Parasites in Sewage: Legal Requirements and Diagnostic Tools
Abstract
:1. Introduction
1.1. Negative Impact of Wastewater
1.2. Benefits of Wastewater Treatment
2. Legal Acts
3. Selected Parasites Found in Sewage Sludge
4. Methods for Identifying Parasites in Wastewater
5. Viability vs. Infectivity
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Union. Council Directive of 21 May 1991 concerning urban waste-water treatment (91/271/EEC). Off. J. Eur. Union L 1991, 135, 40–52. [Google Scholar]
- Asthana, M.; Kumar, A.; Sharma, B.S. Wastewater Treatment. In Principles and Applications of Environmental Biotechnology for a Sustainable Future; Singh, R., Ed.; Springer: Singapore, 2017; pp. 173–232. [Google Scholar] [CrossRef]
- Ali, I.; Naz, I.; Peng, C.; Abd-Elsalam, K.A.; Khan, Z.M.; Islam, T.; Pervez, R.; Amejd, M.A.; Tehrim, A.; Perveen, I.; et al. Sources, classifications, constituents, and available treatment technologies for various types of wastewater: An overview. Aquananotechnology 2021, 11–46. [Google Scholar] [CrossRef]
- Henze, M.; Comeau, Y. Wastewater Characterization. In Biological Wastewater Treatment: Principles Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; pp. 33–52. [Google Scholar]
- Sakson, G.; Brzezinska, A.; Bandzierz, D.; Olejnik, D.; Jedrzejczak, M.; Gryglik, D.; Badowska, E. Monitoring of wastewater quality in Lodz sewage system (Poland)-do the current solutions enable the protection of WWTP and receiving water? Int. J. Energy Environ. Eng. 2022, 13, 713–727. [Google Scholar] [CrossRef]
- Huang, M.H.; Li, Y.M.; Gu, G.W. Chemical composition of organic matters in domestic wastewater. Desalination 2010, 262, 36–42. [Google Scholar] [CrossRef]
- Agoro, M.A.; Adeniji, A.O.; Adefisoye, M.A.; Okoh, O.O. Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water 2020, 12, 2746. [Google Scholar] [CrossRef]
- Homeier-Bachmann, T.; Heiden, S.E.; Lübcke, P.K.; Bachmann, L.; Bohnert, J.A.; Zimmermann, D.; Schaufler, K. Antibiotic-resistant Enterobacteriaceae in wastewater of abattoirs. Antibiotics 2021, 10, 568. [Google Scholar] [CrossRef]
- Ahmed, W.; Bivins, A.; Stephens, M.; Metcalfe, S.; Smith, W.J.; Sirikanchana, K.; Kitajima, M.; Simpson, S.L. Occurrence of multiple respiratory viruses in wastewater in Queensland, Australia: Potential for community disease surveillance. Sci. Total Environ. 2023, 864, 161023. [Google Scholar] [CrossRef]
- Camacho, A.; Montaña, M.; Vallés, I.; Devesa, R.; Céspedes-Sánchez, R.; Serrano, I.; Blázquez, S.; Barjola, V. Behavior of natural radionuclides in wastewater treatment plants. J. Environ. Radioact. 2012, 109, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Corrotea, Y.; Aguilera, N.; Honda, L.; Richter, P. Determination of hormones in wastewater using rotating disk sorptive extraction and gas chromatography-mass spectrometry. Anal. Lett. 2016, 49, 1344–1358. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wei, H.; Santiago, P.J.; Thrift, W.J.; Ragan, R.; Jiang, S. Sensing antibiotics in wastewater using surface-enhanced Raman scattering. Environ. Sci. Technol. 2023, 57, 4880–4891. [Google Scholar] [CrossRef]
- Fayomi, G.U.; Mini, S.E.; Fayomi, O.S.I.; Owodolu, T.; Ayoola, A.A.; Wusu, O. A mini review on the impact of sewage disposal on environment and ecosystem. IOP Conf. Ser. Earth Environ. Sci. 2019, 331, 012040. [Google Scholar] [CrossRef]
- Bhat, S.U.; Qayoom, U. Implications of sewage discharge on freshwater ecosystems. In Sewage: Recent Advances, New Perspectives and Applications; Zhang, T., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Garg, S.; Chowdhury, Z.Z.; Faisal, A.N.M.; Rumjit, N.P.; Thomas, P. Impact of Industrial Wastewater on Environment and Human Health. In Advanced Industrial Wastewater Treatment and Reclamation of Water; Roy, S., Garg, A., Garg, S., Tran, T.A., Eds.; Environmental Science and Engineering; Springer: Cham, Switzerland, 2022; pp. 197–209. [Google Scholar] [CrossRef]
- Zahedi, A.; Monis, P.; Deere, D.; Ryan, U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol. Res. 2021, 120, 4167–4188. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Soil-Transmitted Helminth Infections. Available online: https://www.who.int/news-room/fact-sheets/detail/soil-transmitted-helminth-infections (accessed on 10 June 2024).
- Centers for Disease Control and Prevention. Pinworm Infection. Available online: https://www.cdc.gov/pinworm/about/index.html (accessed on 10 June 2024).
- Mawa, P.A.; Kincaid-Smith, J.; Tukahebwa, E.M.; Webster, J.P.; Wilson, S. Schistosomiasis morbidity hotspots: Roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 2021, 12, 635869. [Google Scholar] [CrossRef]
- Summers, S.; Bhattacharyya, T.; Allan, F.; Stothard, J.R.; Edielu, A.; Webster, B.L.; Miles, M.A.; Bustinduy, A.L. A review of the genetic determinants of praziquantel resistance in Schistosoma mansoni: Is praziquantel and intestinal schistosomiasis a perfect match? Front. Trop. Dis. 2022, 3, 933097. [Google Scholar] [CrossRef]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. Analysis of eutrophication potential of municipal wastewater. Water Sci. Technol. 2020, 81, 1994–2003. [Google Scholar] [CrossRef] [PubMed]
- Younas, H.; Younas, F. Wastewater application in agriculture-a review. Water Air Soil Pollut. 2022, 233, 329. [Google Scholar] [CrossRef]
- Khouja, L.B.A.; Cama, V.; Xiao, L. Parasitic contamination in wastewater and sludge samples in Tunisia using three different detection techniques. Parasitol. Res. 2010, 107, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Pham-Duc, P.; Nguyen-Viet, H.; Hattendorf, J.; Zinsstag, J.; Phung-Dac, C.; Zurbrügg, C.; Odermatt, P. Ascaris lumbricoides and Trichuris trichiura infections associated with wastewater and human excreta use in agriculture in Vietnam. Parasitol. Int. 2013, 62, 172–180. [Google Scholar] [CrossRef]
- Fuhrimann, S.; Winkler, M.S.; Kabatereine, N.B.; Tukahebwa, E.M.; Halage, A.A.; Rutebemberwa, E.; Medlicott, K.; Schindler, C.; Utzinger, J.; Cissé, G. Risk of intestinal parasitic infections in people with different exposures to wastewater and fecal sludge in Kampala, Uganda: A cross-sectional study. PLoS Negl. Trop. Dis. 2016, 10, e0004469. [Google Scholar] [CrossRef] [PubMed]
- The United Nations International Children’s Emergency Fund (UNICEF). Drinking Water. Available online: https://data.unicef.org/topic/water-and-sanitation/drinking-water/ (accessed on 10 September 2024).
- Ritchie, H.; Spooner, F.; Roser, M. Clean Water. Our World in Data. Available online: https://ourworldindata.org/clean-water (accessed on 10 September 2024).
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, J.; Yu, X. Wastewater irrigation and crop yield: A meta-analysis. J. Integr. Agric. 2022, 21, 1215–1224. [Google Scholar] [CrossRef]
- Fijałkowski, K.; Rorat, A.; Grobelak, A.; Kacprzak, M.J. The presence of contaminations in sewage sludge-The current situation. J. Environ. Manag. 2017, 203, 1126–1136. [Google Scholar] [CrossRef]
- Kacprzak, M.; Neczaj, E.; Fijałkowski, K.; Grobelak, A.; Grosser, A.; Worwag, M.; Rorat, A.; Brattebo, H.; Almas, A.; Singh, B.R. Sewage sludge disposal strategies for sustainable development. Environ. Res. 2017, 156, 39–46. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Reuse of effluents: Methods of wastewater treatment and health safeguards, report of a WHO meeting of experts. World Health Organ. Tech. Rep. Ser. 1973, 517, 1–63. [Google Scholar]
- Carr, R. WHO guidelines for safe wastewater use-more than just numbers. Irrig. Drain. 2005, 54, S103–S111. [Google Scholar] [CrossRef]
- World Health Organization. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture: Report of a WHO Scientific Group; World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- World Health Organization. WHO Guidelines for the Safe Use of Wastewater Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Mara, D.; Kramer, A. The 2006 WHO Guidelines for Wastewater and Greywater Use in Agriculture: A Practical Interpretation. In Efficient Management of Wastewater: Its Treatment and Reuse in Water-Scarce Countries; Baz, I.A., Otterpohl, R., Wendland, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–17. [Google Scholar] [CrossRef]
- An Official EU Website. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX:31991L0271 (accessed on 10 June 2024).
- European Union. Regulation (EU) 2020/741 of the European Parliament and of the Council of 25 May 2020 on minimum requirements for water reuse. Off. J. Eur. Union L 2020, 177, 32. [Google Scholar]
- European Union. Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture (86/278/EEC). Off. J. Eur. Union L 1986, 181, 6–12. [Google Scholar]
- Polish Minister of Environment. Regulation of 6 February 2015 on the Use of Municipal Sewage Sludge (item 257). J. Laws 2015, 1–9. [Google Scholar]
- Lass, A.; Ma, L.; Kontogeorgos, I.; Xueyong, Z.; Li, X.; Karanis, P. Contamination of wastewater with Echinococcus multilocularis–possible implications for drinking water resources in the QTP China. Water Res. 2020, 170, 115334. [Google Scholar] [CrossRef]
- European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Union L 2000, 327, 1–73. [Google Scholar]
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Off. J. Eur. Union L 2020, 435, 1–62. [Google Scholar]
- European Union. Council Directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. Off. J. Eur. Union L 1991, 375, 1–8. [Google Scholar]
- European Union. Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control). Off. J. Eur. Union L 2010, 334, 17–119. [Google Scholar]
- Rózsa, L.; Garay, J. Definitions of parasitism, considering its potentially opposing effects at different levels of hierarchical organization. Parasitology 2023, 150, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, Y.; Mohammadi, C.; Ahmad, S.F.; Hamad, P.M.; Samiei, A. Prevalence of intestinal parasites in raw vegetables consumed in Soran city, Kurdistan Region, Iraq. Ann. Parasitol. 2021, 67, 275–279. [Google Scholar] [CrossRef]
- Hatam-Nahavandi, K.; Mahvi, A.H.; Mohebali, M.; Keshavarz, H.; Mobedi, I.; Rezaeian, M. Detection of parasitic particles in domestic and urban wastewaters and assessment of removal efficiency of treatment plants in Tehran, Iran. J. Environ. Health Sci. Eng. 2015, 13, 4. [Google Scholar] [CrossRef]
- Berglund, B.; Dienus, O.; Sokolova, E.; Berglind, E.; Matussek, A.; Pettersson, T.; Lindgren, P.E. Occurrence and removal efficiency of parasitic protozoa in Swedish wastewater treatment plants. Sci. Total Environ. 2017, 598, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Ben Ayed, L.; Schijven, J.; Alouini, Z.; Jemli, M.; Sabbahi, S. Presence of parasitic protozoa and helminth in sewage and efficiency of sewage treatment in Tunisia. Parasitol. Res. 2009, 105, 393–406. [Google Scholar] [CrossRef] [PubMed]
- Hajjami, K.; Ennaji, M.M.; Fouad, S.; Oubrim, N.; Khallayoune, K.; Cohen, N. Assessment of helminths health risk associated with reuse of raw and treated wastewater of the Settat City (Morocco). Resour. Environ. 2012, 2, 193–201. [Google Scholar] [CrossRef]
- Zacharia, A.; Outwater, A.H.; Ngasala, B.; Van Deun, R. Pathogenic parasites in raw and treated wastewater in Africa: A review. Resour. Environ. 2018, 8, 232–240. [Google Scholar] [CrossRef]
- Jansen, F.; Dorny, P.; Gabriël, S.; Dermauw, V.; Johansen, M.V.; Trevisan, C. The survival and dispersal of Taenia eggs in the environment: What are the implications for transmission? A systematic review. Parasites Vectors 2021, 14, 88. [Google Scholar] [CrossRef]
- Benito, M.; Menacho, C.; Chueca, P.; Ormad, M.P.; Goñi, P. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. J. Environ. Manag. 2020, 261, 110268. [Google Scholar] [CrossRef] [PubMed]
- Barreto, M.L.; Genser, B.; Strina, A.; Teixeira, M.G.; Assis, A.M.O.; Rego, R.F.; Teles, C.A.; Prado, M.S.; Matos, S.M.S.; Alcântara-Neves, N.M.; et al. Impact of a citywide sanitation program in Northeast Brazil on intestinal parasites infection in young children. Environ. Health Perspect. 2010, 118, 1637–1642. [Google Scholar] [CrossRef]
- Leles, D.; Gardner, S.L.; Reinhard, K.; Iñiguez, A.; Araujo, A. Are Ascaris lumbricoides and Ascaris suum a single species? Parasites Vectors 2012, 5, 42. [Google Scholar] [CrossRef] [PubMed]
- Easton, A.; Gao, S.; Lawton, S.P.; Bennuru, S.; Khan, A.; Dahlstrom, E.; Oliveira, R.G.; Kepha, S.; Porcella, S.F.; Webster, J.; et al. Molecular evidence of hybridization between pig and human Ascaris indicates an interbred species complex infecting humans. eLife 2020, 9, e61562. [Google Scholar] [CrossRef]
- Zhou, C.; Guo, T.; Deng, Y.; He, J.; Ouyang, S.; Wu, X. Mitochondrial phylogenomics of human-type Ascaris, pig-type Ascaris, and hybrid Ascaris populations. Vet. Parasitol. 2020, 287, 109256. [Google Scholar] [CrossRef]
- Liu, G.H.; Wu, C.Y.; Song, H.Q.; Wei, S.J.; Xu, M.J.; Lin, R.Q.; Zhao, G.H.; Huang, S.Y.; Zhu, X.Q. Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene 2012, 492, 110–116. [Google Scholar] [CrossRef]
- Zhou, C.; Chen, J.; Niu, H.; Ouyang, S.; Wu, X. Study on the population evolution of Ascaris lumbricoides and Ascaris suum based on whole genome resequencing. Vet. Parasitol. 2020, 279, 109062. [Google Scholar] [CrossRef]
- Jex, A.; Liu, S.; Li, B.; Young, N.D.; Hall, R.S.; Li, Y.; Yang, L.; Zeng, N.; Xu, X.; Xiong, Z.; et al. Ascaris suum draft genome. Nature 2011, 479, 529–533. [Google Scholar] [CrossRef]
- Sadaow, L.; Sanpool, O.; Phosuk, I.; Rodpai, R.; Thanchomnang, T.; Wijit, A.; Anamnart, W.; Laymanivong, S.; Aung, W.P.P.; Janwan, P.; et al. Molecular identification of Ascaris lumbricoides and Ascaris suum recovered from humans and pigs in Thailand, Lao PDR, and Myanmar. Parasitol. Res. 2018, 117, 2427–2436. [Google Scholar] [CrossRef]
- Ramkhelawan, T.; Naidoo, P.; Mkhize-Kwitshana, Z.L. Single nucleotide polymorphisms in the β-tubulin gene family of Ascaris lumbricoides and their potential role in benzimidazole resistance: A systematic review. Front. Trop. Dis. 2024, 4, 1303873. [Google Scholar] [CrossRef]
- Lamberton, P.H.; Jourdan, P.M. Human ascariasis: Diagnostics update. Curr. Trop. Med. Rep. 2015, 2, 189–200. [Google Scholar] [CrossRef]
- Gan, R.W.C.; Gohil, R.; Belfield, K.; Davies, P.; Daniel, M. Acute airway obstruction by Ascaris lumbricoides in a 14-month-old boy. Int. J. Pediatr. Otorhinolaryngol. 2014, 78, 1795–1798. [Google Scholar] [CrossRef] [PubMed]
- Das, A.K. Hepatic and biliary ascariasis. J. Glob. Infect. Dis. 2014, 6, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Molina, G.A.; Torres, A.R.; Llerena, P.S.; Yu, A.; Sánchez, A.C.; Cobo, M.M. Ascaris lumbricoides and its almost deadly complication. J. Surg. Case Rep. 2018, 2018, rjy262. [Google Scholar] [CrossRef] [PubMed]
- Pecson, B.M.; Nelson, K.L. Inactivation of Ascaris suum eggs by ammonia. Environ. Sci. Technol. 2005, 39, 7909–7914. [Google Scholar] [CrossRef]
- Beyhan, Y.E.; Yilmaz, H.; Hokelek, M. Effects of acetic acid on the viability of Ascaris lumbricoides eggs: Is vinegar reliable enough to clean the vegetables? Saudi Med. J. 2016, 37, 288–292. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information. Taxonomy Browser. Available online: https://www.ncbi.nlm.nih.gov/taxonomy (accessed on 10 June 2024).
- Bowman, D.D. History of Toxocara and the associated larva migrans. Adv. Parasitol. 2020, 109, 17–38. [Google Scholar] [CrossRef]
- Strube, C.; Heuer, L.; Janecek, E. Toxocara spp. infections in paratenic hosts. Vet. Parasitol. 2013, 193, 375–389. [Google Scholar] [CrossRef]
- Paul, M.; Stefaniak, J.; Twardosz-Pawlik, H.; Pecold, K. The co-occurrence of Toxocara ocular and visceral larva migrans syndrome: A case series. Cases J. 2009, 2, 6881. [Google Scholar] [CrossRef] [PubMed]
- Kazek, B.; Jamroz, E.; Mandera, M.; Bierzyńska-Macyszyn, G.; Kluczewska, E.; Marszał, E. The cerebral form of toxocarosis in a seven-year-old patient. Folia Neuropathol. 2006, 44, 72–76. [Google Scholar] [PubMed]
- Meliou, M.; Mavridis, I.N.; Pyrgelis, E.S.; Agapiou, E. Toxocariasis of the nervous system. Acta Parasitol. 2020, 65, 291–299. [Google Scholar] [CrossRef]
- Sieng, S.; Chen, P.; Wang, N.; Xu, J.Y.; Han, Q. Toxocara canis-induced changes in host intestinal microbial communities. Parasites Vectors 2023, 16, 462. [Google Scholar] [CrossRef] [PubMed]
- Waindok, P.; Janecek-Erfurth, E.; Lindenwald, D.L.; Wilk, E.; Schughart, K.; Geffers, R.; Strube, C. Toxocara canis- and Toxocara cati-induced neurotoxocarosis is associated with comprehensive brain transcriptomic alterations. Microorganisms 2022, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.; Won, J.; Yoon, J.; Lee, U.; Kim, J.I.; Huh, S. Draft Genome of Toxocara canis, a Pathogen Responsible for Visceral Larva Migrans. Korean J. Parasitol. 2016, 54, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Gasser, R.B.; Korhonen, P.K.; Zhu, X.Q.; Young, N.D. Harnessing the Toxocara genome to underpin toxocariasis research and new interventions. Adv. Parasitol. 2016, 91, 87–110. [Google Scholar] [CrossRef]
- Hade, B.F.; Saadedin, S.; Al-Amery, A.M. Sequencing and phylogenic variation of ITS-2 region and rrnL gene in Toxocara canis of Iraqi isolation. J. Biodivers. Environ. Sci. 2018, 13, 71–82. [Google Scholar]
- Fava, N.M.; Cury, M.C.; Santos, H.A.; Takeuchi-Storm, N.; Strube, C.; Zhu, X.Q.; Taira, K.; Odoevskaya, C.; Panovag, O.; Mateus, T.L.; et al. Phylogenetic relationships among Toxocara spp. and Toxascaris sp. from different regions of the world. Vet. Parasitol. 2020, 282, 109133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Shibata, M.; Nguyen, Y.T.H.; Hayata, Y.; Nonaka, N.; Maruyama, H.; Yoshida, A. Development of nested multiplex polymerase chain reaction (PCR) assay for the detection of Toxocara canis, Toxocara cati and Ascaris suum contamination in meat and organ meats. Parasitol. Int. 2018, 67, 622–626. [Google Scholar] [CrossRef]
- Bethony, J.; Brooker, S.; Albonico, M.; Geiger, S.M.; Loukas, A.; Diemert, D.; Hotez, P.J. Soil-transmitted helminth infections: Ascariasis, trichuriasis, and hookworm. Lancet 2006, 367, 1521–1532. [Google Scholar] [CrossRef] [PubMed]
- Loukas, A.; Hotez, P.J.; Diemert, D.; Yazdanbakhsh, M.; McCarthy, J.S.; Correa-Oliveira, R.; Croese, J.; Bethony, J.M. Hookworm infection. Nat. Rev. Dis. Primers 2016, 2, 16088. [Google Scholar] [CrossRef] [PubMed]
- Agudelo Higuita, N.I.; Brunetti, E.; McCloskey, C. Cystic Echinococcosis. J. Clin. Microbiol. 2016, 54, 518–523. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Rausch, R.L. New aspects of neotropical polycystic (Echinococcus vogeli) and unicystic (Echinococcus oligarthrus) echinococcosis. Clin. Microbiol. Rev. 2008, 21, 380–401. [Google Scholar] [CrossRef] [PubMed]
- Romig, T. Epidemiology of echinococcosis. Langenbeck’s Arch. Surg. 2003, 388, 209–217. [Google Scholar] [CrossRef]
- Provincial Sanitary and Epidemiological Station in Poznań. Echinococcosis. Available online: https://www.gov.pl/web/wsse-poznan/bablowica---echinokokoza (accessed on 11 December 2024).
- Collado-Aliaga, J.; Romero-Alegría, Á.; Alonso-Sardón, M.; Muro, A.; López-Bernus, A.; Velasco-Tirado, V.; Muñoz Bellido, J.L.; Pardo-Lledías, J.; Belhassen-García, M. Complications associated with initial clinical presentation of cystic echinococcosis: A 20-year cohort analysis. Am. J. Trop. Med. Hyg. 2019, 101, 628–635. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.M. Isolation and identification of intestinal parasites from vegetables from different markets of Iraq. Bull. Iraq Nat. Hist. Mus. 2011, 11, 17–25. [Google Scholar]
- Veit, P.; Bilger, B.; Schad, V.; Schäfer, J.; Frank, W.; Lucius, R. Influence of environmental factors on the infectivity of Echinococcus multilocularis eggs. Parasitology 1995, 110, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Colli, C.W.; William, J.F. Influence of temperature on the infectivity of eggs of Echinococcus granulosus in laboratory rodents. J. Parasitol. 1972, 58, 422–426. [Google Scholar] [CrossRef]
- Yaya-Beas, R.E.; Cadillo-La-Torre, E.A.; Kujawa-Roeleveld, K.; Van Lier, J.B.; Zeeman, G. Presence of helminth eggs in domestic wastewater and its removal at low temperature UASB reactors in Peruvian highlands. Water Res. 2016, 90, 286–293. [Google Scholar] [CrossRef]
- Mahvi, A.H.; Kia, E.B. Helminth eggs in raw and treated wastewater in the Islamic Republic of Iran. East. Mediterr. Health J. 2006, 12, 137–143. [Google Scholar]
- Grego, S.; Barani, V.; Hegarty-Craver, M.; Raj, A.; Perumal, P.; Berg, A.B.; Archer, C. Soil-transmitted helminth eggs assessment in wastewater in an urban area in India. J. Water Health 2018, 16, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Bourouache, M.; Mimouni, R.; Alla, A.A.; Hamadi, F.; Boulani, A.E.; Bihadassen, B.; Laktib, A.; Moustaoui, F.; Aghrouch, M. Occurrence and removal of intestinal parasites in two wastewater treatment plants in the south of Morocco. J. Environ. Health Sci. Eng. 2021, 19, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Bastos, V.K.; Cutolo, S.A.; Doria, M.D.C.O.; Razzolini, M.T.P. Detection and quantification of viable Ascaris sp. and other helminth eggs in sewage sludge. Int. J. Environ. Health Res. 2013, 23, 352–362. [Google Scholar] [CrossRef]
- Zdybel, J.; Karamon, J.; Dąbrowska, J.; Różycki, M.; Bilska-Zając, E.; Kłapeć, T.; Cencek, T. Parasitological contamination with eggs Ascaris spp., Trichuris spp. and Toxocara spp. of dehydrated municipal sewage sludge in Poland. Environ. Pollut. 2019, 248, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, B.; Maya, C.; Velásquez, G.; Torner, F.; Arambula, F.; Barrios, J.A.; Velasco, M. Identification and quantification of pathogenic helminth eggs using a digital image system. Exp. Parasitol. 2016, 166, 164–172. [Google Scholar] [CrossRef]
- Gyawali, P.; Sidhu, J.P.; Ahmed, W.; Jagals, P.; Toze, S. Rapid concentration and sensitive detection of hookworm ova from wastewater matrices using a real-time PCR method. Exp. Parasitol. 2015, 159, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, P.; Ahmed, W.; Sidhu, J.P.S.; Nery, S.V.; Clements, A.C.; Traub, R.; McCarthy, J.S.; Llewellyn, S.; Jagalas, P.; Toze, S. Quantitative detection of viable helminth ova from raw wastewater, human feces, and environmental soil samples using novel PMA-qPCR methods. Environ. Sci. Pollut. Res. 2016, 23, 18639–18648. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Meyer, K.B.; Jones, J.V.; Benton, T.; Kaneshiro, E.S.; Nichols, J.S.; Schaefer III, F.W. Survival of parasite eggs upon storage in sludge. Appl. Environ. Microbiol. 1984, 48, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Gordon, C.A.; McManus, D.P.; Acosta, L.P.; Olveda, R.M.; Williams, G.M.; Ross, A.G.; Gray, J.; Gobert, G.N. Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines. Int. J. Parasitol. 2015, 45, 477–483. [Google Scholar] [CrossRef]
- Mthethwa, N.P.; Amoah, I.D.; Reddy, P.; Bux, F.; Kumari, S. Development and evaluation of a molecular based protocol for detection and quantification of Cryptosporidium spp. in wastewater. Exp. Parasitol. 2022, 234, 108216. [Google Scholar] [CrossRef] [PubMed]
- Stensvold, C.R.; Lebbad, M.; Hansen, A.; Beser, J.; Belkessa, S.; Andersen, L.O.B.; Clark, C.G. Differentiation of Blastocystis and parasitic archamoebids encountered in untreated wastewater samples by amplicon-based next-generation sequencing. Parasite Epidemiol. Control 2020, 9, e00131. [Google Scholar] [CrossRef] [PubMed]
- Khadra, A.; Ezzariai, A.; Kouisni, L.; Hafidi, M. Helminth eggs inactivation efficiency by sludge co-composting under arid climates. Int. J. Environ. Health Res. 2021, 31, 530–537. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hafeez, E.H.; Ahmad, A.K.; Ali, B.A.; Moslam, F.A. Opportunistic parasites among immunosuppressed children in Minia District, Egypt. Korean J. Parasitol. 2012, 50, 57–62. [Google Scholar] [CrossRef]
- Gyawali, P. Infectious helminth ova in wastewater and sludge: A review on public health issues and current quantification practices. Water Sci. Technol. 2018, 77, 1048–1061. [Google Scholar] [CrossRef]
- Ravindran, V.B.; Khallaf, B.; Surapaneni, A.; Crosbie, N.D.; Soni, S.K.; Ball, A.S. Detection of helminth ova in wastewater using recombinase polymerase amplification coupled to lateral flow strips. Water 2020, 12, 691. [Google Scholar] [CrossRef]
- Zahedi, A.; Greay, T.L.; Paparini, A.; Linge, K.L.; Joll, C.A.; Ryan, U.M. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. Water Res. 2019, 158, 301–312. [Google Scholar] [CrossRef]
- Freudenthal, J.; Ju, F.; Bürgmann, H.; Dumack, K. Microeukaryotic gut parasites in wastewater treatment plants: Diversity, activity, and removal. Microbiome 2022, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Bucur, I.; Gabriël, S.; Van Damme, I.; Dorny, P.; Johansen, M.V. Survival of Taenia saginata eggs under different environmental conditions. Vet. Parasitol. 2019, 266, 88–95. [Google Scholar] [CrossRef]
- Maya, C.; Torner-Morales, F.J.; Lucario, E.S.; Hernández, E.; Jiménez, B. Viability of six species of larval and non-larval helminth eggs for different conditions of temperature, pH and dryness. Water Res. 2012, 46, 4770–4782. [Google Scholar] [CrossRef] [PubMed]
- Wang, I.C.; Ma, Y.X.; Kuo, C.H.; Fan, P.C. A comparative study on egg hatching methods and oncosphere viability determination for Taenia solium eggs. Int. J. Parasitol. 1997, 27, 1311–1314. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, J.; Zdybel, J.; Karamon, J.; Kochanowski, M.; Stojecki, K.; Cencek, T.; Klapec, T. Assessment of viability of the nematode eggs (Ascaris, Toxocara, Trichuris) in sewage sludge with the use of LIVE/DEAD Bacterial Viability Kit. Ann. Agric. Environ. Med. 2014, 21, 35–41. [Google Scholar] [PubMed]
- Feyera, T.; Ruhnke, I.; Sharpe, B.; Elliott, T.; Campbell, D.L.M.; Walkden-Brown, S.W. Viability and development of Ascaridia galli eggs recovered in artificial media followed by storage under different conditions. J. Helminthol. 2020, 94, e199. [Google Scholar] [CrossRef] [PubMed]
- Moazeni, M.; Rakhshandehroo, E. In vitro viability test for the eggs of Echinococcus granulosus: A rapid method. Parasitol. Res. 2012, 110, 925–930. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.W.; Dixon, R.; Ross, A.D. An in-vitro test for assessing the viability of Ascaris suum eggs exposed to various sewage treatment processes. Int. J. Parasitol. 1998, 28, 627–633. [Google Scholar] [CrossRef]
- Ademola, I.O.; Eloff, J.N. Anthelminthic activity of acetone extract and fractions of Vernonia amygdalina against Haemonchus contortus eggs and larvae. Trop. Anim. Health Prod. 2011, 43, 521–527. [Google Scholar] [CrossRef]
- Dahab, M.A.E.; Sayed, A.; Mahana, N. Curcumin Impact on Ex Vivo Toxocara vitulorum Adult Worms and Eggs. Int. J. Vet. Sci. 2022, 11, 280–288. [Google Scholar] [CrossRef]
- Bukhari, Z.; Marshall, M.M.; Korich, D.G.; Fricker, C.R.; Smith, H.V.; Rosen, J.; Clancy, J.L. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts. Appl. Environ. Microbiol. 2000, 66, 2972–2980. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.; Trout, J.; Higgins, J.; Dorsch, M.; Veal, D.; Fayer, R. Comparison of tests for viable and infectious Cryptosporidium parvum oocysts. Parasitol. Res. 2002, 89, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Boes, J.; Eriksen, L.; Nansen, P. Embryonation and infectivity of Ascaris suum eggs isolated from worms expelled by pigs treated with albendazole, pyrantel pamoate, ivermectin or piperazine dihydrochloride. Vet. Parasitol. 1998, 75, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Højgaard, D.P. Impact of Temperature, Salinity and Light on Hatching of Eggs of Anisakis Simplex (Nematoda, Anisakidae), Isolated by a New Method, and Some Remarks on Survival of Larvae. Sarsia 1998, 83, 21–28. [Google Scholar] [CrossRef]
- Kent, M.L.; Watral, V.; Villegas, E.N.; Gaulke, C.A. Viability of Pseudocapillaria tomentosa eggs exposed to heat, ultraviolet light, chlorine, iodine, and desiccation. Zebrafish 2019, 16, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Nordin, A.; Nyberg, K.; Vinneras, B. Inactivation of Ascaris eggs in source-separated urine and feces by ammonia at ambient temperatures. Appl. Environ. Microbiol. 2009, 75, 662–667. [Google Scholar] [CrossRef]
- Ghiglietti, R.; Genchi, C.; Di Matteo, L.; Calcaterra, E.; Colombi, A. Survival of Ascaris suum Eggs in Ammonia-Treated Wastewater Sludges. Bioresour. Technol. 1997, 59, 195–198. [Google Scholar] [CrossRef]
- Capizzi-Banas, S.; Deloge, M.; Remy, M.; Schwartzbrod, J. Liming as an Advanced Treatment for Sludge Sanitisation: Helminth Eggs Elimination—Ascaris Eggs as Model. Water Res. 2004, 38, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.K.; Phuc, P.D.; Konradsen, F.; Klank, L.T.; Dalsgaard, A. Survival of Ascaris Eggs and Hygienic Quality of Human Excreta in Vietnamese Composting Latrines. Environ. Health 2009, 8, 57. [Google Scholar] [CrossRef]
- Connelly, S.J.; Wolyniak, E.A.; Dieter, K.L.; Williamson, C.E.; Jellison, K.L. Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Appl. Environ. Microbiol. 2007, 73, 7277–7282. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Used Method | Detected Parasites | Country | Comments |
---|---|---|---|---|
Influent and effluent wastewater [49] | Multiplex real-time PCR | Giardia intestinalis Entamoeba dispar Dientamoeba fragilis | Sweden | The tested treatment plants used mechanical, chemical, and biological treatment. Two multiplex real-time PCR reactions were performed, the first one specific for Entamoeba histolytica, E. dispar, and D. fragilis, and the second one for Cryptosporidium parvum/hominis and G. intestinalis. |
Raw and treated wastewater [50] | Microscopy | Ascaris sp. Entamoeba coli Entamoeba histolytica/dispar Enterobius vermicularis Giardia sp. Hymenolepis nana Taenia sp. | Tunisia | The studied treatment plants used activated sludge treatment and waste stabilisation ponds. A modified Bailenger method was used to determine the presence of parasites. |
Raw and treated wastewater [51] | Microscopy | Ascaris sp. Toxocara sp. Capillaria sp. Hymenolepis nana Hymenolepis diminuta Spirometra spp. | Morocco | The tested treatment plants used natural lagoons during treatment. The concentration of parasite eggs dispersed in a biological sample was assessed using the Arther–Fitzgerald technique. |
Samples of influent and effluent wastewater and selected intermediate stages of wastewater treatment [54] | Optic microscopy and PCR techniques | Cryptosporidium spp. (Cryptosporidium hominis, Cryptosporidium parvum) Giardia duodenalis Entamoeba histolytica Entamoeba moshkovskii Entamoeba dispar | Spain | PCR techniques were performed to identify the presence of Crysptosporidium spp., Giardia duodenalis, and Entamoeba spp. Molecular techniques proved to be more sensitive in detecting parasites and allowed one to distinguish between the practically identical morphological species of Entamoeba histolytica/dispar/moshkovskii. |
Mouse or chicken liver [82] | Nested multiplex PCR | Toxocara canis Toxocara cati Ascaris suum | Japan | Both mouse and chicken livers were infected with parasites isolated from dogs (Toxocara canis), cats (Toxocara cati), and pigs (Ascaris suum). Multiplex PCR has been shown to be much more sensitive than the direct counting of larvae after tissue digestion. |
Fresh domestic wastewater–influent and effluent in up-flow Anaerobic Sludge Blanket laboratory reactor [93] | Optic microscopy | Ascaris lumbricoides Toxocara spp. Hymenoloepis nana Enterobious vermicularis | Peru | |
Raw and treated wastewater [94] | Microscopy | Ascaris lumbricoides Trichostrongylus spp. Enterobius vermicularis Ancylostoma duodenale Necator americanus Taenia spp. Hymenolepis nana Dicrocoelium dendriticum | Iran | In the treatment plants, activated sludge or stabilisation pond treatment was used. A modified Bailenger’s method was used. |
Faecal sludge or fresh wastewater samples [95] | Microscopy | Ascaris sp. Trichuris sp. hookworm Hymenolepis nana Hymenolepis diminuta Aspiculuris sp. Heterakis spumosa Trichosomoides crassicauda Calodium hepaticum Capilaria hepatica | India | Faecal sludge was collected from desludging trucks, and fresh sewage was collected from an apartment complex and a shared toilet. |
Raw, decanted, treated wastewater [96] | Microscopy | Giardia lamblia Entamoeba histolytica Entamoeba coli Strongles sp. Ancylostoma sp. Enterobius vermicularis Ascaris sp. Tichuris trichiura Capliaria sp. Fasciola hepatica Taenias sp. Hymenolepis nana Hymenolepis diminuta | Morocco | The treatment plants used anaerobic lagoons, infiltration–percolation, and, additionally, UV radiation in one of the treatment plants. Bailenger’s method was used for the parasitological analysis. |
Sewage sludge [97] | Microscopy | Ascaris sp. Capillaria sp. Enterobius vermicularis Fasciola hepatica Hymenolepis sp. Taenia sp. Toxocara sp. Trichuris sp. | Brazil | The activated sludge treatment method was used in the sewage treatment plants. The average precision of the method used in the tested samples was 26.3%. |
Sewage sludge [98] | Microscopy | Toxocara sp. Ascaris sp. Trichuris sp. | Poland | The treatment plants used mechanical–biological wastewater treatment. The method used to analyse parasites involved the use of polyelectrolytes. A viability assessment was performed after the incubation of the eggs in a moist chamber at a temperature of approximately 27 °C. |
Wastewater, sludge, and excreta processed at the laboratory [99] | Digital imaging system for identifying and quantifying selected parasites | Ascaris lumbricoides Taenia saginata Toxocara canis Trichuris trichiura Hymenolepis nana Hymenolepis diminuta Schistosoma mansoni | Three versions of the system were developed to increase the specificity and sensitivity of the method.The system was adapted to detect parasite eggs, not larvae. | |
Tap water, secondary treated and raw wastewater, and sludge samples [100] | Real-time PCR | Ancylostoma caninum | Australia | The performed real-time PCR was directed against Ancylostoma caninum. |
Raw wastewater, human faeces, and soil [101] | PMA-qPCR | Necator americanus Ascaris lumbricoides | Australia | The samples containing viable eggs were human faeces and soil samples. |
Sludge [102] | Microscopy | Toxocara canis Trichuris vulpis Trichuris suis Ascaris suum Hymenolepis diminuta | Eggs were added daily to the research samples, which were added to laboratory aerobic and anaerobic bench-top digestors. During the experiment, the eggs’ viability was checked after applying various factors. | |
Human faeces [103] | Multiplex quantitative PCR | Ancylostoma duodenale Ascaris lumbricoides Taenia saginata | Philippines | The first PCR reaction performed was specific for Ascaris lumbricoides, Ancylostoma duodenale, Necator americanus, and Taenia spp. Samples positive for Taenia spp. were subjected to a specific reaction for Taenia solium and Taenia saginata. |
Influent wastewater samples [104] | Droplet digital PCR | Cryptosporidium parvum | Optimisation of the ddPCR was performed, and the limit of detection for Cryptosporidium parvum using this method was determined to be 0.07 copies/μL (1.32 copies in a 20 μL reaction). A comparison of DNA isolation methods from Cryptosporidium parvum oocysts was conducted, revealing differences. | |
Influent wastewater [105] | ILLUMINA sequencing | Entamoeba moshkovskii Entamoeba coli Entamoeba dispar Entamoeba hartmanni Entamoeba histolytica Endolimax nana Iodamoeba bütschlii Blastocystis sp. Entamoeba histolytica | Sweden | |
Dewatered and thickened primary sludge [106] | Microscopy | Ascaris lombricoide Ancylostome duodenale Trichuris trichiura Capilaria spp. Hymenolepis nana Taenia saginata | Morocco | The viability of Ascaris eggs was tested during the co-composting of dewatered primary sludge with date palm waste. |
Wastewater before treatment [41] | Nested PCR Real-time PCR LAMP (loop-mediated isothermal amplification) | Echinococcus multilocularis | China | Using these methods, it was possible to detect Echinococcus multilocularis DNA in samples containing 20 eggs/L. The effectiveness of all the methods used in the study for detecting Echinococcus multilocularis was confirmed. |
Stool [107] | Modified Ziehl–Neelsen stain and Giemsa stain | Cryptosporidium parvum Blastocystis hominis Isospora Cyclospora caytenensis Entamoeba histolytica Giardia lamblia A. lumbricoides Taenia sp. Entrobious vermicularis Hymenolepis nana Strongyloides stercoralis | Egypt |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obuch-Woszczatyńska, O.; Bylińska, K.; Krzyżowska, M.; Korzekwa, K.; Bąska, P. Parasites in Sewage: Legal Requirements and Diagnostic Tools. Pathogens 2025, 14, 86. https://doi.org/10.3390/pathogens14010086
Obuch-Woszczatyńska O, Bylińska K, Krzyżowska M, Korzekwa K, Bąska P. Parasites in Sewage: Legal Requirements and Diagnostic Tools. Pathogens. 2025; 14(1):86. https://doi.org/10.3390/pathogens14010086
Chicago/Turabian StyleObuch-Woszczatyńska, Oliwia, Klaudia Bylińska, Małgorzata Krzyżowska, Karol Korzekwa, and Piotr Bąska. 2025. "Parasites in Sewage: Legal Requirements and Diagnostic Tools" Pathogens 14, no. 1: 86. https://doi.org/10.3390/pathogens14010086
APA StyleObuch-Woszczatyńska, O., Bylińska, K., Krzyżowska, M., Korzekwa, K., & Bąska, P. (2025). Parasites in Sewage: Legal Requirements and Diagnostic Tools. Pathogens, 14(1), 86. https://doi.org/10.3390/pathogens14010086