Reveals Systemic Responses in Didelphis aurita Naturally Infected with Hepatozoon sp." Pathogens 14, no. 10: 1042. https://doi.org/10.3390/pathogens14101042
APA StyleOrozco, A. M. O., Ramirez-Lopez, C. J., Bento, L. D., Souto, P. C., Girardi, F. M., Castro, V. R., Barros, E., Oliveira, J. V. G. d., Carvalho, R. P. R., Campos, A. K., & Fonseca, L. A. d. (2025). Serum Proteomics Reveals Systemic Responses in Didelphis aurita Naturally Infected with Hepatozoon sp. Pathogens, 14(10), 1042. https://doi.org/10.3390/pathogens14101042

