Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strain and Cell Collection
2.2. Collection of Hemocytes
2.3. Sampling of Yeast Cells for Total RNA Isolation
2.4. RNA-Seq Analysis
2.5. Reference Gene Evaluation
2.6. qRT-PCR Verification of the RNA-Seq Results
3. Results
3.1. Evaluation of the RNA-Seq Data
3.2. Initial Classification of the DEGs
3.3. A Glance of the Most-Affected DEGs
3.4. Specificity and Amplification Efficiency of the Primer Pairs for Their Respective Candidate Reference Genes
3.5. Analyzing the Qualifications of Candidate Reference Genes
3.6. qRT-PCR Validation of the Transcriptomic Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metschnikoff, E. A disease of Daphnia caused by a yeast. A contribution to the theory of phagocytes as agents for attack on disease-causing organisms. Archiv. Pathol. Anat. Physiol. Klin. Med. 1884, 96, 177–195. [Google Scholar] [CrossRef]
- Lachance, M.-A. Metschnikowia Kamienski (1899). In The Yeasts; Elsevier: London, UK, 2011; pp. 575–620. [Google Scholar]
- Dallas, T.; Holtackers, M.; Drake, J.M. Costs of resistance and infection by a generalist pathogen. Ecol. Evol. 2016, 6, 1737–1744. [Google Scholar] [CrossRef]
- Cuco, A.P.; Castro, B.B.; Gonçalves, F.; Wolinska, J.; Abrantes, N. Temperature modulates the interaction between fungicide pollution and disease: Evidence from a Daphnia-microparasitic yeast model. Parasitology 2018, 145, 939–947. [Google Scholar] [CrossRef] [PubMed]
- Lachance, M.-A.; Miranda, M.; Miller, M.W.; Phaff, H.J. Dehiscence and active spore release in pathogenic strains of the yeast Metschnikowia bicuspidata var. australis: Possible predatory implication. Can. J. Microbiol. 1976, 22, 1756–1761. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Chen, Y.-C.; Kwang, J.; Manopo, I.; Wang, P.-C.; Chaung, H.-C.; Liaw, L.-L.; Chiu, S.-H. Metschnikowia bicuspidata dominates in Taiwanese cold-weather yeast infections of Macrobrachium rosenbergii. Dis. Aquat. Org. 2007, 75, 191–199. [Google Scholar] [CrossRef]
- Wang, L.; Yue, L.; Chi, Z.; Wang, X. Marine killer yeasts active against a yeast strain pathogenic to crab Portunus trituberculatus. Dis. Aquat. Org. 2008, 80, 211–218. [Google Scholar] [CrossRef]
- Moore, M.M.; Strom, M. Infection and mortality by the yeast Metschnikowia bicuspidata var. bicuspidata in chinook salmon fed live adult brine shrimp (Artemia franciscana). Aquaculture 2003, 220, 43–57. [Google Scholar] [CrossRef]
- Zhao, R.; Wenjun, S.; Libao, W.; Hui, L.; Zhijun, Y.; Runhao, H.; Xugan, W.; Hui, S.; Yi, Q.; Jie, C.; et al. A preliminary study on the “Zombie disease” of Exopalaemon carinicauda. J. Fish. China 2022, 47, 099414. [Google Scholar] [CrossRef]
- Cao, G.; Bao, J.; Feng, C.; Li, X.; Lang, Y.; Xing, Y.; Jiang, H. First report of Metschnikowia bicuspidata infection in Chinese grass shrimp (Palaemonetes sinensis) in China. Transbound. Emerg. Dis. 2022, 69, 3133–3141. [Google Scholar] [CrossRef] [PubMed]
- Bao, J.; Jiang, H.; Shen, H.; Xing, Y.; Feng, C.; Li, X.; Chen, Q. First description of milky disease in the Chinese mitten crab Eriocheir sinensis caused by the yeast Metschnikowia bicuspidata. Aquaculture 2021, 532, 735984. [Google Scholar] [CrossRef]
- Sun, N.; Bao, J.; Liang, F.; Liu, F.; Jiang, H.; Li, X. Prevalence of ‘milky disease’caused by Metschnikowia bicuspidata in Eriocheir sinensis in Panjin city, China. Aquac. Res. 2022, 53, 1136–1140. [Google Scholar] [CrossRef]
- Zhang, H.-Q.; Chi, Z.; Liu, G.-L.; Zhang, M.; Hu, Z.; Chi, Z.-M. Metschnikowia bicuspidate associated with a milky disease in Eriocheir sinensis and its effectitve treatment by Massoia lactone. Microbiol. Res. 2021, 242, 126641. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Luo, Z.; Zhong, W.; Hao, J.; Wang, Y.; Zhang, Z.; Geng, X. Studies on pathogen and its pathogenesis causing milky disease of Chinese mitten crab Eriocheir sinensis. Period. Ocean. Univ. China 2021, 51, 23–32. [Google Scholar] [CrossRef]
- Meng, Q.; Hou, L.; Zhao, Y.; Huang, X.; Huang, Y.; Xia, S.; Gu, W.; Wang, W. iTRAQ-based proteomic study of the effects of Spiroplasma eriocheiris on Chinese mitten crab Eriocheir sinensis hemocytes. Fish. Shellfish. Immunol. 2014, 40, 182–189. [Google Scholar] [CrossRef]
- Lee, Y.J.; Jang, J.W.; Kim, K.J.; Maeng, P.J. TCA cycle-independent acetate metabolism via the glyoxylate cycle in Saccharomyces cerevisiae. Yeast 2011, 28, 153–166. [Google Scholar] [CrossRef]
- Sibirny, A.A. Yeast peroxisomes: Structure, functions and biotechnological opportunities. FEMS Yeast Res. 2016, 16, fow038. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Du, Z.; Lu, S.; Wang, Z.; He, X. Regulation of Cat8 in energy metabolic balance and glucose tolerance in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2023, 107, 4605–4619. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Church, M.; Hokamp, K.; Alhussain, M.M.; Bamagoos, A.A.; Fleming, A.B. Systematic analysis of tup1 and cyc8 mutants reveals distinct roles for TUP1 and CYC8 and offers new insight into the regulation of gene transcription by the yeast Tup1-Cyc8 complex. PLoS Genet. 2023, 19, e1010876. [Google Scholar] [CrossRef]
- Braam, S.; Tripodi, F.; Österberg, L.; Persson, S.; Welkenhuysen, N.; Coccetti, P.; Cvijovic, M. Exploring carbon source related localization and phosphorylation in the Snf1/Mig1 network using population and single cell-based approaches. Microb. Cell 2024, 11, 143. [Google Scholar] [CrossRef]
- Pérez-Díaz, A.J.; Vázquez-Marín, B.; Vicente-Soler, J.; Prieto-Ruiz, F.; Soto, T.; Franco, A.; Cansado, J.; Madrid, M. cAMP-Protein kinase A and stress-activated MAP kinase signaling mediate transcriptional control of autophagy in fission yeast during glucose limitation or starvation. Autophagy 2023, 19, 1311–1331. [Google Scholar] [CrossRef]
- Pradhan, A.; Avelar, G.M.; Bain, J.M.; Childers, D.S.; Larcombe, D.E.; Netea, M.G.; Shekhova, E.; Munro, C.A.; Brown, G.D.; Erwig, L.P. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase A signaling. mBio 2018, 9, e01318. [Google Scholar] [CrossRef]
- Sandai, D.; Yin, Z.; Selway, L.; Stead, D.; Walker, J.; Leach, M.D.; Bohovych, I.; Ene, I.V.; Kastora, S.; Budge, S. The evolutionary rewiring of ubiquitination targets has reprogrammed the regulation of carbon assimilation in the pathogenic yeast Candida albicans. mBio 2012, 3, e00495-12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Peng, J.; Ren, K.; Yu, Y.; Li, D.; She, X.; Liu, W. Divergent mitochondrial responses and metabolic signal pathways secure the azole resistance in Crabtree-positive and negative Candida species. Microbiol. Spectr. 2024, 12, e04042-23. [Google Scholar] [CrossRef]
- Turcotte, B.; Liang, X.B.; Robert, F.; Soontorngun, N. Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res. 2009, 10, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Grüning, N.-M.; Rinnerthaler, M.; Bluemlein, K.; Mülleder, M.; Wamelink, M.M.; Lehrach, H.; Jakobs, C.; Breitenbach, M.; Ralser, M. Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells. Cell Metab. 2011, 14, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Le Moullac, G.; Le Groumellec, M.; Ansquer, D.; Froissard, S.; Levy, P. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostrisin relation with the moult cycle: Protection against vibriosis. Fish. Shellfish. Immunol. 1997, 7, 227–234. [Google Scholar] [CrossRef]
- Li, W.; Dun, B.; Wang, Z.; Qu, J. A Modified Method for the Efficient and Fast Extraction of Total RNA from Saccharomyces cerevisiae with Hot-Phenol. Biotechnol. Bull. 2012, 12, 163–166. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034. [Google Scholar] [CrossRef] [PubMed]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.L.; Xiao, P.; Chen, D.L.; Xu, L.; Zhang, B.H. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Postma, E.D.; Couwenberg, L.G.F.; van Roosmalen, R.N.; Geelhoed, J.; de Groot, P.A.; Daran-Lapujade, P. Top-Down, Knowledge-Based Genetic Reduction of Yeast Central Carbon Metabolism. mBio 2022, 13, e0297021. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Satheesh, S.V.; Raghavendra, M.L.; Sadhale, P.P. The key enzyme in galactose metabolism, UDP-galactose-4-epimerase, affects cell-wall integrity and morphology in Candida albicans even in the absence of galactose. Fungal Genet. Biol. 2007, 44, 563–574. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Gravelat, F.N.; Cerone, R.P.; Baptista, S.D.; Campoli, P.V.; Choe, S.I.; Kravtsov, I.; Vinogradov, E.; Creuzenet, C.; Liu, H.; et al. Overlapping and distinct roles of Aspergillus fumigatus UDP-glucose 4-epimerases in galactose metabolism and the synthesis of galactose-containing cell wall polysaccharides. J. Biol. Chem. 2014, 289, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Cyert, M.S. Calcineurin signaling in Saccharomyces cerevisiae: How yeast go crazy in response to stress. Biochem. Biophys. Res. Commun. 2003, 311, 1143–1150. [Google Scholar] [CrossRef] [PubMed]
- Raiymbek, G.; An, S.; Khurana, N.; Gopinath, S.; Larkin, A.; Biswas, S.; Trievel, R.C.; Cho, U.S.; Ragunathan, K. An H3K9 methylation-dependent protein interaction regulates the non-enzymatic functions of a putative histone demethylase. eLife 2020, 9, e53155. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, P.; Cai, M.; Wu, D.; Zhang, M.; Chen, M.; Zhao, Y. Effects of microplastics on the innate immunity and intestinal microflora of juvenile Eriocheir sinensis. Sci. Total Environ. 2019, 685, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Guerra, P.; Vuillemenot, L.-A.P.; van Oppen, Y.B.; Been, M.; Milias-Argeitis, A. TORC1 and PKA activity towards ribosome biogenesis oscillates in synchrony with the budding yeast cell cycle. J. Cell Sci. 2022, 135, jcs260378. [Google Scholar] [CrossRef]
- Goranov, A.I.; Gulati, A.; Dephoure, N.; Takahara, T.; Maeda, T.; Gygi, S.P.; Manalis, S.; Amon, A. Changes in cell morphology are coordinated with cell growth through the TORC1 pathway. Curr. Biol. 2013, 23, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A.S.; Hancock, T.J.; Lumsdaine, S.W.; Kauffman, S.J.; Mangrum, M.M.; Phillips, E.K.; Sparer, T.E.; Reynolds, T.B. Activation of Cph1 causes ss (1,3)-glucan unmasking in Candida albicans and attenuates virulence in mice in a neutrophil-dependent manner. PLoS Pathog. 2021, 17, e1009839. [Google Scholar] [CrossRef] [PubMed]
- Ballou, E.R.; Avelar, G.M.; Childers, D.S.; Mackie, J.; Bain, J.M.; Wagener, J.; Kastora, S.L.; Panea, M.D.; Hardison, S.E.; Walker, L.A. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol. 2016, 2, 16238. [Google Scholar] [CrossRef] [PubMed]
- Visser, W.F.; Van Roermund, C.W.; Ijlst, L.; Waterham, H.R.; Wanders, R.J. Metabolite transport across the peroxisomal membrane. Biochem. J. 2007, 401, 365–375. [Google Scholar] [CrossRef] [PubMed]
- Bojunga, N.; Kötter, P.; Entian, K.-D. The succinate/fumarate transporter Acr1p of Saccharomyces cerevisiae is part of the gluconeogenic pathway and its expression is regulated by Cat8p. Mol. Gen. Genet. 1998, 260, 453–461. [Google Scholar] [CrossRef]
- Moosavi, B.; Zhu, X.-l.; Yang, W.-C.; Yang, G.-F. Molecular pathogenesis of tumorigenesis caused by succinate dehydrogenase defect. Eur. J. Cell Biol. 2020, 99, 151057. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Encarnacion-Rosado, J.; Kimmelman, A.C. Autophagy fuels mitochondrial function through regulation of iron metabolism in pancreatic cancer. Autophagy 2024, 20, 963–964. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Wang, Q.; Yang, F.; Liu, R.; Gao, Q.; Cheng, B.; Lin, X.; Huang, L.; Chen, C.; Xiang, J. Signaling metabolite succinylacetone activates HIF-1α and promotes angiogenesis in GSTZ1-deficient hepatocellular carcinoma. JCI Insight 2023, 8, e164968. [Google Scholar] [CrossRef] [PubMed]
- Bayar, I.; Asici, G.S.E.; Bildik, A.; Kiral, F. Gene Expression of Glycolysis Enzymes in MCF-7 Breast Cancer Cells Exposed to Warburg Effect and Hypoxia. Int. J. Mol. Cell. Med. 2024, 13, 29. [Google Scholar] [CrossRef]
- Bidault, G.; Virtue, S.; Petkevicius, K.; Jolin, H.E.; Dugourd, A.; Guénantin, A.-C.; Leggat, J.; Mahler-Araujo, B.; Lam, B.Y.; Ma, M.K. SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation. Nat. Metab. 2021, 3, 1150–1162. [Google Scholar] [CrossRef]
- Shi, S.; Chen, Y.; Siewers, V.; Nielsen, J. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1. mBio 2014, 5, e01130. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Ortiz, C.; Carrillo-Garmendia, A.; Correa-Romero, B.F.; Canizal-García, M.; González-Hernández, J.C.; Regalado-Gonzalez, C.; Olivares-Marin, I.K.; Madrigal-Perez, L.A. SNF1 controls the glycolytic flux and mitochondrial respiration. Yeast 2019, 36, 487–494. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Log2FC | FDR | Pfam Annotation | Swiss-Prot Annotation |
---|---|---|---|---|
METBIDRAFT_43176 | 13.96 | 4.54 × 10−20 | Calcineurin-like phosphoesterase | Putative metallophosphoesterase |
METBIDRAFT_60496 | 4.79 | 3.70 × 10−6 | Cellulase (glycosyl hydrolase family 5) | Beta-xylosidase |
METBIDRAFT_37387 | 3.85 | 0.000142613 | GPR1/FUN34/yaaH family | Glyoxylate pathway regulator |
METBIDRAFT_227659 | 3.73 | 0.000292482 | Sugar (and other) transporter | Carboxylic acid transporter protein homolog |
METBIDRAFT_33398 | 3.59 | 3.59 × 10−6 | Sugar (and other) transporter | Low-affinity glucose transporter HXT3 |
METBIDRAFT_12194 | 3.26 | 0.000742583 | Sugar (and other) transporter | Sugar transporter STL1 |
METBIDRAFT_29250 | 3.25 | 0.000763428 | Redoxin | Putative peroxiredoxin (Fragment) |
METBIDRAFT_46728 | 3.22 | 0.000170095 | Mitochondrial carrier protein | Succinate/fumarate mitochondrial transporter |
METBIDRAFT_76426 | 3.19 | 0.001763201 | Choline/Carnitine o-acyltransferase | Putative mitochondrial carnitine O-acetyltransferase |
METBIDRAFT_70890 | 3.07 | 4.77 × 10−7 | Amino acid permease | General amino-acid permease GAP2 |
METBIDRAFT_76181 | 2.98 | 4.20 × 10−17 | Major Facilitator Superfamily | Multidrug resistance protein 1 |
METBIDRAFT_76577 | 2.92 | 0.000122001 | Sugar (and other) transporter | High-affinity glucose transporter HXT2 |
METBIDRAFT_79721 | 2.80 | 0.000389761 | Sugar (and other) transporter | Major facilitator-type transporter ecdD |
METBIDRAFT_79129 | 2.78 | 0.000217936 | GPR1/FUN34/yaaH family | Accumulation of dyads protein 2 |
METBIDRAFT_33390 | 2.73 | 0.000286938 | Zinc finger, C2H2 type | Transcriptional regulator of yeast form adherence 4 |
METBIDRAFT_30436 | 2.72 | 8.88 × 10−7 | Phosphate transporter family | Phosphate permease PHO89 |
METBIDRAFT_40756 | 2.61 | 0.008238589 | Alpha amylase, catalytic domain | Alpha-glucosidase |
METBIDRAFT_179260 | 2.54 | 2.15 × 10−8 | NA a | NA |
METBIDRAFT_75879 | 2.53 | 0.000199658 | Amino acid permease | Proline-specific permease |
METBIDRAFT_37464 | 2.51 | 1.44 × 10−7 | Mitochondrial import receptor subunit or translocase | Mitochondrial import receptor subunit TOM5 |
Gene Name | Log2FC | FDR | Pfam Annotation | Swiss-Prot Annotation |
---|---|---|---|---|
METBIDRAFT_34094 | −13.78 | 8.25 × 10−29 | Cupin-like domain | JmjC domain-containing protein 4 |
METBIDRAFT_78276 | −2.61 | 1.38 × 10−13 | Major Facilitator Superfamily | MFS antiporter QDR3 |
METBIDRAFT_103598 | −2.61 | 0.00074696 | NA a | NA |
METBIDRAFT_13862 | −2.49 | 0.000396594 | NA | NA |
METBIDRAFT_137696 | −2.44 | 0.001872645 | NA | NA |
METBIDRAFT_165330 | −2.37 | 1.51 × 10−15 | NA | NA |
METBIDRAFT_169905 | −2.29 | 6.12 × 10−18 | NA | NA |
METBIDRAFT_36205 | −2.23 | 1.30 × 10−29 | GATA zinc finger | Suppressor of ferric uptake 1 |
METBIDRAFT_114380 | −2.12 | 2.10 × 10−21 | NA | NA |
METBIDRAFT_36206 | −2.11 | 1.89 × 10−20 | NA | NA |
METBIDRAFT_18009 | −2.08 | 1.51 × 10−10 | DDE superfamily endonuclease | Protein PDC2 |
METBIDRAFT_46171 | −2.06 | 2.51 × 10−49 | Carbohydrate/starch-binding module (family 21) | NA |
METBIDRAFT_153484 | −2.04 | 1.44 × 10−18 | NA | NA |
METBIDRAFT_188454 | −2.02 | 3.01 × 10−14 | NA | NA |
METBIDRAFT_110843 | −2.02 | 6.28 × 10−11 | NA | NA |
METBIDRAFT_30879 | −2.00 | 3.01 × 10−26 | NA | NA |
METBIDRAFT_10301 | −1.98 | 5.37 × 10−19 | NA | NA |
METBIDRAFT_117096 | −1.97 | 1.59 × 10−22 | NA | NA |
METBIDRAFT_10902 | −1.95 | 4.20 × 10−17 | Isocitrate lyase family | Isocitrate lyase |
METBIDRAFT_31334 | −1.91 | 1.56 × 10−19 | Cytochrome P450 | Cytochrome P450 monooxygenase |
Gene Symbol | geNorm | NormFinder | BestKeeper | Delta Ct | RefFinder | |||||
---|---|---|---|---|---|---|---|---|---|---|
S a | R a | S | R | S | R | S | R | S | R | |
18S | 1.284 | 4 | 0.654 | 4 | 0.858 | 1 | 1.284 | 4 | 2.99 | 4 |
ACT1 | 1.068 | 2 | 0.381 | 2 | 1.075 | 2 | 1.068 | 2 | 2.21 | 2 |
GAPDH | 1.307 | 5 | 0.730 | 6 | 1.290 | 3 | 1.307 | 5 | 3.08 | 5 |
RIP | 1.336 | 6 | 0.669 | 5 | 1.985 | 6 | 1.336 | 6 | 5.73 | 6 |
LSC2 | 1.191 | 3 | 0.552 | 3 | 1.548 | 5 | 1.191 | 3 | 2.59 | 3 |
PMA1 | 1.059 | 1 | 0.263 | 1 | 1.467 | 4 | 1.059 | 1 | 2.00 | 1 |
TAF10 | 1.704 | 7 | 1.068 | 7 | 2.124 | 7 | 1.704 | 7 | 7.00 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Li, B.; Zuo, B.; Li, X. Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts. Pathogens 2025, 14, 95. https://doi.org/10.3390/pathogens14010095
Zhang J, Li B, Zuo B, Li X. Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts. Pathogens. 2025; 14(1):95. https://doi.org/10.3390/pathogens14010095
Chicago/Turabian StyleZhang, Ji, Bingyu Li, Bingnan Zuo, and Xiaodong Li. 2025. "Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts" Pathogens 14, no. 1: 95. https://doi.org/10.3390/pathogens14010095
APA StyleZhang, J., Li, B., Zuo, B., & Li, X. (2025). Potential Strategies Applied by Metschnikowia bicuspidata to Survive the Immunity of Its Crustacean Hosts. Pathogens, 14(1), 95. https://doi.org/10.3390/pathogens14010095