Neutrophil Extracellular Traps in Viral Infections
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Literature Screening and Quality Assessment
3. The Mechanisms of Virus-Induced NET Formation
3.1. Pattern Recognition Receptor-Mediated NET Generation
3.2. NET Formation Mediated by Functional Cell Surface Receptors
3.3. NET Formation Mediated by Indirect Stimulation and Inflammatory Environment
3.4. NET Formation Mediated by the Synergistic Effect of Neutrophils and Platelets
Mechanism | Virus | Molecule | Specific Results | ROS Dependencies | Documents |
---|---|---|---|---|---|
Direct activation of PRRs | HIV | ssRNA | ssRNA acts as a PAMP and is recognized by the host TLR7/TLR8, activating the MyD88-dependent signaling pathway. | Yes | [3] |
SARS-CoV-2 | Nucleocapsid protein | CLR recognizes N-protein glycosylation structures, recruits Syk through the FcγRγ chain, and activates downstream pathways. | No | [25] | |
Spike protein | CLR recognizes the glycosylation structure of the S protein, recruits Syk through the FcγRγ chain, and activates downstream pathways. | No | [25] | ||
The Fc region of anti-S protein IgG1 antibodies cross-links Fcγ receptors, directly activating the Syk–p38 MAPK signaling axis. | Yes | [26] | |||
CHIKV | ssRNA | ssRNA acts as a PAMP, recognized by TLR7 in neutrophil endosomes, activating downstream pathways. | Yes | [27] | |
RSV | F protein | The F protein directly binds to the TLR-4/MD-2 complex, activating downstream pathways. | Yes | [28] | |
ZIKV | NS1 | NS1 is recognized by host TLR4, activating downstream pathways. | No | [29] | |
Activation of functional receptors | HIV | Env | Env activates the phospholipase C-calcium signaling pathway through the co-receptors CCR5 and CXCR4. | No | [30] |
HTNV | Structural protein | HTNV binds to the heterodimeric receptors CR3 and CR4 of β2 integrin, activating Src family kinases and triggering downstream signaling pathways. | Yes | [32] | |
Indirect stimulation by other inflammatory molecules | HBV | HMGB1 | HBV activates NK cells to release perforin and granzyme B, inducing hepatocyte pyroptosis and HMGB1 release, HMGB1 binds to neutrophil TLR4, triggering downstream signaling. | - | [33] |
S100A9 | S100A9 binds to TLR4 and RAGE, activating Src kinase and downstream signaling. | Yes | [34] | ||
FGL2 | HBV infection upregulates FGL2 expression, which binds MCOLN3 to mediate calcium influx. | No | [35] | ||
B19V | VP1 | The unique N-terminal region of VP1 (capsid protein VP1u) induces anti-VP1u IgG production, then activates the cAMP/PKA pathway. | Yes | [36] | |
VZV | Inflammatory factors | VZV activates a strong type I interferon response, recruiting neutrophils and activating NETosis through multiple inflammatory factors. | - | [39] | |
RV | IL-33 | RV induces IL-33 release from airway epithelial cells, which activates neutrophil ST2 and triggers downstream signaling. | - | [40] | |
IAV | IL-1α/β | Alveolar macrophages detect viral RNA via ZBP1, inducing RIP3-dependent necroptosis and IL-1α/β release, which activates neutrophil IL-1R and downstream signaling. | - | [41] | |
Synergistic action of platelets | IAV(H1N1) | TF | H1N1 induces tissue factor expression in lung tissue, activates thrombin, cleaves platelet PAR4, promotes platelet activation, binds neutrophils via PSGL-1, activates neutrophil CD18, and triggers downstream signaling. | - | [24] |
DV | NS1 | NS1 activates platelets via TLR4 signaling, enhances platelet–neutrophil adhesion, and triggers neutrophil downstream signaling. | No | [45] | |
- | DV binds platelet CLEC2, activating Syk kinase and triggering degranulation with extracellular vesicle (EV) release. EVs then bind neutrophil CLEC5A and TLR2. | - | [46] |
4. Antiviral Mechanisms of NETs
4.1. Physical Entrapment and Adsorptionlatelets
4.2. Direct Viral Killing Effect
4.3. Indirect Immune Regulation and Activation Effects
5. The Strategies for Viral Escape from NET-Mediated Killing
5.1. The Role of Immunosuppressive Factors
5.2. Pathway Interference and Metabolic Hijacking
5.3. Directly Disrupting the Structure of NETs
Immune Escape Mechanism | Virus | Molecule | Specific Results | Documents |
---|---|---|---|---|
Induce or express immunosuppressive factors | HIV | gp120 | Binds to CD209 on dendritic cells, inducing the production of IL-10. | [3] |
EBV | BCRF1 | Simulates IL-10 activity. | [60] | |
HCMV | cmvIL-10 | Simulates IL-10 activity. | [61] | |
Block signaling pathways | HBV | HBcAg/HBeAg | Inhibits the phosphorylation of ERK1/2 and p38MAPK, suppressing neutrophil oxidative burst. | [62] |
Suppress metabolism | DENV2 | - | Reduces GLUT1 expression and glucose uptake in neutrophils. | [64,65] |
Induce or express nucleases | HBV | - | Cirrhosis causes hypoxia in liver cells, inducing the expression of HIF-1α in host cells and increasing the level of DNase I in the host. | [68] |
SARS-CoV-2 | nsp14, nsp15 | nsp14 possesses 3′-5′ exonuclease activity, while nsp15 possesses endonuclease activity. | [69,73] | |
HSV | Vhs | Vhs has nucleic acid endonuclease activity. | [70] | |
IAV | PA-X | PA-X possesses nucleic acid endonuclease activity. | [71] | |
KSHV | SOX | SOX has nucleic acid endonuclease activity. | [72] |
6. NET-Mediated Host Immunopathological Mechanisms
6.1. SARS-CoV-2
6.2. Respiratory Syncytial Virus
6.3. Influenza A Virus
6.4. Other Respiratory Viruses
6.5. Dengue Virus
6.6. Coxsackievirus Group B
6.7. Hepatitis B Virus
6.8. Zika Virus
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACLF | Acute-on-chronic liver failure |
ALI | Acute lung injury |
ARDS | Acute respiratory distress syndrome |
B19V | arvovirus B19 |
BALF | Bronchoalveolar lavage fluid |
BPI | Bactericidal/permeability-increasing protein |
CG | Cathepsin G |
CGD | Chronic granulomatous disease |
CHIKV | Chikungunya virus |
Cit H3 | Citrullinated histone 3 |
CS | Cytokine storm |
CVB | Coxsackievirus group B |
DENV2 | Dengue virus serotype 2 |
DV | Dengue virus |
EBV | Epstein–Barr virus |
EMT | Epithelial–mesenchymal transition |
Env | Envelope glycoprotein |
EXOs | Exosomes |
FGL2 | Fibrinogen-like protein 2 |
FVH | Fulminant viral hepatitis |
GBS | Guillain–Barré syndrome |
HBV | Hepatitis B virus |
HCMV | Human cytomegalovirus |
HIV | Human immunodeficiency virus |
HMGB1 | High mobility group box 1 |
HSV | Herpes simplex virus |
HTNV | Hantavirus |
IAV | Influenza A virus |
KSHV | Kaposi’s sarcoma-associated herpesvirus |
LRTIs | Lower respiratory tract infections |
MAS | Macrophage activation syndrome |
MCOLN3 | Mucolipoprotein 3 |
MMPs | Matrix metalloproteinases |
MODS | Multiple organ dysfunction syndrome |
MPO | Myeloperoxidase |
MVs | Microvesicles |
N protein | Nucleocapsid protein |
NE | Neutrophil elastase |
NETs | Neutrophil extracellular traps |
NS1 | Non-structural protein 1 |
PAD4 | Peptidyl arginine deiminase 4 |
pDCs | Chronic granulomatous disease |
PE | Preeclampsia |
PRRs | Pattern recognition receptors |
PSGL-1 | P-selectin glycoprotein ligand 1 |
ROS | Reactive oxygen species |
RSV | Respiratory syncytial virus |
RV | Rhinovirus |
S protein | Spike protein |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
STBMs | Syncytiotrophoblast-derived microparticles |
SVV | Simian varicella virus |
TF | Tissue factor |
TFPI | Tissue factor pathway inhibitor |
VEGF | Vascular endothelial growth factor |
VWF | von Willebrand factor |
VZV | Varicella-zoster virus |
ZBP1 | Z-DNA-binding protein 1 |
ZIKV | Zika virus |
References
- Kraus, R.F.; Gruber, M.A. Neutrophils—From Bone Marrow to First-Line Defense of the Innate Immune System. Front. Immunol. 2021, 12, 767175. [Google Scholar] [CrossRef] [PubMed]
- Lehman, H.K.; Segal, B.H. The role of neutrophils in host defense and disease. J. Allergy Clin. Immunol. 2020, 145, 1535–1544. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Komano, J.; Saitoh, Y.; Misawa, T.; Takahama, M.; Kozaki, T.; Uehata, T.; Iwasaki, H.; Omori, H.; Yamaoka, S.; et al. Neutrophil Extracellular Traps Mediate a Host Defense Response to Human Immunodeficiency Virus-1. Cell Host Microbe 2012, 12, 109–116. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil Extracellular Traps Kill Bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Urban, C.F.; Nett, J.E. Neutrophil extracellular traps in fungal infection. Semin. Cell Dev. Biol. 2019, 89, 47–57. [Google Scholar] [CrossRef]
- Omar, M.; Abdelal, H. NETosis in Parasitic Infections: A Puzzle That Remains Unsolved. Int. J. Mol. Sci. 2023, 24, 8975. [Google Scholar] [CrossRef]
- Wang, H.; Kim, S.J.; Lei, Y.; Wang, S.; Wang, H.; Huang, H.; Zhang, H.; Tsung, A. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct. Target. Ther. 2024, 9, 235. [Google Scholar] [CrossRef]
- Thiam, H.R.; Wong, S.L.; Wagner, D.D.; Waterman, C.M. Cellular Mechanisms of NETosis. Annu. Rev. Cell Dev. Biol. 2020, 36, 191–218. [Google Scholar] [CrossRef]
- Thiam, H.R.; Wong, S.L.; Qiu, R.; Kittisopikul, M.; Vahabikashi, A.; Goldman, A.E.; Goldman, R.D.; Wagner, D.D.; Waterman, C.M. NETosis proceeds by cytoskeleton and endomembrane disassembly and PAD4-mediated chromatin decondensation and nuclear envelope rupture. Proc. Natl. Acad. Sci. USA 2020, 117, 7326–7337. [Google Scholar] [CrossRef] [PubMed]
- Burgener, S.S.; Schroder, K. Neutrophil Extracellular Traps in Host Defense. Cold Spring Harb. Perspect. Biol. 2020, 12, a037028. [Google Scholar] [CrossRef]
- Thanabalasuriar, A.; Scott, B.N.V.; Peiseler, M.; Willson, M.E.; Zeng, Z.; Warrener, P.; Keller, A.E.; Surewaard, B.G.J.; Dozier, E.A.; Korhonen, J.T.; et al. Neutrophil Extracellular Traps Confine Pseudomonas aeruginosa Ocular Biofilms and Restrict Brain Invasion. Cell Host Microbe 2019, 25, 526–536.e4. [Google Scholar] [CrossRef]
- Papayannopoulos, V. Neutrophil extracellular traps in immunity and disease. Nat. Rev. Immunol. 2018, 18, 134–147. [Google Scholar] [CrossRef]
- Kohn, D.B.; Booth, C.; Kang, E.M.; Pai, S.-Y.; Shaw, K.L.; Santilli, G.; Armant, M.; Buckland, K.F.; Choi, U.; De Ravin, S.S.; et al. Lentiviral gene therapy for X-linked chronic granulomatous disease. Nat. Med. 2020, 26, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, M.; Hakkim, A.; Brinkmann, V.; Siler, U.; Seger, R.A.; Zychlinsky, A.; Reichenbach, J. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 2009, 114, 2619–2622. [Google Scholar] [CrossRef]
- Azzouz, D.; Palaniyar, N. Mitochondrial ROS and base excision repair steps leading to DNA nick formation drive ultraviolet induced-NETosis. Front. Immunol. 2023, 14, 1198716. [Google Scholar] [CrossRef]
- Zeng, F.; Zhang, Y.; Wang, Z.; Zhang, H.; Meng, X.; Wu, Y.; Qian, Z.; Ding, Y.; Li, J.; Ma, T.; et al. Neutrophil extracellular traps promote acetaminophen-induced acute liver injury in mice via AIM2. Acta Pharmacol. Sin. 2024, 45, 1660–1672. [Google Scholar] [CrossRef] [PubMed]
- Baratchi, S.; Danish, H.; Chheang, C.; Zhou, Y.; Huang, A.; Lai, A.; Khanmohammadi, M.; Quinn, K.M.; Khoshmanesh, K.; Peter, K. Piezo1 expression in neutrophils regulates shear-induced NETosis. Nat. Commun. 2024, 15, 7023. [Google Scholar] [CrossRef]
- Douda, D.N.; Khan, M.A.; Grasemann, H.; Palaniyar, N. SK3 channel and mitochondrial ROS mediate NADPH oxidase-independent NETosis induced by calcium influx. Proc. Natl. Acad. Sci. USA 2015, 112, 2817–2822. [Google Scholar] [CrossRef] [PubMed]
- Yipp, B.G.; Petri, B.; Salina, D.; Jenne, C.N.; Scott, B.N.V.; Zbytnuik, L.D.; Pittman, K.; Asaduzzaman, M.; Wu, K.; Meijndert, H.C.; et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat. Med. 2012, 18, 1386–1393. [Google Scholar] [CrossRef]
- Peschel, A.; Hartl, D. Anuclear neutrophils keep hunting. Nat. Med. 2012, 18, 1336–1338. [Google Scholar] [CrossRef]
- Skrzeczynska-Moncznik, J.; Zabieglo, K.; Bossowski, J.P.; Osiecka, O.; Wlodarczyk, A.; Kapinska-Mrowiecka, M.; Kwitniewski, M.; Majewski, P.; Dubin, A.; Cichy, J. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps. J. Interferon Cytokine Res. 2017, 37, 119–128. [Google Scholar] [CrossRef]
- Tillack, K.; Breiden, P.; Martin, R.; Sospedra, M. T Lymphocyte Priming by Neutrophil Extracellular Traps Links Innate and Adaptive Immune Responses. J. Immunol. 2012, 188, 3150–3159. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Yuan, C.; Yang, S.; Ma, Z.; Li, W.; Mao, L.; Jiao, P.; Liu, W. The role of reactive oxygen species in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-induced cell death. Cell. Mol. Biol. Lett. 2024, 29, 138. [Google Scholar] [CrossRef]
- Kim, S.-J.; Carestia, A.; McDonald, B.; Zucoloto, A.Z.; Grosjean, H.; Davis, R.P.; Turk, M.; Naumenko, V.; Antoniak, S.; Mackman, N.; et al. Platelet-Mediated NET Release Amplifies Coagulopathy and Drives Lung Pathology During Severe Influenza Infection. Front. Immunol. 2021, 12, 772859. [Google Scholar] [CrossRef]
- Youn, Y.-J.; Lee, Y.-B.; Kim, S.-H.; Jin, H.K.; Bae, J.; Hong, C.-W. Nucleocapsid and Spike Proteins of SARS-CoV-2 Drive Neutrophil Extracellular Trap Formation. Immune Netw. 2021, 21, e16. [Google Scholar] [CrossRef]
- Almeida, N.B.F.; Fantone, K.M.; Sarr, D.; Ashtiwi, N.M.; Channell, S.; Grenfell, R.F.Q.; Martins-Filho, O.A.; Rada, B. Variant-dependent oxidative and cytokine responses of human neutrophils to SARS-CoV-2 spike protein and anti-spike IgG1 antibodies. Front. Immunol. 2023, 14, 1255003. [Google Scholar] [CrossRef]
- Hiroki, C.H.; Toller-Kawahisa, J.E.; Fumagalli, M.J.; Colon, D.F.; Figueiredo, L.T.M.; Fonseca, B.A.L.D.; Franca, R.F.O.; Cunha, F.Q. Neutrophil Extracellular Traps Effectively Control Acute Chikungunya Virus Infection. Front. Immunol. 2020, 10, 3108. [Google Scholar] [CrossRef] [PubMed]
- Funchal, G.A.; Jaeger, N.; Czepielewski, R.S.; Machado, M.S.; Muraro, S.P.; Stein, R.T.; Bonorino, C.B.C.; Porto, B.N. Respiratory Syncytial Virus Fusion Protein Promotes TLR-4–Dependent Neutrophil Extracellular Trap Formation by Human Neutrophils. PLoS ONE 2015, 10, e0124082. [Google Scholar] [CrossRef] [PubMed]
- De Siqueira Santos, R.; Rochael, N.C.; Mattos, T.R.F.; Fallett e Silva, M.F.; Linhares-Lacerda, L.; De Oliveira, L.T.; Cunha, M.S.; Mohana-Borges, R.; Gomes, T.A.; Barbosa-Silva, M.C.; et al. Peripheral nervous system is injured by neutrophil extracellular traps (NETS) elicited by nonstructural (NS) protein-1 from Zika virus. FASEB J. 2023, 37, e23126. [Google Scholar] [CrossRef]
- Moreno De Lara, L.; Werner, A.; Borchers, A.; Carrillo-Salinas, F.J.; Marmol, W.; Parthasarathy, S.; Iyer, V.; Vogell, A.; Illanes, D.; Abadía-Molina, A.C.; et al. Aging dysregulates neutrophil extracellular trap formation in response to HIV in blood and genital tissues. Front. Immunol. 2023, 14, 1256182. [Google Scholar] [CrossRef]
- Barr, F.D.; Ochsenbauer, C.; Wira, C.R.; Rodriguez-Garcia, M. Neutrophil extracellular traps prevent HIV infection in the female genital tract. Mucosal Immunol. 2018, 11, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Raftery, M.J.; Lalwani, P.; Krautkrӓmer, E.; Peters, T.; Scharffetter-Kochanek, K.; Krüger, R.; Hofmann, J.; Seeger, K.; Krüger, D.H.; Schönrich, G. β2 integrin mediates hantavirus-induced release of neutrophil extracellular traps. J. Exp. Med. 2014, 211, 1485–1497. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, D.-P.; Chen, H.-D.; Wang, Y.-Z.; Shi, W.; Lu, Y.-T.; Ren, Y.-Z.; Wu, Y.-K.; Pang, Y.-H.; Deng, H.; et al. NK-cell–elicited gasdermin-D–dependent hepatocyte pyroptosis induces neutrophil extracellular traps that facilitate HBV-related acute-on-chronic liver failure. Hepatology 2025, 81, 917–931. [Google Scholar] [CrossRef]
- Zhan, X.; Wu, R.; Kong, X.; You, Y.; He, K.; Sun, X.; Huang, Y.; Chen, W.; Duan, L. Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun. 2023, 43, 225–245. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Q.; Wu, W.; Hai, S.; Hu, J.; You, J.; Huang, D.; Wang, H.; Wu, D.; Han, M.; et al. FGL2–MCOLN3-Autophagy Axis–Triggered Neutrophil Extracellular Traps Exacerbate Liver Injury in Fulminant Viral Hepatitis. Cell. Mol. Gastroenterol. Hepatol. 2022, 14, 1077–1101. [Google Scholar] [CrossRef] [PubMed]
- Tzang, B.-S.; Chin, H.-Y.; Tzang, C.-C.; Chuang, P.-H.; Chen, D.-Y.; Hsu, T.-C. Parvovirus B19 Infection Is Associated with the Formation of Neutrophil Extracellular Traps and Thrombosis: A Possible Linkage of the VP1 Unique Region. Int. J. Mol. Sci. 2024, 25, 9917. [Google Scholar] [CrossRef]
- Lui, G.; Wong, C.; Chan, M.; Chong, K.; Wong, R.; Chu, I.; Zhang, M.; Li, T.; Hui, D.; Lee, N.; et al. Host inflammatory response is the major marker of severe respiratory syncytial virus infection in older adults. J. Infect. 2021, 83, 686–692. [Google Scholar] [CrossRef]
- Giuffrida, M.J.; Valero, N.; Mosquera, J.; Alvarez De Mon, M.; Chacín, B.; Espina, L.M.; Gotera, J.; Bermudez, J.; Mavarez, A. Increased cytokine/chemokines in serum from asthmatic and non-asthmatic patients with viral respiratory infection. Influenza Resp. Viruses 2014, 8, 116–122. [Google Scholar] [CrossRef]
- Ouwendijk, W.J.D.; Van Den Ham, H.-J.; Delany, M.W.; Van Kampen, J.J.A.; Van Nierop, G.P.; Mehraban, T.; Zaaraoui-Boutahar, F.; Van IJcken, W.F.J.; Van Den Brand, J.M.A.; De Vries, R.D.; et al. Alveolar barrier disruption in varicella pneumonia is associated with neutrophil extracellular trap formation. JCI Insight 2020, 5, e138900. [Google Scholar] [CrossRef]
- Curren, B.; Ahmed, T.; Howard, D.R.; Ashik Ullah, M.; Sebina, I.; Rashid, R.B.; Al Amin Sikder, M.; Namubiru, P.; Bissell, A.; Ngo, S.; et al. IL-33-induced neutrophilic inflammation and NETosis underlie rhinovirus-triggered exacerbations of asthma. Mucosal Immunol. 2023, 16, 671–684. [Google Scholar] [CrossRef]
- Momota, M.; Lelliott, P.; Kubo, A.; Kusakabe, T.; Kobiyama, K.; Kuroda, E.; Imai, Y.; Akira, S.; Coban, C.; Ishii, K.J. ZBP1 governs the inflammasome-independent IL-1α and neutrophil inflammation that play a dual role in anti-influenza virus immunity. Int. Immunol. 2020, 32, 203–212. [Google Scholar] [CrossRef]
- Schrottmaier, W.C.; Schmuckenschlager, A.; Pirabe, A.; Assinger, A. Platelets in Viral Infections—Brave Soldiers or Trojan Horses. Front. Immunol. 2022, 13, 856713. [Google Scholar] [CrossRef]
- Quirino-Teixeira, A.C.; Andrade, F.B.; Pinheiro, M.B.M.; Rozini, S.V.; Hottz, E.D. Platelets in dengue infection: More than a numbers game. Platelets 2022, 33, 176–183. [Google Scholar] [CrossRef]
- De Bont, C.M.; Boelens, W.C.; Pruijn, G.J.M. NETosis, complement, and coagulation: A triangular relationship. Cell. Mol. Immunol. 2019, 16, 19–27. [Google Scholar] [CrossRef]
- Garishah, F.M.; Rother, N.; Riswari, S.F.; Alisjahbana, B.; Overheul, G.J.; Van Rij, R.P.; Van Der Ven, A.; Van Der Vlag, J.; De Mast, Q. Neutrophil Extracellular Traps in Dengue Are Mainly Generated NOX-Independently. Front. Immunol. 2021, 12, 629167. [Google Scholar] [CrossRef]
- Sung, P.-S.; Huang, T.-F.; Hsieh, S.-L. Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2. Nat. Commun. 2019, 10, 2402. [Google Scholar] [CrossRef] [PubMed]
- Sung, P.-S.; Hsieh, S.-L. C-type lectins and extracellular vesicles in virus-induced NETosis. J. Biomed. Sci. 2021, 28, 46. [Google Scholar] [CrossRef]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; De Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef]
- Ye, R.; Zhu, Z.; Gu, T.; Cao, D.; Jiang, K.; Dai, Q.; Xing, K.; Jiang, Y.; Zhou, S.; Cai, P.; et al. Neutrophil extracellular traps-inspired DNA hydrogel for wound hemostatic adjuvant. Nat. Commun. 2024, 15, 5557. [Google Scholar] [CrossRef]
- Hayashi, M.; Yamada, K.M. Divalent cation modulation of fibronectin binding to heparin and to DNA. J. Biol. Chem. 1982, 257, 5263–5267. [Google Scholar] [CrossRef] [PubMed]
- Calaycay, J.; Pande, H.; Lee, T.; Borsi, L.; Siri, A.; Shively, J.E.; Zardi, L. Primary structure of a DNA- and heparin-binding domain (Domain III) in human plasma fibronectin. J. Biol. Chem. 1985, 260, 12136–12141. [Google Scholar] [CrossRef]
- Kozlowski, H.N.; Lai, E.T.L.; Havugimana, P.C.; White, C.; Emili, A.; Sakac, D.; Binnington, B.; Neschadim, A.; McCarthy, S.D.S.; Branch, D.R. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection. AIDS 2016, 30, 2043–2052. [Google Scholar] [CrossRef]
- Da Silva Pinto, L.; Junior, R.S.A.; Lopes, B.R.P.; Da Silva, G.S.; De Lima Menezes, G.; Moreira, P.; De Oliveira, J.; Da Silva, R.A.; Lousa, D.; Toledo, K.A. MPO interacts with hRSV particles, contributing to the virucidal effects of NETs against clinical and laboratory hRSV isolates. Int. J. Biol. Macromol. 2024, 283, 137423. [Google Scholar] [CrossRef]
- Souza, P.S.S.; Barbosa, L.V.; Diniz, L.F.A.; Da Silva, G.S.; Lopes, B.R.P.; Souza, P.M.R.; De Araujo, G.C.; Pessoa, D.; De Oliveira, J.; Souza, F.P.; et al. Neutrophil extracellular traps possess anti-human respiratory syncytial virus activity: Possible interaction with the viral F protein. Virus Res. 2018, 251, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Diniz, L.F.A.; Matsuba, B.K.; Souza, P.S.S.; Lopes, B.R.P.; Kubo, L.H.; Oliveira, J.; Toledo, K.A. Effects of neutrophil extracellular traps during human respiratory syncytial virus infection in vitro. Braz. J. Biol. 2023, 83, e248717. [Google Scholar] [CrossRef]
- Richards, C.M.; McRae, S.A.; Ranger, A.L.; Klegeris, A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev. Neurosci. 2023, 34, 533–558. [Google Scholar] [CrossRef] [PubMed]
- Wahid, A.; Chen, W.; Wang, X.; Tang, X. High-mobility group box 1 serves as an inflammation driver of cardiovascular disease. Biomed. Pharmacother. 2021, 139, 111555. [Google Scholar] [CrossRef] [PubMed]
- Mege, J.-L.; Meghari, S.; Honstettre, A.; Capo, C.; Raoult, D. The two faces of interleukin 10 in human infectious diseases. Lancet Infect. Dis. 2006, 6, 557–569. [Google Scholar] [CrossRef]
- Moodley, M.; Moodley, J.; Naicker, T. The Role of Neutrophils and Their Extracellular Traps in the Synergy of Pre-eclampsia and HIV Infection. Curr. Hypertens. Rep. 2020, 22, 41. [Google Scholar] [CrossRef]
- Hsu, D.-H.; Malefyt, R.D.W.; Fiorentino, D.F.; Dang, M.-N.; Vieira, P.; de Vries, J.; Spits, H.; Mosmann, T.R.; Moore, K.W. Expression of Interleukin-10 Activity by Epstein-Barr Virus Protein BCRF1. Science 1990, 250, 830–832. [Google Scholar] [CrossRef]
- Kotenko, S.V.; Saccani, S.; Izotova, L.S.; Mirochnitchenko, O.V.; Pestka, S. Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl. Acad. Sci. USA 2000, 97, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Liu, X.; Gao, Y.; Zhou, R.; Wei, M.; Dong, J.; Yan, H.; Zhao, Y. Hepatitis B Virus Inhibits Neutrophil Extracellular Trap Release by Modulating Reactive Oxygen Species Production and Autophagy. J. Immunol. 2019, 202, 805–815. [Google Scholar] [CrossRef]
- Wu, W.; Sun, S.; Wang, Y.; Zhao, R.; Ren, H.; Li, Z.; Zhao, H.; Zhang, Y.; Sheng, J.; Chen, Z.; et al. Circulating Neutrophil Dysfunction in HBV-Related Acute-on-Chronic Liver Failure. Front. Immunol. 2021, 12, 620365. [Google Scholar] [CrossRef]
- Rodríguez-Espinosa, O.; Rojas-Espinosa, O.; Moreno-Altamirano, M.M.B.; López-Villegas, E.O.; Sánchez-García, F.J. Metabolic requirements for neutrophil extracellular traps formation. Immunology 2015, 145, 213–224. [Google Scholar] [CrossRef]
- Moreno-Altamirano, M.M.B.; Rodríguez-Espinosa, O.; Rojas-Espinosa, O.; Pliego-Rivero, B.; Sánchez-García, F.J. Dengue Virus Serotype-2 Interferes with the Formation of Neutrophil Extracellular Traps. Intervirology 2015, 58, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Kwiecinski, J.M.; Kratofil, R.M.; Parlet, C.P.; Surewaard, B.G.J.; Kubes, P.; Horswill, A.R. Staphylococcus aureus uses the ArlRS and MgrA cascade to regulate immune evasion during skin infection. Cell Rep. 2021, 36, 109462. [Google Scholar] [CrossRef]
- Moon, A.F.; Krahn, J.M.; Lu, X.; Cuneo, M.J.; Pedersen, L.C. Structural characterization of the virulence factor Sda1 nuclease from Streptococcus pyogenes. Nucleic Acids Res. 2016, 44, 3946–3957. [Google Scholar] [CrossRef]
- Hallez, C.; Li, X.; Suspène, R.; Thiers, V.; Bouzidi, M.S.; Dorobantu, C.M.; Lucansky, V.; Wain-Hobson, S.; Gaudin, R.; Vartanian, J.-P. Hypoxia-induced human deoxyribonuclease I is a cellular restriction factor of hepatitis B virus. Nat. Microbiol. 2019, 4, 1196–1207. [Google Scholar] [CrossRef]
- Tahir, M. Coronavirus genomic nsp14-ExoN, structure, role, mechanism, and potential application as a drug target. J. Med. Virol. 2021, 93, 4258–4264. [Google Scholar] [CrossRef]
- Shiflett, L.A.; Read, G.S. mRNA Decay during Herpes Simplex Virus (HSV) Infections: Mutations That Affect Translation of an mRNA Influence the Sites at Which It Is Cleaved by the HSV Virion Host Shutoff (Vhs) Protein. J. Virol. 2013, 87, 94–109. [Google Scholar] [CrossRef] [PubMed]
- Khaperskyy, D.A.; Schmaling, S.; Larkins-Ford, J.; McCormick, C.; Gaglia, M.M. Selective Degradation of Host RNA Polymerase II Transcripts by Influenza A Virus PA-X Host Shutoff Protein. PLoS Pathog. 2016, 12, e1005427. [Google Scholar] [CrossRef] [PubMed]
- Bagnéris, C.; Briggs, L.C.; Savva, R.; Ebrahimi, B.; Barrett, T.E. Crystal structure of a KSHV–SOX–DNA complex: Insights into the molecular mechanisms underlying DNase activity and host shutoff. Nucleic Acids Res. 2011, 39, 5744–5756. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Baker, S.C. An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology 2018, 517, 157–163. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.; Alcalá-Carmona, B.; Alejandre-Aguilar, R.; Gómez-Martín, D. Inflammatory myopathies and beyond: The dual role of neutrophils in muscle damage and regeneration. Front. Immunol. 2023, 14, 1113214. [Google Scholar] [CrossRef]
- Zhou, W.; Cao, X.; Xu, Q.; Qu, J.; Sun, Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm 2023, 4, e325. [Google Scholar] [CrossRef] [PubMed]
- Scozzi, D.; Liao, F.; Krupnick, A.S.; Kreisel, D.; Gelman, A.E. The role of neutrophil extracellular traps in acute lung injury. Front. Immunol. 2022, 13, 953195. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.-S. Neutrophil Extracellular Traps (NETs) and COVID-19: A new frontiers for therapeutic modality. Int. Immunopharmacol. 2022, 104, 108516. [Google Scholar] [CrossRef]
- Pan, T.; Lee, J.W. A crucial role of neutrophil extracellular traps in pulmonary infectious diseases. Chin. Med. J. Pulm. Crit. Care Med. 2024, 2, 34–41. [Google Scholar] [CrossRef]
- Szturmowicz, M.; Demkow, U. Neutrophil Extracellular Traps (NETs) in Severe SARS-CoV-2 Lung Disease. Int. J. Mol. Sci. 2021, 22, 8854. [Google Scholar] [CrossRef]
- Shafqat, A.; Omer, M.H.; Albalkhi, I.; Alabdul Razzak, G.; Abdulkader, H.; Abdul Rab, S.; Sabbah, B.N.; Alkattan, K.; Yaqinuddin, A. Neutrophil extracellular traps and long COVID. Front. Immunol. 2023, 14, 1254310. [Google Scholar] [CrossRef]
- Vahabi, M.; Rostamian, A.; Mirsharif, E.S.; Latifi, K.; Iranparast, S.; Ghazanfari, T. Neutrophil Markers as Predictors of COVID-19 Severity at Hospital Admission: A Cross-sectional Study. Iran. J. Allergy Asthma Immunol. 2025, 24, 21–30. [Google Scholar] [CrossRef]
- Middleton, E.A.; He, X.-Y.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Englert, H.; Rangaswamy, C.; Deppermann, C.; Sperhake, J.-P.; Krisp, C.; Schreier, D.; Gordon, E.; Konrath, S.; Haddad, M.; Pula, G.; et al. Defective NET clearance contributes to sustained FXII activation in COVID-19-associated pulmonary thrombo-inflammation. eBioMedicine 2021, 67, 103382. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, J.; Hennen, E.M.; Ao, M.; Kirabo, A.; Ahmad, T.; De La Visitación, N.; Patrick, D.M. NETosis Drives Blood Pressure Elevation and Vascular Dysfunction in Hypertension. Circ. Res. 2024, 134, 1483–1494. [Google Scholar] [CrossRef] [PubMed]
- Michels, A.; Albánez, S.; Mewburn, J.; Nesbitt, K.; Gould, T.J.; Liaw, P.C.; James, P.D.; Swystun, L.L.; Lillicrap, D. Histones link inflammation and thrombosis through the induction of Weibel–Palade body exocytosis. J. Thromb. Haemost. 2016, 14, 2274–2286. [Google Scholar] [CrossRef]
- Yang, X.; Li, L.; Liu, J.; Lv, B.; Chen, F. Extracellular histones induce tissue factor expression in vascular endothelial cells via TLR and activation of NF-κB and AP-1. Thromb. Res. 2016, 137, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Qiao, S.; Liu, J.; Li, W.; Wang, F.; Gao, X.; Tian, J.; Wang, N.; Zhang, J.; Dong, J.; et al. Neutrophil extracellular traps promote thrombogenicity in cerebral venous sinus thrombosis. Cell Biosci. 2022, 12, 114. [Google Scholar] [CrossRef]
- Massberg, S.; Grahl, L.; Von Bruehl, M.-L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16, 887–896. [Google Scholar] [CrossRef]
- Semeraro, F.; Ammollo, C.T.; Morrissey, J.H.; Dale, G.L.; Friese, P.; Esmon, N.L.; Esmon, C.T. Extracellular histones promote thrombin generation through platelet-dependent mechanisms: Involvement of platelet TLR2 and TLR4. Blood 2011, 118, 1952–1961. [Google Scholar] [CrossRef]
- Blombäck, B.; Carlsson, K.; Hessel, B.; Liljeborg, A.; Procyk, R.; Åslund, N. Native fibrin gel networks observed by 3D microscopy, permeation and turbidity. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 1989, 997, 96–110. [Google Scholar] [CrossRef]
- Varjú, I.; Kolev, K. Networks that stop the flow: A fresh look at fibrin and neutrophil extracellular traps. Thromb. Res. 2019, 182, 1–11. [Google Scholar] [CrossRef]
- McDonald, B.; Davis, R.P.; Kim, S.-J.; Tse, M.; Esmon, C.T.; Kolaczkowska, E.; Jenne, C.N. Platelets and neutrophil extracellular traps collaborate to promote intravascular coagulation during sepsis in mice. Blood 2017, 129, 1357–1367. [Google Scholar] [CrossRef]
- Ng, H.; Havervall, S.; Rosell, A.; Aguilera, K.; Parv, K.; Von Meijenfeldt, F.A.; Lisman, T.; Mackman, N.; Thålin, C.; Phillipson, M. Circulating Markers of Neutrophil Extracellular Traps Are of Prognostic Value in Patients with COVID-19. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 988–994. [Google Scholar] [CrossRef]
- Jarrahi, A.; Khodadadi, H.; Moore, N.S.; Lu, Y.; Awad, M.E.; Salles, E.L.; Vaibhav, K.; Baban, B.; Dhandapani, K.M. Recombinant human DNase-I improves acute respiratory distress syndrome via neutrophil extracellular trap degradation. J. Thromb. Haemost. 2023, 21, 2473–2484. [Google Scholar] [CrossRef]
- Cortjens, B.; De Boer, O.J.; De Jong, R.; Antonis, A.F.; Sabogal Piñeros, Y.S.; Lutter, R.; Van Woensel, J.B.; Bem, R.A. Neutrophil extracellular traps cause airway obstruction during respiratory syncytial virus disease. J. Pathol. 2016, 238, 401–411. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Blau, D.M.; Caballero, M.T.; Feikin, D.R.; Gill, C.J.; Madhi, S.A.; Omer, S.B.; Simões, E.A.F.; Campbell, H.; et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis. Lancet 2022, 399, 2047–2064. [Google Scholar] [CrossRef] [PubMed]
- Cortjens, B.; De Jong, R.; Bonsing, J.G.; Van Woensel, J.B.M.; Antonis, A.F.G.; Bem, R.A. Local dornase alfa treatment reduces NETs-induced airway obstruction during severe RSV infection. Thorax 2018, 73, 578–580. [Google Scholar] [CrossRef]
- Mutua, V.; Cavallo, F.; Gershwin, L.J. Neutrophil extracellular traps (NETs) in a randomized controlled trial of a combination of antiviral and nonsteroidal anti-inflammatory treatment in a bovine model of respiratory syncytial virus infection. Vet. Immunol. Immunopathol. 2021, 241, 110323. [Google Scholar] [CrossRef] [PubMed]
- Malherbe, J.; Godard, P.; Lacherade, J.-C.; Coirier, V.; Argaud, L.; Hyvernat, H.; Schneider, F.; Charpentier, J.; Wallet, F.; Pocquet, J.; et al. Clinical description and outcome of overall varicella-zoster virus-related organ dysfunctions admitted in intensive care units: The VAZOREA cohort study. Ann. Intensive Care 2024, 14, 44. [Google Scholar] [CrossRef]
- Caini, S.; Kroneman, M.; Wiegers, T.; El Guerche-Séblain, C.; Paget, J. Clinical characteristics and severity of influenza infections by virus type, subtype, and lineage: A systematic literature review. Influenza Respir. Viruses 2018, 12, 780–792. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, L.; Zhang, Y.; Pu, L.; Liu, J.; Li, X.; Chen, Z.; Hao, Y.; Wang, B.; Han, J.; et al. High Level of Neutrophil Extracellular Traps Correlates with Poor Prognosis of Severe Influenza A Infection. J. Infect. Dis. 2018, 217, 428–437. [Google Scholar] [CrossRef]
- Zhang, N.; Zhu, L.; Zhang, Y.; Zhou, C.; Song, R.; Yang, X.; Huang, L.; Xiong, S.; Huang, X.; Xu, F.; et al. Circulating Rather Than Alveolar Extracellular Deoxyribonucleic Acid Levels Predict Outcomes in Influenza. J. Infect. Dis. 2020, 222, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Mohsen, A.H.; McKendrick, M. Varicella pneumonia in adults. Eur. Respir. J. 2003, 21, 886–891. [Google Scholar] [CrossRef]
- Shao, C.; Meng, W.; Wang, Y.; Liu, J.; Ning, K.; Hou, X.; Guo, H. Regulating NETs contributes to a novel antiatherogenic effect of MTHSWD via inhibiting endothelial injury and apoptosis. Int. Immunopharmacol. 2024, 143, 113368. [Google Scholar] [CrossRef] [PubMed]
- Fiestas Solórzano, V.E.; Da Costa Faria, N.R.; Dos Santos, C.F.; Corrêa, G.; Cipitelli, M.D.C.; Dornelas Ribeiro, M.; De Souza, L.J.; Damasco, P.V.; Da Cunha, R.V.; Dos Santos, F.B.; et al. Different Profiles of Cytokines, Chemokines and Coagulation Mediators Associated with Severity in Brazilian Patients Infected with Dengue Virus. Viruses 2021, 13, 1789. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhou, X.; Chen, S.; Sun, X.; Zhou, C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023, 14, 2180951. [Google Scholar] [CrossRef]
- Carai, P.; González, L.F.; Van Bruggen, S.; Spalart, V.; De Giorgio, D.; Geuens, N.; Martinod, K.; Jones, E.A.V.; Heymans, S. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc. Res. 2023, 118, 3331–3345. [Google Scholar] [CrossRef]
- Wu, B.; Yeh, M.M. Pathology of Hepatitis B Virus (HBV) Infection and HBV-Related Hepatocellular Carcinoma. In Hepatitis B Virus and Liver Disease; Kao, J.-H., Ed.; Springer: Singapore, 2021; pp. 99–122. ISBN 978-981-16-3614-1. [Google Scholar]
- Zhang, Y.; Shi, K.; Zhu, B.; Feng, Y.; Liu, Y.; Wang, X. Neutrophil Extracellular Trap Scores Predict 90-Day Mortality in Hepatitis B-Related Acute-on-Chronic Liver Failure. Biomedicines 2024, 12, 2048. [Google Scholar] [CrossRef]
- Ren, L.; Zeng, M.; Tang, Z.; Li, M.; Wang, X.; Xu, Y.; Weng, Y.; Wang, X.; Wang, H.; Guo, L.; et al. The Antiresection Activity of the X Protein Encoded by Hepatitis Virus B. Hepatology 2019, 69, 2546–2561. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; He, R.; Luo, J.; Yan, S.; Zhu, W.; Liu, S. Neutrophil Extracellular Traps in Viral Infections. Pathogens 2025, 14, 1018. https://doi.org/10.3390/pathogens14101018
Chen J, He R, Luo J, Yan S, Zhu W, Liu S. Neutrophil Extracellular Traps in Viral Infections. Pathogens. 2025; 14(10):1018. https://doi.org/10.3390/pathogens14101018
Chicago/Turabian StyleChen, Jiajun, Rong He, Jirong Luo, Shilu Yan, Wenbo Zhu, and Shuangquan Liu. 2025. "Neutrophil Extracellular Traps in Viral Infections" Pathogens 14, no. 10: 1018. https://doi.org/10.3390/pathogens14101018
APA StyleChen, J., He, R., Luo, J., Yan, S., Zhu, W., & Liu, S. (2025). Neutrophil Extracellular Traps in Viral Infections. Pathogens, 14(10), 1018. https://doi.org/10.3390/pathogens14101018