HSV-1 as a Potential Driver of Alzheimer’s Disease
Abstract
1. Introduction
2. Epidemiology
2.1. Medical Burden of HSV-1
2.2. Alzheimer’s Disease and Other Dementias
2.2.1. Frontotemporal Dementia
2.2.2. Lewy Body Dementia
2.2.3. Vascular Dementia
3. HSV-1 Pathogenesis
Transmission, Infection, Latency, and Reactivation
4. Alzheimer’s Disease
4.1. Alzheimer’s Disease Inheritance
4.2. Alzheimer’s Disease Pathogenesis
5. The Association Between HSV-1 Infection and AD Development
5.1. Neuroinflammation
5.2. Oxidative Stress
5.3. Other Inflammatory Mechanisms
5.4. Autophagy
5.5. Metabolic Changes
5.6. Small Non-Coding RNAs (sncRNAs) and Their Potential Roles in AD
5.7. AD Patients Are More Permissive to HSV-1
6. Models to Examine HSV-1 in Dementia
6.1. In Vitro Models (Cell Culture Systems)
6.1.1. Cells Cultured in a Monolayer (2D Cell Culture)
6.1.2. Three-Dimensional Cultures and Organoids
6.2. Animal Model
6.3. Microfluidic Model (Brain-on-a-Chip)
6.4. Biomarkers for HSV-1-Induced AD
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Herpes Simplex Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus (accessed on 16 June 2025).
- Saleh, D.; Yarrarapu, S.N.S.; Sharma, S. Herpes Simplex Type 1. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gopinath, D.; Koe, K.H.; Maharajan, M.K.; Panda, S. A Comprehensive Overview of Epidemiology, Pathogenesis and the Management of Herpes Labialis. Viruses 2023, 15, 225. [Google Scholar] [CrossRef] [PubMed]
- Cernik, C.; Gallina, K.; Brodell, R.T. The Treatment of Herpes Simplex Infections: An Evidence-Based Review. Arch. Intern. Med. 2008, 168, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Piacentini, R.; De Chiara, G.; Li Puma, D.D.; Ripoli, C.; Marcocci, M.E.; Garaci, E.; Palamara, A.T.; Grassi, C. HSV-1 and Alzheimer’s disease: More than a hypothesis. Front. Pharmacol. 2014, 5, 97. [Google Scholar] [CrossRef] [PubMed]
- Harfouche, M.; AlMukdad, S.; Alareeki, A.; Osman, A.M.M.; Gottlieb, S.; Rowley, J.; Abu-Raddad, L.J.; Looker, K.J. Estimated Global and Regional Incidence and Prevalence of Herpes Simplex Virus Infections and Genital Ulcer Disease in 2020: Mathematical Modelling Analyses. Sex Transm Infect 2025, 101, 214–223. [Google Scholar] [CrossRef]
- McQuillan, G.; Paulose-Ram, R. Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Persons Aged 14–49: United States, 2015–2016. NCHS Data Brief. 2018, 2018, 1–8. [Google Scholar]
- Forbes, H.; Warne, B.; Doelken, L.; Brenner, N.; Waterboer, T.; Luben, R.; Wareham, N.J.; Warren-Gash, C.; Gkrania-Klotsas, E. Risk Factors for Herpes Simplex Virus Type-1 Infection and Reactivation: Cross-Sectional Studies among EPIC-Norfolk Participants. PLoS ONE 2019, 14, e0215553. [Google Scholar] [CrossRef]
- Myles, M.E.; Alack, C.; Manino, P.M.; Reish, E.R.; Higaki, S.; Maruyama, K.; Mallakin, A.; Azcuy, A.; Barker, S.; Ragan, F.A.; et al. Nicotine Applied by Transdermal Patch Induced HSV-1 Reactivation and Ocular Shedding in Latently Infected Rabbits. J. Ocul. Pharmacol. Ther. 2003, 19, 121–133. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Wang, H.; Sun, M.; Zhu, Y.; Zhou, L. Impact of Tobacco Use on Herpes Simplex Virus Infections: Findings from a National Survey. J. Med. Virol. 2024, 96, e70042. [Google Scholar] [CrossRef]
- Dementia. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 17 June 2025).
- Fang, M.; Hu, J.; Weiss, J.; Knopman, D.S.; Albert, M.; Windham, B.G.; Walker, K.A.; Sharrett, A.R.; Gottesman, R.F.; Lutsey, P.L.; et al. Lifetime Risk and Projected Burden of Dementia. Nat. Med. 2025, 31, 772–776. [Google Scholar] [CrossRef]
- Risk and Future Burden of Dementia in the United States|National Institutes of Health (NIH). Available online: https://www.nih.gov/news-events/nih-research-matters/risk-future-burden-dementia-united-states (accessed on 17 June 2025).
- Shemesh, O.A.; Reis, R.; Hyde, V. Herpes Simplex Virus-1 Proteins as Drivers for Alzheimer’s Disease Pathologies. Alzheimer’s Dement. 2023, 19, e064819. [Google Scholar] [CrossRef]
- Liu, Y.; Johnston, C.; Jarousse, N.; Fletcher, S.P.; Iqbal, S. Association between Herpes Simplex Virus Type 1 and the Risk of Alzheimer’s Disease: A Retrospective Case-Control Study. BMJ Open 2025, 15, e093946. [Google Scholar] [CrossRef]
- Wozniak, M.A.; Frost, A.L.; Itzhaki, R.F. Alzheimer’s Disease-Specific Tau Phosphorylation Is Induced by Herpes Simplex Virus Type 1. J. Alzheimer’s Dis. 2009, 16, 341–350. [Google Scholar] [CrossRef]
- Romeo, M.A.; Faggioni, A.; Cirone, M. Could Autophagy Dysregulation Link Neurotropic Viruses to Alzheimer’s Disease? Neural Regen. Res. 2019, 14, 1503–1506. [Google Scholar] [CrossRef]
- Greaves, C.V.; Rohrer, J.D. An Update on Genetic Frontotemporal Dementia. J. Neurol. 2019, 266, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Haskins, W.; Ting, M.Y.L.; Wood, J.; Leong, C.; Crump-Haill, O.; Bovill, I.; Janssen, J.; Carswell, C.; Mizoguchi, R. An Atypical Presentation of Frontotemporal Dementia. Quant. Imaging Med. Surg. 2019, 9, 1891–1895. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; Kwong, L.K.; Truax, A.C.; Vanmassenhove, B.; Kretzschmar, H.A.; Van Deerlin, V.M.; Clark, C.M.; Grossman, M.; Miller, B.L.; Trojanowski, J.Q.; et al. TDP-43-Positive White Matter Pathology in Frontotemporal Lobar Degeneration with Ubiquitin-Positive Inclusions. J. Neuropathol. Exp. Neurol. 2007, 66, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Shim, Y.; Park, M.; Kim, J. Increased Incidence of Dementia Following Herpesvirus Infection in the Korean Population. Medicine 2022, 101, e31116. [Google Scholar] [CrossRef] [PubMed]
- Chia, R.; Sabir, M.S.; Bandres-Ciga, S.; Saez-Atienzar, S.; Reynolds, R.H.; Gustavsson, E.; Walton, R.L.; Ahmed, S.; Viollet, C.; Ding, J.; et al. Genome Sequencing Analysis Identifies New Loci Associated with Lewy Body Dementia and Provides Insights into Its Genetic Architecture. Nat. Genet. 2021, 53, 294–303. [Google Scholar] [CrossRef]
- Haider, A.; Spurling, B.C.; Sánchez-Manso, J.C. Lewy Body Dementia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sanders, A.E.; Schoo, C.; Kalish, V.B. Vascular Dementia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Herpes Simplex Virus (HSV): Types Symptoms, & Treatment. Available online: https://my.clevelandclinic.org/health/diseases/22855-herpes-simplex (accessed on 18 June 2025).
- Piperi, E.; Papadopoulou, E.; Georgaki, M.; Dovrat, S.; Bar Illan, M.; Nikitakis, N.G.; Yarom, N. Management of Oral Herpes Simplex Virus Infections: The Problem of Resistance. A Narrative Review. Oral. Dis. 2024, 30, 877–894. [Google Scholar] [CrossRef]
- Madavaraju, K.; Koganti, R.; Volety, I.; Yadavalli, T.; Shukla, D. Herpes Simplex Virus Cell Entry Mechanisms: An Update. Front. Cell Infect. Microbiol. 2021, 10, 617578. [Google Scholar] [CrossRef]
- Bearer, E.L.; Breakefield, X.O.; Schuback, D.; Reese, T.S.; LaVail, J.H. Retrograde Axonal Transport of Herpes Simplex Virus: Evidence for a Single Mechanism and a Role for Tegument. Proc. Natl. Acad. Sci. USA 2000, 97, 8146–8150. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Viejo-Borbolla, A. Pathogenesis and Virulence of Herpes Simplex Virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, C.S.; Merle, L.; Bubak, A.N.; Baxter, B.D.; Gentile Polese, A.; Colon-Reyes, K.; Vang, S.; Hassell, J.E.; Bruce, K.D.; Nagel, M.A.; et al. Olfactory and Trigeminal Routes of HSV-1 CNS Infection with Regional Microglial Heterogeneity. J. Virol. 2024, 98, e0096824. [Google Scholar] [CrossRef] [PubMed]
- Sawtell, N.M.; Thompson, R.L. Comparison of Herpes Simplex Virus Reactivation in Ganglia In Vivo and in Explants Demonstrates Quantitative and Qualitative Differences. J. Virol. 2004, 78, 7784–7794. [Google Scholar] [CrossRef]
- Cliffe, A.R.; Coen, D.M.; Knipe, D.M. Kinetics of Facultative Heterochromatin and Polycomb Group Protein Association with the Herpes Simplex Viral Genome during Establishment of Latent Infection. mBio 2013, 4, e00590-12. [Google Scholar] [CrossRef]
- Sutter, J.; Hope, J.L.; Wigdahl, B.; Miller, V.; Krebs, F.C. Immunological Control of Herpes Simplex Virus Type 1 Infection: A Non-Thermal Plasma-Based Approach. Viruses 2025, 17, 600. [Google Scholar] [CrossRef]
- Miranda-Saksena, M.; Denes, C.E.; Diefenbach, R.J.; Cunningham, A.L. Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses 2018, 10, 92. [Google Scholar] [CrossRef]
- Salazar, S.; Luong, K.T.Y.; Koyuncu, O.O. Cell Intrinsic Determinants of Alpha Herpesvirus Latency and Pathogenesis in the Nervous System. Viruses 2023, 15, 2284. [Google Scholar] [CrossRef]
- Rosato, P.C.; Katzenell, S.; Pesola, J.M.; North, B.; Coen, D.M.; Leib, D.A. Neuronal IFN Signaling Is Dispensable for the Establishment of HSV-1 Latency. Virology 2016, 497, 323–327. [Google Scholar] [CrossRef]
- Barnett, E.M.; Jacobsen, G.; Evans, G.; Cassell, M.; Perlman, S. Herpes Simplex Encephalitis in the Temporal Cortex and Limbic System after Trigeminal Nerve Inoculation. J. Infect. Dis. 1994, 169, 782–786. [Google Scholar] [CrossRef]
- Ichihashi, M.; Nagai, H.; Matsunaga, K. Sunlight Is an Important Causative Factor of Recurrent Herpes Simplex. Cutis 2004, 74, 14–18. [Google Scholar]
- Padgett, D.A.; Sheridan, J.F.; Dorne, J.; Berntson, G.G.; Candelora, J.; Glaser, R. Social Stress and the Reactivation of Latent Herpes Simplex Virus Type 1. Proc. Natl. Acad. Sci. USA 1998, 95, 7231–7235. [Google Scholar] [CrossRef] [PubMed]
- Chida, Y.; Mao, X. Does Psychosocial Stress Predict Symptomatic Herpes Simplex Virus Recurrence? A Meta-Analytic Investigation on Prospective Studies. Brain Behav. Immun. 2009, 23, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Geng, S.; Suo, Y.; Wei, X.; Cai, Q.; Wu, B.; Zhou, X.; Shi, Y.; Wang, B. Critical Role of Regulatory T Cells in the Latency and Stress-Induced Reactivation of HSV-1. Cell Rep. 2018, 25, 2379–2389.e3. [Google Scholar] [CrossRef] [PubMed]
- Marcocci, M.E.; Napoletani, G.; Protto, V.; Kolesova, O.; Piacentini, R.; Li Puma, D.D.; Lomonte, P.; Grassi, C.; Palamara, A.T.; De Chiara, G. Herpes Simplex Virus-1 in the Brain: The Dark Side of a Sneaky Infection. Trends in Microbiology 2020, 28, 808–820. [Google Scholar] [CrossRef]
- De Chiara, G.; Piacentini, R.; Fabiani, M.; Mastrodonato, A.; Marcocci, M.E.; Limongi, D.; Napoletani, G.; Protto, V.; Coluccio, P.; Celestino, I.; et al. Recurrent Herpes Simplex Virus-1 Infection Induces Hallmarks of Neurodegeneration and Cognitive Deficits in Mice. PLoS Pathog. 2019, 15, e1007617. [Google Scholar] [CrossRef]
- Apolipoprotein E—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/neuroscience/apolipoprotein-e (accessed on 18 June 2025).
- Licher, S.; Ahmad, S.; Karamujić-Čomić, H.; Voortman, T.; Leening, M.J.G.; Ikram, M.A.; Ikram, M.K. Genetic Predisposition, Modifiable Risk Factor Profile and Long-Term Dementia Risk in the General Population. Nat. Med. 2019, 25, 1364–1369. [Google Scholar] [CrossRef]
- Ak, A.K.; Bhutta, B.S.; Mendez, M.D. Herpes Simplex Encephalitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Sweigart, B.; Andersen, S.L.; Gurinovich, A.; Cosentino, S.; Schupf, N.; Perls, T.T.; Sebastiani, P. APOE E2/E2 Is Associated with Slower Rate Of Cognitive Decline With Age. J. Alzheimers Dis. 2021, 83, 853–860. [Google Scholar] [CrossRef]
- Mol, M.O.; van der Lee, S.J.; Hulsman, M.; Pijnenburg, Y.A.L.; Scheltens, P.; Seelaar, H.; van Swieten, J.C.; Kaat, L.D.; Holstege, H.; van Rooij, J.G.J.; et al. Mapping the Genetic Landscape of Early-Onset Alzheimer’s Disease in a Cohort of 36 Families. Alzheimer’s Res. Ther. 2022, 14, 77. [Google Scholar] [CrossRef]
- Salehi, A.; Ashford, J.W.; Mufson, E.J. The Link between Alzheimer’s Disease and Down Syndrome. A Historical Perspective. Curr. Alzheimer Res. 2016, 13, 2–6. [Google Scholar] [CrossRef]
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, Diagnostics, and Therapeutics for Alzheimer’s Disease: Breaking the Memory Barrier. Ageing Res. Rev. 2024, 101, 102481. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, S.-W.; Lee, J.-Y.; Kim, H.; Rhim, J.H.; Park, S.; Lee, J.-Y.; Son, H.; Kim, Y.K.; Lee, S.H. Differences in Brain Morphology between Hydrocephalus Ex Vacuo and Idiopathic Normal Pressure Hydrocephalus. Psychiatry Investig. 2021, 18, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Hirano Body—An Overview|ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/medicine-and-dentistry/hirano-body (accessed on 20 June 2025).
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. Int. J. Nanomed. 2019, 14, 5541–5554. [Google Scholar] [CrossRef] [PubMed]
- Clavaguera, F.; Hench, J.; Goedert, M.; Tolnay, M. Invited Review: Prion-like Transmission and Spreading of Tau Pathology. Neuropathol. Appl. Neurobiol. 2015, 41, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Höglund, K.; Kern, S.; Zettergren, A.; Börjesson-Hansson, A.; Zetterberg, H.; Skoog, I.; Blennow, K. Preclinical Amyloid Pathology Biomarker Positivity: Effects on Tau Pathology and Neurodegeneration. Transl. Psychiatry 2017, 7, e995. [Google Scholar] [CrossRef]
- Soldan, A.; Pettigrew, C.; Fagan, A.M.; Schindler, S.E.; Moghekar, A.; Fowler, C.; Li, Q.-X.; Collins, S.J.; Carlsson, C.; Asthana, S.; et al. ATN Profiles among Cognitively Normal Individuals and Longitudinal Cognitive Outcomes. Neurology 2019, 92, e1567–e1579. [Google Scholar] [CrossRef]
- Arvanitakis, Z.; Shah, R.C.; Bennett, D.A. Diagnosis and Management of Dementia: A Review. JAMA 2019, 322, 1589–1599. [Google Scholar] [CrossRef]
- Bortolotti, D.; Gentili, V.; Rotola, A.; Caselli, E.; Rizzo, R. HHV-6A Infection Induces Amyloid-Beta Expression and Activation of Microglial Cells. Alzheimer’s Res. Ther. 2019, 11, 104. [Google Scholar] [CrossRef]
- Barnes, L.L.; Capuano, A.W.; Aiello, A.E.; Turner, A.D.; Yolken, R.H.; Torrey, E.F.; Bennett, D.A. Cytomegalovirus Infection and Risk of Alzheimer Disease in Older Black and White Individuals. J. Infect. Dis. 2015, 211, 230–237. [Google Scholar] [CrossRef]
- Gao, J.; Feng, L.; Wu, B.; Xia, W.; Xie, P.; Ma, S.; Liu, H.; Meng, M.; Sun, Y. The Association between Varicella Zoster Virus and Dementia: A Systematic Review and Meta-Analysis of Observational Studies. Neurol. Sci. 2024, 45, 27–36. [Google Scholar] [CrossRef]
- Chemparthy, D.T.; Kannan, M.; Gordon, L.; Buch, S.; Sil, S. Alzheimer’s-Like Pathology at the Crossroads of HIV-Associated Neurological Disorders. Vaccines 2021, 9, 930. [Google Scholar] [CrossRef]
- Hosseini, S.; Michaelsen-Preusse, K.; Schughart, K.; Korte, M. Long-Term Consequence of Non-Neurotropic H3N2 Influenza A Virus Infection for the Progression of Alzheimer’s Disease Symptoms. Front. Cell. Neurosci. 2021, 15, 643650. [Google Scholar] [CrossRef]
- Qi, X.; Yuan, S.; Ding, J.; Sun, W.; Shi, Y.; Xing, Y.; Liu, Z.; Yao, Y.; Fu, S.; Sun, B.; et al. Emerging Signs of Alzheimer-like Tau Hyperphosphorylation and Neuroinflammation in the Brain Post Recovery from COVID-19. Aging Cell 2024, 23, e14352. [Google Scholar] [CrossRef]
- Wozniak, M.A.; Mee, A.P.; Itzhaki, R.F. Herpes Simplex Virus Type 1 DNA Is Located within Alzheimer’s Disease Amyloid Plaques. J. Pathol. 2009, 217, 131–138. [Google Scholar] [CrossRef]
- Kuhns, L. Antiviral Treatment for Herpes Simplex Linked to Alzheimer Disease Prevention. Available online: https://www.infectiousdiseaseadvisor.com/news/antivirals-for-herpes-simplex-virus-may-prevent-alzheimer-disease/ (accessed on 8 August 2025).
- Laval, K.; Enquist, L.W. The Potential Role of Herpes Simplex Virus Type 1 and Neuroinflammation in the Pathogenesis of Alzheimer’s Disease. Front. Neurol. 2021, 12, 658695. [Google Scholar] [CrossRef] [PubMed]
- Hickman, S.E.; Allison, E.K.; El Khoury, J. Microglial Dysfunction and Defective Beta-Amyloid Clearance Pathways in Aging Alzheimer’s Disease Mice. J. Neurosci. 2008, 28, 8354–8360. [Google Scholar] [CrossRef] [PubMed]
- Robust Expression of TNF-α, IL-1β, RANTES, and IP-10 by Human Microglial Cells during Nonproductive Infection with Herpes Simplex Virus|Journal of NeuroVirology. Available online: https://link.springer.com/article/10.1080/13550280152403254 (accessed on 18 June 2025).
- Patrycy, M.; Chodkowski, M.; Krzyzowska, M. Role of Microglia in Herpesvirus-Related Neuroinflammation and Neurodegeneration. Pathogens 2022, 11, 809. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria Dysfunction in the Pathogenesis of Alzheimer’s Disease: Recent Advances. Mol. Neurodegener. 2020, 15, 30. [Google Scholar] [CrossRef]
- HUANG, W.-J.; ZHANG, X.; CHEN, W.-W. Role of Oxidative Stress in Alzheimer’s Disease. Biomed. Rep. 2016, 4, 519–522. [Google Scholar] [CrossRef]
- Khodamoradi, S.; Khodaei, F.; Mohammadian, T.; Ferdousi, A.; Rafiee, F. Oxidative Stress, Inflammation, and Apoptosis in Alzheimer’s Disease Associated with HSV-1 and CMV Coinfection. Virol. J. 2025, 22, 169. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Han, J.; Zhang, T.; Li, S.; Hou, Y.; Su, H.; Han, F.; Zhang, C. Herpes Simplex Virus 1 Accelerates the Progression of Alzheimer’s Disease by Modulating Microglial Phagocytosis and Activating NLRP3 Pathway. J. Neuroinflammation 2024, 21, 176. [Google Scholar] [CrossRef] [PubMed]
- Blevins, H.M.; Xu, Y.; Biby, S.; Zhang, S. The NLRP3 Inflammasome Pathway: A Review of Mechanisms and Inhibitors for the Treatment of Inflammatory Diseases. Front. Aging Neurosci. 2022, 14, 879021. [Google Scholar] [CrossRef] [PubMed]
- Kodi, T.; Sankhe, R.; Gopinathan, A.; Nandakumar, K.; Kishore, A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J. Neuroimmune Pharmacol. 2024, 19, 7. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Liu, J.; Zhang, H.; Lu, W. HSV-1 Immune Escapes in Microglia by down-Regulating GM130 to Inhibit TLR3-Mediated Innate Immune Responses. Virol. J. 2024, 21, 219. [Google Scholar] [CrossRef]
- Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 Inflammasome Activation Drives Tau Pathology. Nature 2019, 575, 669–673. [Google Scholar] [CrossRef]
- Hu, J.; Tang, L.; Cheng, J.; Zhou, T.; Li, Y.; Chang, J.; Zhao, Q.; Guo, J.-T. Hepatitis B Virus Nucleocapsid Uncoating: Biological Consequences and Regulation by Cellular Nucleases. Emerg. Microbes Infect. 2021, 10, 852–864. [Google Scholar] [CrossRef]
- Harris, S.A.; Harris, E.A. Molecular Mechanisms for Herpes Simplex Virus Type 1 Pathogenesis in Alzheimer’s Disease. Front. Aging Neurosci. 2018, 10, 48. [Google Scholar] [CrossRef]
- Cheng, S.-B.; Ferland, P.; Webster, P.; Bearer, E.L. Herpes Simplex Virus Dances with Amyloid Precursor Protein While Exiting the Cell. PLoS ONE 2011, 6, e17966. [Google Scholar] [CrossRef]
- Piacentini, R.; Civitelli, L.; Ripoli, C.; Marcocci, M.E.; De Chiara, G.; Garaci, E.; Azzena, G.B.; Palamara, A.T.; Grassi, C. HSV-1 Promotes Ca2+-Mediated APP Phosphorylation and Aβ Accumulation in Rat Cortical Neurons. Neurobiol. Aging 2011, 32, 2323.e13–2323.e26. [Google Scholar] [CrossRef]
- Bourgade, K.; Frost, E.H.; Dupuis, G.; Witkowski, J.M.; Laurent, B.; Calmettes, C.; Ramassamy, C.; Desroches, M.; Rodrigues, S.; Fülöp, T. Interaction Mechanism Between the HSV-1 Glycoprotein B and the Antimicrobial Peptide Amyloid-β. J. Alzheimers Dis. Rep. 2022, 6, 599–606. [Google Scholar] [CrossRef]
- Protto, V.; Miteva, M.T.; Iannuzzi, F.; Marcocci, M.E.; Li Puma, D.D.; Piacentini, R.; Belli, M.; Sansone, L.; Pietrantoni, A.; Grassi, C.; et al. HSV-1 Infection Induces Phosphorylated Tau Propagation among Neurons via Extracellular Vesicles. mBio 2024, 15, e01522-24. [Google Scholar] [CrossRef]
- Boland, B.; Kumar, A.; Lee, S.; Platt, F.M.; Wegiel, J.; Yu, W.H.; Nixon, R.A. Autophagy Induction and Autophagosome Clearance in Neurons: Relationship to Autophagic Pathology in Alzheimer’s Disease. J. Neurosci. 2008, 28, 6926–6937. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, D.M.; Lee, J.-H.; Kumar, A.; Lee, S.; Orenstein, S.J.; Nixon, R.A. Autophagy Failure in Alzheimer’s Disease and the Role of Defective Lysosomal Acidification. Eur. J. Neurosci. 2013, 37, 1949–1961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Yang, X.; Song, Y.-Q.; Tu, J. Autophagy in Alzheimer’s Disease Pathogenesis: Therapeutic Potential and Future Perspectives. Ageing Res. Rev. 2021, 72, 101464. [Google Scholar] [CrossRef] [PubMed]
- Santana, S.; Recuero, M.; Bullido, M.J.; Valdivieso, F.; Aldudo, J. Herpes Simplex Virus Type I Induces the Accumulation of Intracellular β-Amyloid in Autophagic Compartments and the Inhibition of the Non-Amyloidogenic Pathway in Human Neuroblastoma Cells. Neurobiol. Aging 2012, 33, 430.e19–430.e33. [Google Scholar] [CrossRef] [PubMed]
- Orvedahl, A.; Alexander, D.; Tallóczy, Z.; Sun, Q.; Wei, Y.; Zhang, W.; Burns, D.; Leib, D.A.; Levine, B. HSV-1 ICP34.5 Confers Neurovirulence by Targeting the Beclin 1 Autophagy Protein. Cell Host Microbe 2007, 1, 23–35. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Y.; Zhou, Y.; Shu, Z.; Cheng, Z.; Brenner, C.; Feng, P. Mechanistic Insights into the Role of Herpes Simplex Virus 1 in Alzheimer’s Disease. Front. Aging Neurosci. 2023, 15, 1245904. [Google Scholar] [CrossRef]
- Leclerc, S.; Gupta, A.; Ruokolainen, V.; Chen, J.-H.; Kunnas, K.; Ekman, A.A.; Niskanen, H.; Belevich, I.; Vihinen, H.; Turkki, P.; et al. Progression of Herpesvirus Infection Remodels Mitochondrial Organization and Metabolism. PLoS Pathog. 2024, 20, e1011829. [Google Scholar] [CrossRef]
- Vastag, L.; Koyuncu, E.; Grady, S.L.; Shenk, T.E.; Rabinowitz, J.D. Divergent Effects of Human Cytomegalovirus and Herpes Simplex Virus-1 on Cellular Metabolism. PLoS Pathog. 2011, 7, e1002124. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Dai, Z.; Zhang, Q.; Xu, Y.; Chen, Y.; Jiang, Z.; Huang, W.; Sun, H. The UL16 Protein of HSV-1 Promotes the Metabolism of Cell Mitochondria by Binding to ANT2 Protein. Sci. Rep. 2021, 11, 14001. [Google Scholar] [CrossRef]
- Manivanh, R.; Mehrbach, J.; Charron, A.J.; Grassetti, A.; Cerón, S.; Taylor, S.A.; Cabrera, J.R.; Gerber, S.; Leib, D.A. Herpes Simplex Virus 1 ICP34.5 Alters Mitochondrial Dynamics in Neurons. J. Virol. 2020, 94, e01784-19. [Google Scholar] [CrossRef]
- Cymerys, J.; Chodkowski, M.; Słońska, A.; Krzyżowska, M.; Bańbura, M.W. Disturbances of Mitochondrial Dynamics in Cultured Neurons Infected with Human Herpesvirus Type 1 and Type 2. J. Neurovirol. 2019, 25, 765–782. [Google Scholar] [CrossRef] [PubMed]
- Kramer, T.; Enquist, L.W. Alphaherpesvirus Infection Disrupts Mitochondrial Transport in Neurons. Cell Host Microbe 2012, 11, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, R.; Rahmani, F.; Rezaei, N. MicroRNA in Alzheimer’s Disease Revisited: Implications for Major Neuropathological Mechanisms. Rev. Neurosci. 2018, 29, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Wang, Q.; Lee, I.; Ren, J.; Lee, Y.S. tRNA-Derived RNA Fragments: A New Family of Regulatory Molecules Controlling Respiratory Syncytial Virus Replication. (P1401). J. Immunol. 2013, 190, 57.12. [Google Scholar] [CrossRef]
- Leung, A.K.L.; Sharp, P.A. MicroRNA Functions in Stress Responses. Mol. Cell 2010, 40, 205–215. [Google Scholar] [CrossRef]
- Wu, W.; Lee, I.; Spratt, H.; Fang, X.; Bao, X. tRNA-Derived Fragments in Alzheimer’s Disease: Implications for New Disease Biomarkers and Neuropathological Mechanisms. J. Alzheimers Dis. 2021, 79, 793–806. [Google Scholar] [CrossRef]
- Wu, W.; Shen, A.; Lee, I.; Miranda-Morales, E.G.; Spratt, H.; Pappolla, M.A.; Fang, X.; Bao, X. Changes of tRNA-Derived Fragments by Alzheimer’s Disease in Cerebrospinal Fluid and Blood Serum. J. Alzheimers Dis. 2023, 96, 1285–1304. [Google Scholar] [CrossRef]
- Elder, J.J.H.; Papadopoulos, R.; Hayne, C.K.; Stanley, R.E. The Making and Breaking of tRNAs by Ribonucleases. Trends Genet. 2024, 40, 511–525. [Google Scholar] [CrossRef]
- Wang, Q.; Lee, I.; Ren, J.; Ajay, S.S.; Lee, Y.S.; Bao, X. Identification and Functional Characterization of tRNA-Derived RNA Fragments (tRFs) in Respiratory Syncytial Virus Infection. Mol. Ther. 2013, 21, 368–379. [Google Scholar] [CrossRef]
- Choi, E.-J.; Wu, W.; Zhang, K.; Lee, I.; Kim, I.-H.; Lee, Y.S.; Bao, X. ELAC2, an Enzyme for tRNA Maturation, Plays a Role in the Cleavage of a Mature tRNA to Produce a tRNA-Derived RNA Fragment During Respiratory Syncytial Virus Infection. Front. Mol. Biosci. 2020, 7, 609732. [Google Scholar] [CrossRef]
- Choi, E.-J.; Wu, W.; Zhang, K.; Yuan, X.; Deng, J.; Ismail, D.; Buck, D.L.; Thomason, K.S.; Garofalo, R.P.; Zhang, S.; et al. Parent tRNA Modification Status Determines the Induction of Functional tRNA-Derived RNA by Respiratory Syncytial Virus Infection. Viruses 2022, 15, 57. [Google Scholar] [CrossRef]
- Suzuki, T. The Expanding World of tRNA Modifications and Their Disease Relevance. Nat. Rev. Mol. Cell Biol. 2021, 22, 375–392. [Google Scholar] [CrossRef]
- Umbach, J.L.; Kramer, M.F.; Jurak, I.; Karnowski, H.W.; Coen, D.M.; Cullen, B.R. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 2008, 454, 780–783. [Google Scholar] [CrossRef]
- Itzhaki, R.F.; Lin, W.-R.; Shang, D.; Wilcock, G.K.; Faragher, B.; Jamieson, G.A. Herpes Simplex Virus Type 1 in Brain and Risk of Alzheimer’s Disease. Lancet 1997, 349, 241–244. [Google Scholar] [CrossRef]
- Mangold, C.A.; Szpara, M.L. Persistent Infection with Herpes Simplex Virus 1 and Alzheimer’s Disease—A Call to Study How Variability in Both Virus and Host May Impact Disease. Viruses 2019, 11, 966. [Google Scholar] [CrossRef]
- Araya, K.; Watson, R.; Khanipov, K.; Golovko, G.; Taglialatela, G. Increased Risk of Dementia Associated with Herpes Simplex Virus Infections: Evidence from a Retrospective Cohort Study Using U.S. Electronic Health Records. J. Alzheimers Dis. 2025, 104, 393–402. [Google Scholar] [CrossRef]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Odum, J.; Shunnarah, J.G.; Austin, N.; Kaddoumi, A. Blood–Brain Barrier Breakdown in Alzheimer’s Disease: Mechanisms and Targeted Strategies. Int. J. Mol. Sci. 2023, 24, 16288. [Google Scholar] [CrossRef]
- Thellman, N.M.; Botting, C.; Madaj, Z.; Triezenberg, S.J. An Immortalized Human Dorsal Root Ganglion Cell Line Provides a Novel Context To Study Herpes Simplex Virus 1 Latency and Reactivation. J. Virol. 2017, 91, e00080-17. [Google Scholar] [CrossRef]
- Hyde, V.R.; Zhou, C.; Fernandez, J.R.; Chatterjee, K.; Ramakrishna, P.; Lin, A.; Fisher, G.W.; Çeliker, O.T.; Caldwell, J.; Bender, O.; et al. Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer’s disease. Cell Rep. 2025, 44, 115109. [Google Scholar] [CrossRef]
- Salgado, B.; Sastre, I.; Bullido, M.J.; Aldudo, J. Herpes Simplex Virus Type 1 Induces AD-like Neurodegeneration Markers in Human Progenitor and Differentiated ReNcell VM Cells. Microorganisms 2023, 11, 1205. [Google Scholar] [CrossRef]
- Albaret, M.A.; Textoris, J.; Dalzon, B.; Lambert, J.; Linard, M.; Helmer, C.; Hacot, S.; Ghayad, S.E.; Ferréol, M.; Mertani, H.C.; et al. HSV-1 Cellular Model Reveals Links between Aggresome Formation and Early Step of Alzheimer’s Disease. Transl. Psychiatry 2023, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.G.; Bloom, D.C. Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency In Vitro. J. Virol. 2019, 93, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Pourchet, A.; Modrek, A.S.; Placantonakis, D.G.; Mohr, I.; Wilson, A.C. Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons. Pathogens 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Canova, P.N.; Charron, A.J.; Leib, D.A. Models of Herpes Simplex Virus Latency. Viruses 2024, 16, 747. [Google Scholar] [CrossRef]
- Wozniak, M.A.; Itzhaki, R.F.; Shipley, S.J.; Dobson, C.B. Herpes Simplex Virus Infection Causes Cellular Beta-Amyloid Accumulation and Secretase Upregulation. Neurosci. Lett. 2007, 429, 95–100. [Google Scholar] [CrossRef]
- Chiara, G.D.; Marcocci, M.E.; Civitelli, L.; Argnani, R.; Piacentini, R.; Ripoli, C.; Manservigi, R.; Grassi, C.; Garaci, E.; Palamara, A.T. APP Processing Induced by Herpes Simplex Virus Type 1 (HSV-1) Yields Several APP Fragments in Human and Rat Neuronal Cells. PLoS ONE 2010, 5, e13989. [Google Scholar] [CrossRef]
- Deng, Y.; Lin, Y.; Chen, S.; Xiang, Y.; Chen, H.; Qi, S.; Oh, H.S.; Das, B.; Komazin-Meredith, G.; Pesola, J.M.; et al. Neuronal miR-9 Promotes HSV-1 Epigenetic Silencing and Latency by Repressing Oct-1 and Onecut Family Genes. Nat. Commun. 2024, 15, 1991. [Google Scholar] [CrossRef]
- Jiang, X.; Alami Chentoufi, A.; Hsiang, C.; Carpenter, D.; Osorio, N.; BenMohamed, L.; Fraser, N.W.; Jones, C.; Wechsler, S.L. The Herpes Simplex Virus Type 1 Latency-Associated Transcript Can Protect Neuron-Derived C1300 and Neuro2A Cells from Granzyme B-Induced Apoptosis and CD8 T-Cell Killing. J. Virol. 2011, 85, 2325–2332. [Google Scholar] [CrossRef]
- Fruhwürth, S.; Reinert, L.S.; Öberg, C.; Sakr, M.; Henricsson, M.; Zetterberg, H.; Paludan, S.R. TREM2 Is Down-Regulated by HSV1 in Microglia and Involved in Antiviral Defense in the Brain. Sci. Adv. 2023, 9, eadf5808. [Google Scholar] [CrossRef]
- Hogk, I.; Kaufmann, M.; Finkelmeier, D.; Rupp, S.; Burger-Kentischer, A. An In Vitro HSV-1 Reactivation Model Containing Quiescently Infected PC12 Cells. Biores Open Access 2013, 2, 250–257. [Google Scholar] [CrossRef]
- Mei, J.; Niu, C. Protective and Reversal Effects of Conserved Dopamine Neurotrophic Factor on PC12 Cells Following 6-Hydroxydopamine Administration. Mol. Med. Rep. 2015, 12, 297–302. [Google Scholar] [CrossRef][Green Version]
- Kroeg, M.v.d.; Bansal, S.; Unkel, M.; Smeenk, H.; Kushner, S.A.; de Vrij, F.M. Human Adherent Cortical Organoids in a Multiwell Format. eLife 2024, 13, RP98340. [Google Scholar] [CrossRef]
- Wenzel, T.J.; Desjarlais, J.D.; Mousseau, D.D. Human Brain Organoids Containing Microglia That Have Arisen Innately Adapt to a β-Amyloid Challenge Better than Those in Which Microglia Are Integrated by Co-Culture. Stem Cell Res. Ther. 2024, 15, 258. [Google Scholar] [CrossRef] [PubMed]
- Qiao, H.; Zhao, W.; Guo, M.; Zhu, L.; Chen, T.; Wang, J.; Xu, X.; Zhang, Z.; Wu, Y.; Chen, P. Cerebral Organoids for Modeling of HSV-1-Induced-Amyloid β Associated Neuropathology and Phenotypic Rescue. Int. J. Mol. Sci. 2022, 23, 5981. [Google Scholar] [CrossRef] [PubMed]
- Cairns, D.M.; Smiley, B.M.; Smiley, J.A.; Khorsandian, Y.; Kelly, M.; Itzhaki, R.F.; Kaplan, D.L. Repetitive Injury Induces Phenotypes Associated with Alzheimer’s Disease by Reactivating HSV-1 in a Human Brain Tissue Model. Sci. Signal. 2025, 18, eado6430. [Google Scholar] [CrossRef]
- D’Aiuto, L.; Caldwell, J.K.; Edwards, T.G.; Zhou, C.; McDonald, M.L.; Di Maio, R.; Joel, W.A.; Hyde, V.R.; Wallace, C.T.; Watkins, S.C.; et al. Phosphorylated-Tau Associates with HSV-1 Chromatin and Correlates with Nuclear Speckles Decondensation in Low-Density Host Chromatin Regions. Neurobiol. Dis. 2025, 206, 106804. [Google Scholar] [CrossRef]
- Abrahamson, E.E.; Zheng, W.; Muralidaran, V.; Ikonomovic, M.D.; Bloom, D.C.; Nimgaonkar, V.L.; D’Aiuto, L. Modeling Aβ42 Accumulation in Response to Herpes Simplex Virus 1 Infection: 2D or 3D? J. Virol. 2021, 95, e02219-20. [Google Scholar] [CrossRef]
- Protto, V.; Tramutola, A.; Fabiani, M.; Marcocci, M.E.; Napoletani, G.; Iavarone, F.; Vincenzoni, F.; Castagnola, M.; Perluigi, M.; Di Domenico, F.; et al. Multiple Herpes Simplex Virus-1 (HSV-1) Reactivations Induce Protein Oxidative Damage in Mouse Brain: Novel Mechanisms for Alzheimer’s Disease Progression. Microorganisms 2020, 8, 972. [Google Scholar] [CrossRef]
- Amirifar, L.; Shamloo, A.; Nasiri, R.; de Barros, N.R.; Wang, Z.Z.; Unluturk, B.D.; Libanori, A.; Ievglevskyi, O.; Diltemiz, S.E.; Sances, S.; et al. Brain-on-a-Chip: Recent Advances in Design and Techniques for Microfluidic Models of the Brain in Health and Disease. Biomaterials 2022, 285, 121531. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, P.; Wu, Y.; Jin, L.; Liu, J.; Deng, P.; Luo, R.; Chen, X.; Zhao, M.; Zhang, X.; et al. A Microengineered 3D Human Neurovascular Unit Model to Probe the Neuropathogenesis of Herpes Simplex Encephalitis. Nat. Commun. 2025, 16, 3701. [Google Scholar] [CrossRef]
- St. Leger, A.J.; Koelle, D.M.; Kinchington, P.R.; Verjans, G.M.G.M. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front. Immunol. 2021, 12, 723809. [Google Scholar] [CrossRef]
- Dasgupta, G.; BenMohamed, L. Of Mice and Not Humans: How Reliable Are Animal Models for Evaluation of Herpes CD8+-T Cell-Epitopes-Based Immunotherapeutic Vaccine Candidates? Vaccine 2011, 29, 5824–5836. [Google Scholar] [CrossRef]
| Model | Advantages | Disadvantages | Applications in AD Research |
|---|---|---|---|
| Monolayer |
|
|
|
| Transwell system |
|
|
|
| 3D culture system (Brain organoids) |
|
|
|
| Animal models |
|
|
|
| Microfluidic models (Brain-on-a-chip) |
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.-Y.; Choi, E.S.; Bao, X. HSV-1 as a Potential Driver of Alzheimer’s Disease. Pathogens 2025, 14, 1022. https://doi.org/10.3390/pathogens14101022
Li D-Y, Choi ES, Bao X. HSV-1 as a Potential Driver of Alzheimer’s Disease. Pathogens. 2025; 14(10):1022. https://doi.org/10.3390/pathogens14101022
Chicago/Turabian StyleLi, Dar-Yin, Eun Seok Choi, and Xiaoyong Bao. 2025. "HSV-1 as a Potential Driver of Alzheimer’s Disease" Pathogens 14, no. 10: 1022. https://doi.org/10.3390/pathogens14101022
APA StyleLi, D.-Y., Choi, E. S., & Bao, X. (2025). HSV-1 as a Potential Driver of Alzheimer’s Disease. Pathogens, 14(10), 1022. https://doi.org/10.3390/pathogens14101022

