A Novel PCR Panel for Bacterial Detection in Lower Respiratory Tract Infections: A Comparative Study with Culture Results
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Culture Method
2.3. Multiplex PCR Testing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| LRT | Lower respiratory tract |
| mPCR | Multiplex PCR |
| LRTIs | Lower respiratory tract infections |
| CAP | Community-acquired pneumonia |
| BAL | Bronchoalveolar lavage |
| ICU | Intensive care unit |
| RTF | Respiratory tract flora |
| MALDI-TOF MS | Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry |
| CT | Cycle threshold |
References
- Bartlett, J.G.; Breiman, R.F.; Mandell, L.A.; File, T.M., Jr. Community-Acquired Pneumonia in Adults: Guidelines for Management. Clin. Infect. Dis. 1998, 26, 811–838. [Google Scholar] [CrossRef]
- American Thoracic Society and Infectious Diseases Society of America. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388. [Google Scholar] [CrossRef]
- Collins, M.E.; Popowitch, E.B.; Miller, M.B. Evaluation of a Novel Multiplex PCR Panel Compared to Quantitative Bacterial Culture for Diagnosis of Lower Respiratory Tract Infections. J. Clin. Microbiol. 2020, 58, 10–1128. [Google Scholar] [CrossRef]
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 22 June 2025).
- Milacek, C.; Bal, C.; Starzengruber, P.; Zehetmayer, S.; Idzko, M.; Gompelmann, D. Determination and Comparison of the Pathogen Spectrum Evaluated by Microbial Culture and Multiplex PCR During Bronchoscopy with Regard to Clinical Utility of Routine Bronchial Wash in Patients with Various Pulmonary Diseases. Diagnostics 2025, 15, 469. [Google Scholar] [CrossRef]
- Jiang, X.-W.; Huang, T.-S.; Xie, L.; Chen, S.-Z.; Wang, S.-D.; Huang, Z.-W.; Li, X.-Y.; Ling, W.-P. Development of a Diagnostic Assay by Three-Tube Multiplex Real-Time PCR for Simultaneous Detection of Nine Microorganisms Causing Acute Respiratory Infections. Sci. Rep. 2022, 12, 13306. [Google Scholar] [CrossRef]
- Pintea-Simon, I.-A.; Bancu, L.; Mare, A.D.; Ciurea, C.N.; Toma, F.; Man, A. Rapid Molecular Diagnostics of Pneumonia Caused by Gram-Negative Bacteria: A Clinician’s Review. Antibiotics 2024, 13, 805. [Google Scholar] [CrossRef]
- Gröndahl, B.; Puppe, W.; Hoppe, A.; Kühne, I.; Weigl, J.A.I.; Schmitt, H.-J. Rapid Identification of Nine Microorganisms Causing Acute Respiratory Tract Infections by Single-Tube Multiplex Reverse Transcription-PCR: Feasibility Study. J. Clin. Microbiol. 1999, 37, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Serapide, F.; Pallone, R.; Quirino, A.; Marascio, N.; Barreca, G.S.; Davoli, C.; Lionello, R.; Matera, G.; Russo, A. Impact of Multiplex PCR on Diagnosis of Bacterial and Fungal Infections and Choice of Appropriate Antimicrobial Therapy. Diagnostics 2025, 15, 1044. [Google Scholar] [CrossRef] [PubMed]
- Schulte, B.; Eickmeyer, H.; Heininger, A.; Juretzek, S.; Karrasch, M.; Denis, O.; Roisin, S.; Pletz, M.W.; Klein, M.; Barth, S. Detection of Pneumonia Associated Pathogens Using a Prototype Multiplexed Pneumonia Test in Hospitalized Patients with Severe Pneumonia. PLoS ONE 2014, 9, e110566. [Google Scholar] [CrossRef]
- Driscoll, A.J.; Deloria Knoll, M.; Hammitt, L.L.; Baggett, H.C.; Brooks, W.A.; Feikin, D.R.; Kotloff, K.L.; Levine, O.S.; Madhi, S.A.; O’Brien, K.L. The Effect of Antibiotic Exposure and Specimen Volume on the Detection of Bacterial Pathogens in Children with Pneumonia. Clin. Infect. Dis. 2017, 64, S368–S377. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.M.; Bramley, A.M.; Jain, S.; Arnold, S.R.; Ampofo, K.; Self, W.H.; Williams, D.J.; Anderson, E.J.; Grijalva, C.G.; McCullers, J.A. Influence of Antibiotics on the Detection of Bacteria by Culture-Based and Culture-Independent Diagnostic Tests in Patients Hospitalized with Community-Acquired Pneumonia. In Open Forum Infectious Diseases; Oxford University Press: New York, NY, USA, 2017; Volume 4, p. ofx014. [Google Scholar]
- Serigstad, S.; Markussen, D.; Grewal, H.M.S.; Ebbesen, M.; Kommedal, Ø.; Heggelund, L.; van Werkhoven, C.H.; Faurholt-Jepsen, D.; Clark, T.W.; Ritz, C. Rapid Syndromic PCR Testing in Patients with Respiratory Tract Infections Reduces Time to Results and Improves Microbial Yield. Sci. Rep. 2022, 12, 326. [Google Scholar] [CrossRef]
- Dickson, R.P.; Erb-Downward, J.R.; Prescott, H.C.; Martinez, F.J.; Curtis, J.L.; Lama, V.N.; Huffnagle, G.B. Analysis of Culture-Dependent versus Culture-Independent Techniques for Identification of Bacteria in Clinically Obtained Bronchoalveolar Lavage Fluid. J. Clin. Microbiol. 2014, 52, 3605–3613. [Google Scholar] [CrossRef]
- Rouhi, F.; Erami, M.; Rastgufar, S.; Jahani, M.; Aboutalebian, S.; Soltani, S.; Fakhim, H.; Mirhendi, H. Quantitative Real Time PCR for Distinction between Pneumocystis Jirovecii Infection/Colonization in Hospitalized Patients. Front. Cell Infect. Microbiol. 2024, 14, 1426200. [Google Scholar] [CrossRef]
- Baudel, J.-L.; Tankovic, J.; Dahoumane, R.; Carrat, F.; Galbois, A.; Ait-Oufella, H.; Offenstadt, G.; Guidet, B.; Maury, E. Multiplex PCR Performed of Bronchoalveolar Lavage Fluid Increases Pathogen Identification Rate in Critically Ill Patients with Pneumonia: A Pilot Study. Ann. Intensive Care 2014, 4, 35. [Google Scholar] [CrossRef]
- Tschiedel, E.; Goralski, A.; Steinmann, J.; Rath, P.-M.; Olivier, M.; Mellies, U.; Kottmann, T.; Stehling, F. Multiplex PCR of Bronchoalveolar Lavage Fluid in Children Enhances the Rate of Pathogen Detection. BMC Pulm. Med. 2019, 19, 132. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Ruan, S.-Y.; Pan, S.-C.; Lee, T.-F.; Chien, J.-Y.; Hsueh, P.-R. Performance of a Multiplex PCR Pneumonia Panel for the Identification of Respiratory Pathogens and the Main Determinants of Resistance from the Lower Respiratory Tract Specimens of Adult Patients in Intensive Care Units. J. Microbiol. Immunol. Infect. 2019, 52, 920–928. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Hékimian, G.; Bonnet, I.; Bréchot, N.; Schmidt, M.; Robert, J.; Combes, A.; Aubry, A. Usefulness of Point-of-Care Multiplex PCR to Rapidly Identify Pathogens Responsible for Ventilator-Associated Pneumonia and Their Resistance to Antibiotics: An Observational Study. Crit. Care 2020, 24, 378. [Google Scholar] [CrossRef]
- Karolyi, M.; Pawelka, E.; Hind, J.; Baumgartner, S.; Friese, E.; Hoepler, W.; Neuhold, S.; Omid, S.; Seitz, T.; Traugott, M.T. Detection of Bacteria via Multiplex PCR in Respiratory Samples of Critically Ill COVID-19 Patients with Suspected HAP/VAP in the ICU. Wien. Klin. Wochenschr. 2022, 134, 385–390. [Google Scholar] [CrossRef]
- Sun, L.; Li, L.; Du, S.; Liu, Y.; Cao, B. An Evaluation of the Unyvero Pneumonia System for Rapid Detection of Microorganisms and Resistance Markers of Lower Respiratory Infections—A Multicenter Prospective Study on ICU Patients. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Gadsby, N.J.; McHugh, M.P.; Forbes, C.; MacKenzie, L.; Hamilton, S.K.D.; Griffith, D.M.; Templeton, K.E. Comparison of Unyvero P55 Pneumonia Cartridge, in-House PCR and Culture for the Identification of Respiratory Pathogens and Antibiotic Resistance in Bronchoalveolar Lavage Fluids in the Critical Care Setting. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, X.; Zhao, J.; Wang, L.; Sun, B.; Sun, L.; Wang, C.; Li, B.; Fan, Y.; Liu, Y.; Cao, B. Development and Evaluation of a Multiplex Quantitative Polymerase Chain Reaction Assay for Detecting Bacteria Associated with Lower Respiratory Tract Infection. Int. J. Infect. Dis. 2022, 122, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Sigakis, M.J.G.; Jewell, E.; Maile, M.D.; Cinti, S.K.; Bateman, B.T.; Engoren, M. Culture-Negative and Culture-Positive Sepsis: A Comparison of Characteristics and Outcomes. Anesth. Analg. 2019, 129, 1300–1309. [Google Scholar] [CrossRef] [PubMed]
- Dung, T.T.N.; Phat, V.V.; Vinh, C.; Lan, N.P.H.; Phuong, N.L.N.; Ngan, L.T.Q.; Thwaites, G.; Thwaites, L.; Rabaa, M.; Nguyen, A.T.K. Development and Validation of Multiplex Real-Time PCR for Simultaneous Detection of Six Bacterial Pathogens Causing Lower Respiratory Tract Infections and Antimicrobial Resistance Genes. BMC Infect. Dis. 2024, 24, 164. [Google Scholar] [CrossRef]
- Gadsby, N.J.; McHugh, M.P.; Russell, C.D.; Mark, H.; Morris, A.C.; Laurenson, I.F.; Hill, A.T.; Templeton, K.E. Development of Two Real-Time Multiplex PCR Assays for the Detection and Quantification of Eight Key Bacterial Pathogens in Lower Respiratory Tract Infections. Clin. Microbiol. Infect. 2015, 21, 788-e1. [Google Scholar] [CrossRef] [PubMed]

| No. of Isolates | % Positive Agreement | % Negative Agreement | Sensitivity % | Specificity % | ||||
|---|---|---|---|---|---|---|---|---|
| Pathogen | TP | FP | TN | FN | ||||
| Streptococcus pyogenes | 2 | 3 | 95 | 0 | 40.00 | 100.00 | 100.00 | 96.94 |
| Haemophilus influenzae | 4 | 13 | 82 | 1 | 23.53 | 98.80 | 80.00 | 86.32 |
| Pseudomonas aeruginosa | 11 | 3 | 83 | 3 | 78.57 | 96.51 | 78.57 | 96.51 |
| Streptococcus agalactiae | 0 | 1 | 99 | 0 | 0.00 | 100.00 | 0.00 | 99.00 |
| Escherichia coli | 4 | 8 | 88 | 0 | 33.33 | 100.00 | 100.00 | 91.67 |
| Proteus spp. | 2 | 0 | 98 | 0 | 100.00 | 100.00 | 100.00 | 100.00 |
| Serratia marcescens | 4 | 0 | 95 | 1 | 100.00 | 98.96 | 80.00 | 100.00 |
| Klebsiella pneumoniae | 19 | 4 | 74 | 3 | 82.61 | 96.10 | 86.36 | 94.87 |
| Acinetobacter calcoaceticus-baumannii complex | 6 | 4 | 90 | 0 | 60.00 | 100.00 | 100.00 | 95.74 |
| Klebsiella aerogenes | 2 | 1 | 97 | 0 | 66.67 | 100.00 | 100.00 | 98.98 |
| Enterobacter cloacae complex | 3 | 3 | 93 | 1 | 50.00 | 98.94 | 75.00 | 96.88 |
| Streptococcus pneumoniae | 4 | 7 | 89 | 0 | 36.36 | 100.00 | 100.00 | 92.71 |
| Staphylococcus aureus | 5 | 0 | 87 | 8 | 100.00 | 91.58 | 38.46 | 100.00 |
| Klebsiella oxytoca | 1 | 2 | 97 | 0 | 33.33 | 100.00 | 100.00 | 97.98 |
| Moraxella catarrhalis | 2 | 2 | 95 | 1 | 50.00 | 98.96 | 66.67 | 97.94 |
| Total | 69 | 51 | 1362 | 18 | 57.50 | 98.86 | 79.31 | 96.84 |
| Total sample n = 100 | ||||||||
| No. of Isolates | % Positive Agreement | % Negative Agreement | Sensitivity % | Specificity % | ||||
|---|---|---|---|---|---|---|---|---|
| Pathogen | TP | FP | TN | FN | ||||
| Streptococcus pyogenes | 4 | 1 | 95 | 0 | 80.00 | 100.00 | 100.00 | 98.96 |
| Haemophilus influenzae | 10 | 7 | 82 | 1 | 58.82 | 98.80 | 90.91 | 92.13 |
| Pseudomonas aeruginosa | 14 | 0 | 83 | 3 | 100.00 | 96.51 | 82.35 | 100.00 |
| Streptococcus agalactiae | 1 | 0 | 99 | 0 | 100.00 | 100.00 | 100.00 | 100.00 |
| Escherichia coli | 12 | 0 | 88 | 0 | 100.00 | 100.00 | 100.00 | 100.00 |
| Proteus spp. | 2 | 0 | 98 | 0 | 100.00 | 100.00 | 100.00 | 100.00 |
| Serratia marcescens | 4 | 0 | 95 | 1 | 100.00 | 98.96 | 80.00 | 100.00 |
| Klebsiella pneumoniae | 22 | 1 | 74 | 3 | 95.65 | 96.10 | 88.00 | 98.67 |
| Acinetobacter calcoaceticus-baumannii complex | 9 | 1 | 90 | 0 | 90.00 | 100.00 | 100.00 | 98.90 |
| Klebsiella aerogenes | 3 | 0 | 97 | 0 | 100.00 | 100.00 | 100.00 | 100.00 |
| Enterobacter cloacae complex | 5 | 1 | 93 | 1 | 83.33 | 98.94 | 83.33 | 98.94 |
| Streptococcus pneumoniae | 7 | 4 | 89 | 0 | 63.64 | 100.00 | 100.00 | 95.70 |
| Staphylococcus aureus | 5 | 0 | 87 | 8 | 100.00 | 91.58 | 38.46 | 100.00 |
| Klebsiella oxytoca | 2 | 1 | 97 | 0 | 66.67 | 100.00 | 100.00 | 98.98 |
| Moraxella catarrhalis | 4 | 0 | 95 | 1 | 100.00 | 98.96 | 80.00 | 100.00 |
| Total | 104 | 16 | 1362 | 18 | 86.67 | 98.70 | 85.25 | 98.84 |
| Total sample n = 100 | ||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kömeç, S.; Durmuş, M.A.; Ceylan, A.N.; Korkusuz, R. A Novel PCR Panel for Bacterial Detection in Lower Respiratory Tract Infections: A Comparative Study with Culture Results. Pathogens 2025, 14, 1017. https://doi.org/10.3390/pathogens14101017
Kömeç S, Durmuş MA, Ceylan AN, Korkusuz R. A Novel PCR Panel for Bacterial Detection in Lower Respiratory Tract Infections: A Comparative Study with Culture Results. Pathogens. 2025; 14(10):1017. https://doi.org/10.3390/pathogens14101017
Chicago/Turabian StyleKömeç, Selda, Mehmet Akif Durmuş, Ayşe Nur Ceylan, and Ramazan Korkusuz. 2025. "A Novel PCR Panel for Bacterial Detection in Lower Respiratory Tract Infections: A Comparative Study with Culture Results" Pathogens 14, no. 10: 1017. https://doi.org/10.3390/pathogens14101017
APA StyleKömeç, S., Durmuş, M. A., Ceylan, A. N., & Korkusuz, R. (2025). A Novel PCR Panel for Bacterial Detection in Lower Respiratory Tract Infections: A Comparative Study with Culture Results. Pathogens, 14(10), 1017. https://doi.org/10.3390/pathogens14101017

