Protein Profiling of Wild-Caught Phlebotomus papatasi in Morocco: First Observation of Nematodes in Moroccan Population of Sandflies
Abstract
1. Introduction
2. Materials and Methods
2.1. Sand Fly Collection and Species Identification
2.2. Sample Preparation and Liquid Chromatography–Ms/Ms
2.3. Protein Database Search
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galati, E.A.B.; de Andrade, A.J.; Perveen, F.; Loyer, M.; Vongphayloth, K.; Randrianambinintsoa, F.J.; Prudhomme, J.; Rahola, N.; Akhoundi, M.; Shimabukuro, P.H.F.; et al. Phlebotomine sand flies (Diptera: Psychodidae) of the world. Parasites Vectors 2025, 18, 220. [Google Scholar] [CrossRef]
- Tsirigotakis, N.; Pavlou, C.; Christodoulou, V.; Dokianakis, E.; Kourouniotis, C.; Alten, B.; Antoniou, M. Phlebotomine sand flies (Diptera: Psychodidae) in the Greek Aegean Islands: Ecological approaches. Parasites Vectors 2018, 11, 97. [Google Scholar] [CrossRef]
- Cecílio, P.; Cordeiro-da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 305. [Google Scholar] [CrossRef]
- Daoudi, M.; Boussaa, S.; Hafidi, M.; Boumezzough, A. Potential distributions of phlebotomine sand fly vectors of human visceral leishmaniasis caused by Leishmania infantum in Morocco. Med. Vet. Entomol. 2020, 34, 385–393. [Google Scholar] [CrossRef]
- Daoudi, M.; Calzolari, M.; Boussaa, S.; Bonilauri, P.; Torri, D.; Romeo, G.; Lelli, D.; Lavazza, A.; Hafidi, M.; Dottori, M.; et al. Identification of Toscana virus in natural population of sand flies (Diptera: Psychodidae) from Moroccan leishmaniasis foci. J. Infect. Public Health 2022, 15, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Hamarsheh, O.; Guernaoui, S.; Karakus, M.; Yaghoobi-Ershadi, M.R.; Kruger, A.; Amro, A.; Kenawy, M.A.; Dokhan, M.R.; Shoue, D.A.; McDowell, M.A. Population structure analysis of Phlebotomus papatasi populations using transcriptome microsatellites: Possible implications for leishmaniasis control and vaccine development. Parasites Vectors 2024, 17, 410. [Google Scholar] [CrossRef] [PubMed]
- Boussaa, S.; Neffa, M.; Pesson, B.; Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of southern Morocco: Results of entomological surveys along the Marrakech-Ouarzazat and Marrakech-Azilal roads. Ann. Trop. Med. Parasitol. 2010, 104, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Boussaa, S.; Kahime, K.; Samy, A.M.; Salem, A.B.; Boumezzough, A. Species composition of sand flies and bionomics of Phlebotomus papatasi and P. sergenti (Diptera: Psychodidae) in cutaneous leishmaniasis endemic foci, Morocco. Parasites Vectors 2016, 9, 60. [Google Scholar] [CrossRef]
- Karmaoui, A.; Ben Salem, A.; Sereno, D.; El Jaafari, S.; Hajji, L. Geographic distribution of Meriones shawi, Psammomys obesus, and Phlebotomus papatasi, the main reservoirs and principal vector of zoonotic cutaneous leishmaniasis in the Middle East and North Africa. Parasite Epidemiol. Control 2022, 17, e00247. [Google Scholar] [CrossRef]
- Ayhan, N.; Charrel, R.N. Emergent Sand Fly–Borne Phleboviruses in the Balkan Region. Emerg. Infect. Dis. 2018, 24, 2324–2330. [Google Scholar] [CrossRef]
- Sellali, S.; Lafri, I.; Garni, R.; Manseur, H.; Besbaci, M.; Lafri, M.; Bitam, I. Epidemiology of sandfly-borne phleboviruses in North Africa: An overview. Insects 2024, 15, 846. [Google Scholar] [CrossRef] [PubMed]
- Srinvasan, R.; Panicker, K.N.; Dhanda, V. Occurrence of entomophilic nematode infestation among phlebotomid sandfly, Phlebotomus papatasi—A preliminary report. J. Commun. Dis. 1992, 24, 8–11. [Google Scholar] [PubMed]
- Karmaoui, A. Seasonal Distribution of Phlebotomus papatasi, Vector of Zoonotic Cutaneous Leishmaniasis. Acta Parasitol. 2020, 65, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Iguermia, S.; Harmouche, T.; Mikou, O.; Amarti, A.; Mernissi, F.Z. Mucocutaneous leishmaniasis in Morocco, evidence of the parasite’s ecological evolution? Med. Mal. Infect. 2011, 41, 47–48. [Google Scholar] [CrossRef]
- Boussaa, S.; Guernaoui, S.; Pesson, B.; Boumezzough, A. Seasonal fluctuations of phlebotomine sand fly populations (Diptera: Psychodidae) in the urban area of Marrakech, Morocco. Acta Trop. 2005, 95, 86–91. [Google Scholar] [CrossRef]
- Lema, N.K.; Gemeda, M.T.; Woldesemayat, A.A. Recent Advances in Metagenomic Approaches, Applications, and Challenge. Curr. Microbiol. 2023, 80, 347. [Google Scholar] [CrossRef]
- Kocher, A.; Gantier, J.C.; Gaborit, P.; Zinger, L.; Holota, H.; Valiere, S.; Dusfour, I.; Girod, R.; Bañuls, A.L.; Murienne, J. Vector soup: High-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Mol. Ecol. Resour. 2017, 17, 172–182. [Google Scholar] [CrossRef]
- Atayde, V.D.; da Silva Lira Filho, A.; Chaparro, V.; Zimmermann, A.; Martel, C.; Jaramillo, M.; Olivier, M. Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat. Microbiol. 2019, 4, 714–723. [Google Scholar] [CrossRef]
- Arike, L.; Peil, L. Spectral Counting Label-Free Proteomics. In Shotgun Proteomics; Martins-de-Souza, D., Ed.; Humana Press: New York, NY, USA, 2014; Volume 1156. [Google Scholar]
- Pratlong, F.; Rioux, J.A.; Dereure, J.; Mahjour, J.; Gallego, M.; Guilvard, E.; Lanotte, G.; Perieres, J.; Martini, A.; Saddiki, A. Leishmania tropica in Morocco. IV–Intrafocal enzyme diversity. Ann. Parasitol. Hum. Comp. 1991, 66, 100–104. [Google Scholar] [CrossRef]
- Boussaa, S. Épidémiologie des leishmanioses dans la région de Marrakech, Maroc: Effet de l’urbanisation sur la répartition spatio-temporelle des Phlébotomes et caractérisation moléculaire de leurs populations. Ph.D. Thesis, Cadi Ayad University, Marrakech, Morocco, 2008. [Google Scholar]
- Killick-Kendrick, R.; Killick-Kendrick, M.; I Nawi, N.A.Q.; Ashford, R.W.; Tang, Y. Preliminary Observations on a Tetradonematid Nematode of Phlebotomine Sandflies of Afghanistan. Ann. Parasitol. Hum. Comp. 1989, 64, 332–339. [Google Scholar] [CrossRef]
- Tang, Y.; Hominick, W.M.; Killick-Kendrick, R.; Killick-Kendrick, M.; Page, A.M. Didilia ooglypta n. gen., n. sp. (Tetradonematidae: Mermithoidea: Nematoda), a Parasite of Phlebotomine Sandflies in Afghanistan. Fundam. Appl. Nematol. 1993, 16, 325–331. [Google Scholar]
- Tang, Y.; Killick-Kendrick, R.; Hominick, W.M. Life Cycle of Didilia ooglypta (Nematoda: Tetradonematidae), a Parasite of Phlebotomine Sandflies of Afghanistan. Nematologica 1997, 43, 491–503. [Google Scholar] [CrossRef]
- Al-Koleeby, Z.; El Aboudi, A.; Aboulfadl, S.; Faraj, C. Diversity and bionomics of sandflies (Diptera: Psychodidae) of an endemic focus of cutaneous leishmaniasis in Zagora Province, southeast of Morocco. J. Parasitol. Res. 2021, 2021, 8812691. [Google Scholar] [CrossRef] [PubMed]
- Mhaidi, I.; El Kacem, S.; Ait Kbaich, M.; El Hamouchi, A.; Sarih, M.; Akrid, K.; Lemrani, M. Molecular identification of Leishmania infection in the most relevant sand fly species and in-patient samples from a cutaneous leishmaniasis focus in Morocco. PLoS Negl. Trop. Dis. 2018, 12, e0006315. [Google Scholar] [CrossRef]
- Es-Sette, N.; Ajaoud, M.; Laamrani-Idrissi, A.; Mellouki, F.; Lemrani, M. Molecular detection and identification of Leishmania infection in naturally infected flies in a focus of cutaneous leishmaniasis in northern Morocco. Parasite Vectors 2014, 7, 305. [Google Scholar] [CrossRef]
- Morales, M.A.; Watanabe, R.; Dacher, M.; Chafey, P.; Osorio y Fortéa, J.; Scott, D.A.; Beverley, S.M.; Ommen, G.; Clos, J.; Hem, S.; et al. Phosphoproteome dynamics reveal heat-shock protein complexes specific to the Leishmania donovani infectious stage. Proc. Natl. Acad. Sci. USA 2010, 107, 8381–8386. [Google Scholar] [CrossRef]
- Corrales, R.M.; Vincent, J.; Crobu, L.; Neish, R.; Nepal, B.; Espeut, J.; Pasquier, G.; Gillard, G.; Cazevieille, C.; Mottram, J.C.; et al. Tubulin detyrosination shapes Leishmania cytoskeletal architecture and virulence. Proc. Natl. Acad. Sci. USA 2025, 122, e2415296122. [Google Scholar] [CrossRef]
- Burge, R.J.; Damianou, A.; Wilkinson, A.J.; Rodenko, B.; Mottram, J.C. Leishmania differentiation requires ubiquitin conjugation mediated by a UBC2-UEV1 E2 complex. PLoS Pathog. 2020, 16, e1008784. [Google Scholar] [CrossRef]
- Torrecilhas, A.C.; Schumacher, R.I.; Alves, M.J.M.; Colli, W. Vesicles as carriers of virulence factors in parasitic protozoan diseases. Microbes Infect. 2012, 14, 1465–1474. [Google Scholar] [CrossRef]
- Chin, D.; Means, A.R. Calmodulin: A prototypical calcium sensor. Trends Cell Biol. 2000, 10, 322–328. [Google Scholar] [CrossRef]
- Zhang, M.; Abrams, C.; Wang, L.; Gizzi, A.; He, L.; Lin, R.; Chen, Y.; Loll, P.J.; Pascal, J.M.; Zhang, J.-F. Structural basis for calmodulin as a dynamic calcium sensor. Structure 2012, 20, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Tasbihi, M.; Shekari, F.; Hajjaran, H.; Masoori, L.; Hadighi, R. Mitochondrial proteome profiling of Leishmania tropica. Microb. Pathog. 2019, 133, 103542. [Google Scholar] [CrossRef] [PubMed]
- Fraga, J.; Montalvo, A.M.; De Doncker, S.; Dujardin, J.C.; Van der Auwera, G. Phylogeny of Leishmania species based on the heat shock protein 70 gene. Infect. Genet. Evol. 2010, 10, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Nugent, P.G.; Karsani, S.A.; Wait, R.; Tempero, J.; Smith, D.F. Proteomic analysis of Leishmania mexicana differentiation. Mol. Biochem. Parasitol. 2004, 136, 51–62. [Google Scholar] [CrossRef]
- Pinho, N.; Wiśniewski, J.R.; Dias-Lopes, G.; Saboia-Vahia, L.; Bombaça, A.C.S.; Mesquita-Rodrigues, C.; Menna-Barreto, R.; Cupolillo, E.; de Jesus, J.B.; Padrón, G.; et al. In-depth quantitative proteomics uncovers species-specific metabolic programs in Leishmania (Viannia) species. PLoS Negl. Trop. Dis. 2020, 14, e0008509. [Google Scholar] [CrossRef]
- Yao, C.; Li, Y.; Donelson, J.E.; Wilson, M.E. Proteomic examination of Leishmania chagasi plasma membrane proteins: Contrast between avirulent and virulent (metacyclic) parasite forms. Proteom. Clin. Appl. 2010, 4, 4–16. [Google Scholar] [CrossRef]
- Menezes, J.P.; Almeida, T.F.; Petersen, A.L.; Guedes, C.E.; Mota, M.S.; Lima, J.G.; Palma, L.C.; Buck, G.A.; Krieger, M.A.; Probst, C.M.; et al. Proteomic analysis reveals differentially expressed proteins in macrophages infected with Leishmania amazonensis or Leishmania major. Microbes Infect. 2013, 15, 579–591. [Google Scholar] [CrossRef]
- Chiheb, S.; Slaoui, W.; Mouttaqui, T.; Riyad, M.; Benchikhi, H. Les leishmanioses cutanées à Leishmania major et à Leishmania tropica au Maroc: Aspects épidémio-cliniques comparatifs de 268 cas [Cutaneous leishmaniasis by Leishmania major and Leishmania tropica in Morocco: Comparative epidemioclinical aspects of 268 cases]. Pan Afr. Med. J. 2014, 19, 160. [Google Scholar]
- Kbaich, M.A.; Mhaidi, I.; Ezzahidi, A.; Dersi, N.; El Hamouchi, A.; Riyad, M.; Akarid, K.; Lemrani, M. New epidemiological pattern of cutaneous leishmaniasis in two pre-Saharan arid provinces, southern Morocco. Acta Trop. 2017, 173, 11–16. [Google Scholar] [CrossRef]
- Dereure, J.; Velez, I.D.; Pratlong, F.; Denial, M.; Lardi, M.; Moreno, G.; Serres, E.; Lanotte, G.; Rioux, J.P. La leishmaniose viscérale autochtone au Maroc méridional: Présence de Leishmania infantum MON-1 chez le Chien en zone présaharienne. Leishmania Taxonomie et phylogenèse Application éco-épidémiologique (Coll int CNRS/INSERM, 1984); IMEEE: Montpellier, France, 1986; pp. 421–425. [Google Scholar]
- Rhajaoui, M.; Fellah, H.; Pratlong, F.; Dedet, J.; Lyagoubi, M. Leishmaniasis due to Leishmania tropica MON-102 in a new Moroccan focus. Trans. R. Soc. Trop. Med. Hyg. 2004, 98, 299–301. [Google Scholar] [CrossRef]
- Pimenta, P.F.; Saraiva, E.M.; Rowton, E.; Modi, G.B.; Garraway, L.A.; Beverley, S.M.; Turco, S.J.; Sacks, D.L. Evidence that the vectorial competence of phlebotomine sand flies for different species of Leishmania is controlled by structural polymorphisms in the surface lipophosphoglycan. Proc. Natl. Acad. Sci. USA 1994, 91, 9155–9159. [Google Scholar] [CrossRef]
- Dobson, D.E.; Kamhawi, S.; Lawyer, P.; Turco, S.J.; Beverley, S.M.; Sacks, D.L. Leishmania major survival in selective Phlebotomus papatasi sand fly vector requires a specific SCG-encoded lipophosphoglycan galactosylation pattern. PLoS Pathog. 2010, 6, e1001185. [Google Scholar] [CrossRef]
- Vojtková, B.; Bečvář, T.; Pacáková, L.; Frynta, D.; Mekarnia, N.; Benallal, K.E.; Volf, P.; Sádlová, J. Infectiousness of Leishmania major to Phlebotomus papatasi: Differences between natural reservoir host Meriones shawi and laboratory model BALB/c mice. PLoS Negl. Trop. Dis. 2025, 19, e0013183. [Google Scholar] [CrossRef]
- Volf, P.; Myskova, J. Sand flies and Leishmania: Specific versus permissive vectors. Trends Parasitol. 2007, 23, 91–92. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, M.; Outammassine, A.; Olivier, D.; Amane, M.; Beaulieu, M.; Akarid, A.; Ndao, M.; Hafidi, M.; Boussaa, S.; Boumezzough, A. Modeling the Impact of Climate Change for the Potential Distribution of the Main Vector and Reservoirs of Zoonotic Cutaneous Leishmaniasis due to Leishmania major in Morocco. Front. Trop. Dis. 2025, 6, 1629454. [Google Scholar] [CrossRef]
- Yu, X.J.; Liang, M.F.; Zhang, S.Y.; Liu, Y.; Li, J.D.; Sun, Y.L.; Zhang, L.; Zhang, Q.-F.; Popov, V.L.; Li, C.; et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Yi, J.; Kim, G.; Choi, S.J.; Jun, K.I.; Kim, N.H.; Choe, P.G.; Kim, N.-J.; Lee, J.-K.; Oh, M.-D. Severe fever with thrombocytopenia syndrome, South Korea. Emerg. Infect. Dis. 2012, 19, 1892–1894. [Google Scholar]
- Takahashi, T.; Maeda, K.; Suzuki, T.; Ishido, A.; Shigeoka, T.; Tominaga, T.; Kamei, T.; Honda, M.; Ninomiya, D.; Sakai, T.; et al. The first identification and retrospective study of severe fever with thrombocytopenia syndrome in Japan. J. Infect. Dis. 2014, 209, 816–827. [Google Scholar] [CrossRef]
- Ayhan, N.; Baklouti, A.; Prudhomme, J.; Walder, G.; Amaro, F.; Alten, B.; Moutailler, S.; Ergunay, K.; Charrel, R.N.; Huemer, H. Practical guidelines for studies on sandfly-borne phleboviruses: Part I—Important points to consider ante field work. Vector-Borne Zoonotic Dis. 2017, 17, 73–80. [Google Scholar] [CrossRef]
- Poinar, G.O. Entomogenous Nematodes; E.J. Brill: Leiden, The Netherlands, 1975; p. 317. [Google Scholar]
- Lutz, A.; Neiva, A. Contribuição para o conhecimento das espécies do gênero Phlebotomus existentes no Brasil. Mem. Inst. Oswaldo Cruz 1912, 4, 84–95. [Google Scholar] [CrossRef]
- Ribeiro, H.; Fernandes, T.; Candeias, C. Primeiro registo da ocorrência de um nematode endoparasita em flebotomos de Portugal. Bol. Soc. Port. Entomol. 1994, 18, 377–382. [Google Scholar]
- Pires, C.A.; Tang, Y.; Killick-Kendrick, R. Didilia sp. (Tetradonematidae: Mermithoidea: Nematoda) a parasite of Phlebotomus sergenti in Portugal. Parasite 1997, 4, 191–192. [Google Scholar] [CrossRef]
- Secundino, N.F.; Araújo, M.S.; Oliveira, G.H.; Massara, C.L.; Carvalho, O.S.; Lanfredi, R.M.; Pimenta, P.F. Preliminary description of a new entomoparasitic nematode infecting Lutzomyia longipalpis sand fly, the vector of visceral leishmaniasis in the New World. J. Invertebr. Pathol. 2002, 80, 35–40. [Google Scholar] [CrossRef]
- Sor-Suwan, S.; Jariyapan, N.; Mano, C.; Apiwathnasorn, C.; Sriwichai, P.; Samung, Y.; Siriyasatien, P.; Bates, P.A.; Somboon, P. Didilia sp. Infecting Phlebotomus stantoni in Thailand. Trop. Biomed. 2017, 34, 956–962. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daoudi, M.; Beaulieu, M.; Dong, G.; Ndao, M.; Boussaa, S.; Hafidi, M.; Boumezzough, A.; Olivier, M. Protein Profiling of Wild-Caught Phlebotomus papatasi in Morocco: First Observation of Nematodes in Moroccan Population of Sandflies. Pathogens 2025, 14, 1012. https://doi.org/10.3390/pathogens14101012
Daoudi M, Beaulieu M, Dong G, Ndao M, Boussaa S, Hafidi M, Boumezzough A, Olivier M. Protein Profiling of Wild-Caught Phlebotomus papatasi in Morocco: First Observation of Nematodes in Moroccan Population of Sandflies. Pathogens. 2025; 14(10):1012. https://doi.org/10.3390/pathogens14101012
Chicago/Turabian StyleDaoudi, Mohamed, Myriam Beaulieu, George Dong, Momar Ndao, Samia Boussaa, Mohamed Hafidi, Ali Boumezzough, and Martin Olivier. 2025. "Protein Profiling of Wild-Caught Phlebotomus papatasi in Morocco: First Observation of Nematodes in Moroccan Population of Sandflies" Pathogens 14, no. 10: 1012. https://doi.org/10.3390/pathogens14101012
APA StyleDaoudi, M., Beaulieu, M., Dong, G., Ndao, M., Boussaa, S., Hafidi, M., Boumezzough, A., & Olivier, M. (2025). Protein Profiling of Wild-Caught Phlebotomus papatasi in Morocco: First Observation of Nematodes in Moroccan Population of Sandflies. Pathogens, 14(10), 1012. https://doi.org/10.3390/pathogens14101012