Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Strategy
2.2. Sample Collection and Parasitological Identification
2.3. Genotypic Confirmation and Molecular Characterization
2.4. Hematology and Serum Biochemistry
2.5. Single Cells Gel Electrophoresis
2.6. Statistical Analysis
3. Results
3.1. Parasitological Identification
3.2. Molecular Characterization
3.3. Correaltion of Parasitemia Loads and Oxidative Stress Profile
3.4. Single-Cell Gel Electrophoresis
3.5. Hematology and Serum Biochemistry
3.6. Impact of Oxidatice Stress Profile on Hematological Biomarkers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, M.U.; Ahmad, M.; Sultan, M.; Sohoo, I.; Ghimire, P.C.; Zahid, A.; Sarwar, A.; Farooq, M.; Sajjad, U.; Abdeshahian, P. Biogas production potential from livestock manure in Pakistan. Sustainability 2021, 13, 6751. [Google Scholar] [CrossRef]
- Rout, P.K.; Behera, B.K.; Rout, P.K.; Behera, B.K. Cattle and Buffaloes Farming. Sustain. Rumin. Livest. Manag. Mark. 2021, 77–115. [Google Scholar] [CrossRef]
- Aregawi, W.G.; Agga, G.E.; Abdi, R.D.; Büscher, P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasites Vectors 2019, 12, 67. [Google Scholar] [CrossRef]
- Hassan, M.D.; Castanha, R.C.G.; Wolfram, D. Scientometric analysis of global trypanosomiasis research: 1988–2017. J. Infect. Public Health 2020, 13, 514–520. [Google Scholar] [CrossRef]
- Hussain, R.; Khan, A.; Qayyum, A.; Abbas, T.; Ahmad, M.; Mohiuddin, M.; Mehmood, K. Clinico-hematological and oxidative stress status in Nili Ravi buffaloes infected with Trypanosoma evansi. Microb. Pathog. 2018, 123, 126–131. [Google Scholar] [CrossRef]
- Ereqat, S.; Nasereddin, A.; Al-Jawabreh, A.; Al-Jawabreh, H.; Al-Laham, N.; Abdeen, Z. Prevalence of Trypanosoma evansi in livestock in Palestine. Parasites Vectors 2020, 13, 21. [Google Scholar] [CrossRef]
- Metwally, D.M.; Al-Turaiki, I.M.; Altwaijry, N.; Alghamdi, S.Q.; Alanazi, A.D. Molecular identification of trypanosoma evansi isolated from arabian camels (camelus dromedarius) in Riyadh and Al-Qassim, Saudi Arabia. Animals 2021, 11, 1149. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Sagrillo, M.R.; de Sá, M.F.; Grando, T.H.; Souza, C.F.; de Brum, G.F.; da Luz, S.C.; Oliveira, S.S.; De Mello, A.L.; Nascimento, K. Relationship between DNA damage in liver, heart, spleen and total blood cells and disease pathogenesis of infected rats by Trypanosoma evansi. Exp. Parasitol. 2016, 161, 12–19. [Google Scholar] [CrossRef]
- Machado-Silva, A.; Cerqueira, P.G.; Grazielle-Silva, V.; Gadelha, F.R.; de Figueiredo Peloso, E.; Teixeira, S.M.R.; Machado, C.R. How Trypanosoma cruzi deals with oxidative stress: Antioxidant defence and DNA repair pathways. Mutat. Res. /Rev. Mutat. Res. 2016, 767, 8–22. [Google Scholar] [CrossRef]
- Cadet, J.; Davies, K.J. Oxidative DNA damage & repair: An introduction. Free Radic. Biol. Med. 2017, 107, 2–12. [Google Scholar]
- Paiva, C.N.; Medei, E.; Bozza, M.T. ROS and Trypanosoma cruzi: Fuel to infection, poison to the heart. PLoS Pathog. 2018, 14, e1006928. [Google Scholar] [CrossRef]
- Ahmad, W.; Sattar, A.; Ahmad, M.; Aziz, M.W.; Iqbal, A.; Tipu, M.Y.; Mushtaq, R.M.Z.; Rasool, N.; Ahmed, H.S.; Ahmad, M. Unveiling Oxidative Stress-Induced Genotoxicity and Its Alleviation through Selenium and Vitamin E Therapy in Naturally Infected Cattle with Lumpy Skin Disease. Vet. Sci. 2023, 10, 643. [Google Scholar] [CrossRef]
- de Oliveira, L.R.C.; Cezário, G.A.G.; de Lima, C.R.G.; Nicolete, V.C.; Peresi, E.; de Síbio, M.T.; Picka, M.C.M.; Calvi, S.A. DNA damage and nitric oxide production in mice following infection with L. chagasi. Mutat. Res. /Genet. Toxicol. Environ. Mutagen. 2011, 723, 177–181. [Google Scholar] [CrossRef]
- Hussain, S.; Mubeen, M.; Akram, W.; Ahmad, A.; Habib-ur-Rahman, M.; Ghaffar, A.; Amin, A.; Awais, M.; Farid, H.U.; Farooq, A. Study of land cover/land use changes using RS and GIS: A case study of Multan district, Pakistan. Environ. Monit. Assess. 2020, 192, 2. [Google Scholar] [CrossRef]
- Kish, L. Survey sampling. new york: John wesley & sons. Am Polit Sci Rev 1965, 59, 1025. [Google Scholar]
- Rao, K.A.; Kumari, G.D.; Latchumikanthan, A. Incidence of endoparasites in Murrah Buffaloes of Buffalo Research Station of West Godavari region of Andhra Pradesh. J. Zool. Entomol. 2020, 8, 1628–1630. [Google Scholar]
- Rani, M.F.; Sreenivasamurthy, G.; Kumar, M.U.; Kalyani, P. Microscopic detection of Trypanosoma evansi in canines. Pharma Innov. J 2022, 11, 4140–4142. [Google Scholar]
- Suprihati, E.; Suwanti, L.T.; Yudhana, A.; Kusumaningrum, A.I. Comparison of ITS-1 and TBR-1/2 primer sensitivity for the detection of Trypanosoma evansi local isolates in experimental rats using a polymerase chain reaction. Vet. World 2022, 15, 1772. [Google Scholar] [CrossRef]
- Abou El-Naga, T.; Barghash, S.; Mohammed, A.; Ashour, A.; Salama, M.S. Evaluation of (Rotat 1. 2-PCR) assays for identifying Egyptian Trypanosoma evansi DNA. Acta Parasitol. Glob. 2012, 3, 1–6. [Google Scholar]
- Newman, L.; Duffus, A.L.; Lee, C. Using the free program MEGA to build phylogenetic trees from molecular data. Am. Biol. Teach. 2016, 78, 608–612. [Google Scholar] [CrossRef]
- Durrani, A.Z.; Bashir, Z.; Mehmood, K.; Avais, M.; Akbar, H.; Ahmad, W.; Azeem, M. Use of physiological biomarkers in diagnosis along with field trials of different trypanisidal drugs in camels of Cholistan desert. Microb. Pathog. 2017, 108, 1–5. [Google Scholar] [CrossRef]
- Drupt, F. Colorimetric method for determination of albumin. Pharm. Biol. 1974, 9, 777–779. [Google Scholar]
- Reitman, S.; Frankel, S. Colorimetric method for determination of serum transaminase activity. Am. J. Clin. Pathol. 1975, 28, 56–68. [Google Scholar] [CrossRef]
- Kid, P.; King, E. Colorimetric determination of alkaline phosphatase activity. J. Clin. Pathol. 1954, 6, 322. [Google Scholar]
- Ahmad, W.; Shabbir, M.A.B.; Ahmad, M.; Omer, M.O.; Mushtaq, R.M.Z.; Aroosa, S.; Iqbal, A.; Majeed, A. Insights into the Prognostic Role of Serum Interleukin-6 and Hematobiochemical Alterations in Cattle during Recent Outbreaks of Lumpy Skin Disease in Lodhran District, Pakistan. Vaccines 2023, 11, 113. [Google Scholar] [CrossRef]
- Menaka, K.; Ramesh, A.; Thomas, B.; Kumari, N.S. Estimation of nitric oxide as an inflammatory marker in periodontitis. J. Indian Soc. Periodontol. 2009, 13, 75. [Google Scholar] [CrossRef]
- Nishikimi, M.; Rao, N.A.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commu. 1972, 46, 849–854. [Google Scholar] [CrossRef]
- Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y. Single cell gel/comet assay: Guidelines for in vitro and in vivo genetic toxicology testing. Environ. Mol. Mutagen. 2000, 35, 206–221. [Google Scholar] [CrossRef]
- Khan, I.A.; Khan, A.; Hussain, A.; Riaz, A.; Aziz, A. Hemato-biochemical alterations in cross bred cattle affected with bovine theileriosis in semi arid zone. Pak. Vet. J. 2011, 31, 137–140. [Google Scholar]
- Zahoor, J.; Kashif, M.; Nasir, A.; Bakhsh, M.; Qamar, M.; Sikandar, A.; Rehman, A. Molecular detection and therapeutic study of Trypanosoma brucei evansi from naturally infected horses in Punjab, Pakistan. Pol. J. Vet. Sci. 2022, 25, 429–435. [Google Scholar] [CrossRef]
- Tehseen, S.; Jahan, N.; Qamar, M.F.; Desquesnes, M.; Shahzad, M.I.; Deborggraeve, S.; Büscher, P. Parasitological, serological and molecular survey of Trypanosoma evansi infection in dromedary camels from Cholistan Desert, Pakistan. Parasites Vectors 2015, 8, 415. [Google Scholar] [CrossRef]
- Borges, A.R.; Engstler, M.; Wolf, M. 18S rRNA gene sequence-structure phylogeny of the Trypanosomatida (Kinetoplastea, Euglenozoa) with special reference to Trypanosoma. Eur. J. Protistol. 2021, 81, 125824. [Google Scholar] [CrossRef]
- Khan, W.; Hafeez, M.A.; Lateef, M.; Awais, M.; Wajid, A.; Shah, B.A.; Ali, S.; Asif, Z.; Ahmed, M.; Kakar, N. Parasitological, molecular, and epidemiological investigation of Trypanosoma evansi infection among dromedary camels in Balochistan province. Parasitol. Res. 2023, 122, 1833–1839. [Google Scholar] [CrossRef]
- Yasein, G.; Ashraf, K.; Naveed, U.; Rashid, M.I.; Shabbir, M.Z. First genetic evidence of Trypanosoma theileri in indigenous cattle in Southern Punjab province of Pakistan. Pak. Vet. J. 2022, 42, 322–327. [Google Scholar]
- Hussain, R.; Mehmood, K.; Abbas, R.Z.; Khan, I.; Siddique, A.B.; Masood, S.; Qadir, M.S.; Ishaq, H.M.; Akram, R.; Ghori, M.T. Epidemiology and patho-physiological studies in Trypanosoma evansi infected camels and buffaloes in Pakistan. Pak. J. Agric. Sci. 2021, 58, 711–718. [Google Scholar]
- Kumar, R.; Sarkhel, S.; Kumar, S.; Batra, K.; Sethi, K.; Jain, S.; Kumar, S.; Tripathi, B. Molecular characterization and phylogenetic analysis of Trypanosoma evansi from Northern India based on 18S ribosomal gene. Vet. Parasitol. Reg. Stud. Rep. 2019, 15, 100259. [Google Scholar] [CrossRef]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef]
- Gwozdzinski, K.; Pieniazek, A.; Gwozdzinski, L. Reactive oxygen species and their involvement in red blood cell damage in chronic kidney disease. Oxidative Med. Cell. Longev. 2021, 2021, 6639199. [Google Scholar] [CrossRef]
- Ammendolia, D.A.; Bement, W.M.; Brumell, J.H. Plasma membrane integrity: Implications for health and disease. BMC Biol. 2021, 19, 71. [Google Scholar] [CrossRef]
- Zhuang, H.; Yao, C.; Zhao, X.; Chen, X.; Yang, Y.; Huang, S.; Pan, L.; Du, A.; Yang, Y. DNA double-strand breaks in the Toxoplasma gondii-infected cells by the action of reactive oxygen species. Parasites Vectors 2020, 13, 490. [Google Scholar] [CrossRef]
- Rojas-Barón, L.; Hermosilla, C.; Taubert, A.; Velásquez, Z.D. Toxoplasma gondii infection-induced host cellular DNA damage is strain-dependent and leads to the activation of the ATM-dependent homologous recombination pathway. Front. Cell. Infect. Microbiol. 2024, 14, 1374659. [Google Scholar] [CrossRef] [PubMed]
- Taherimoghaddam, M.; Bahmanzadeh, M.; Maghsood, A.H.; Fallah, M.; Tapak, L.; Foroughi-Parvar, F. Toxoplasma gondii induced sperm DNA damage on the experimentally infected rats. J. Parasit. Dis. 2021, 45, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Florentino, P.T.; Mendes, D.; Vitorino, F.N.L.; Martins, D.J.; Cunha, J.P.; Mortara, R.A.; Menck, C.F. DNA damage and oxidative stress in human cells infected by Trypanosoma cruzi. PLoS Pathog. 2021, 17, e1009502. [Google Scholar] [CrossRef] [PubMed]
- Rose, E.; Carvalho, J.L.; Hecht, M. Mechanisms of DNA repair in Trypanosoma cruzi: What do we know so far? DNA Repair 2020, 91, 102873. [Google Scholar] [CrossRef]
- Kiral, F.; Sekkin, S.; Pasa, S.; Ertabaklar, H.; Ulutas, P.A.; Asici, G.S.E. Investigation of DNA damage and protein damage caused by oxidative stress in canine visceral leishmaniasis. Med. Weter Med. Pr. 2021, 77, 407–412. [Google Scholar] [CrossRef]
- Rezatabar, S.; Karimian, A.; Rameshknia, V.; Parsian, H.; Majidinia, M.; Kopi, T.A.; Bishayee, A.; Sadeghinia, A.; Yousefi, M.; Monirialamdari, M. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. J. Cell. Physiol. 2019, 234, 14951–14965. [Google Scholar] [CrossRef]
- Nian, L.; Xiaohua, L.; Rongcheng, L.; Song-Bai, L. Types of DNA damage and research progress. Nucleosides Nucleotides Nucleic Acids 2023, 43, 881–901. [Google Scholar] [CrossRef]
- Nastasi, C.; Mannarino, L.; D’Incalci, M. DNA damage response and immune defense. Int. J. Mol. Sci. 2020, 21, 7504. [Google Scholar] [CrossRef]
- Cipriani, D.S.; Borges, G.K.; Povaluk, A.P.; Stipp, M.C.; Casagrande, R.A.; Vogel, C.I.G.; Miletti, L.C.; Bastos-Pereira, A.L. Experimental Trypanosoma evansi infection induces pain along with oxidative stress, prevented by COX-2 inhibition. Exp. Parasitol. 2023, 247, 108477. [Google Scholar] [CrossRef]
- Vitenberga-Verza, Z.; Pilmane, M.; Šerstņova, K.; Melderis, I.; Gontar, Ł.; Kochański, M.; Drutowska, A.; Maróti, G.; Prieto-Simón, B. Identification of inflammatory and regulatory cytokines IL-1α-, IL-4-, IL-6-, IL-12-, IL-13-, IL-17A-, TNF-α-, and IFN-γ-producing cells in the milk of dairy cows with subclinical and clinical mastitis. Pathogens 2022, 11, 372. [Google Scholar] [CrossRef]
- Checa, J.; Aran, J.M. Reactive oxygen species: Drivers of physiological and pathological processes. J. Inflamm. Res. 2020, 13, 1057–1073. [Google Scholar] [CrossRef] [PubMed]
- Yehia, S.A.; Badr, A.M.; Bashtar, A.-R.; Ibrahim, M.A.-A.; Mousa, M.R.; Mostafa, N.A. Immune response, oxidative stress, and histological changes of Wistar rats after being administered with Parascaris equorum antigen. Sci. Rep. 2024, 14, 18069. [Google Scholar] [CrossRef] [PubMed]
- Alfituri, O.A.; Quintana, J.F.; MacLeod, A.; Garside, P.; Benson, R.A.; Brewer, J.M.; Mabbott, N.A.; Morrison, L.J.; Capewell, P. To the skin and beyond: The immune response to African trypanosomes as they enter and exit the vertebrate host. Front. Immunol. 2020, 11, 1250. [Google Scholar] [CrossRef]
- Wei, R.; Li, X.; Wang, X.; Zhang, N.; Wang, Y.; Zhang, X.; Gong, P.; Li, J. Trypanosoma evansi evades host innate immunity by releasing extracellular vesicles to activate TLR2-AKT signaling pathway. Virulence 2021, 12, 2017–2036. [Google Scholar] [CrossRef]
- Huang, D.; Jing, G.; Zhang, L.; Chen, C.; Zhu, S. Interplay among hydrogen sulfide, nitric oxide, reactive oxygen species, and mitochondrial DNA oxidative damage. Front. Plant Sci. 2021, 12, 701681. [Google Scholar] [CrossRef]
- Felizardo, A.A.; Caldas, I.S.; Mendonça, A.A.; Gonçalves, R.V.; Tana, F.L.; Almeida, L.A.; Novaes, R.D. Impact of Trypanosoma cruzi infection on nitric oxide synthase and arginase expression and activity in young and elderly mice. Free Radic. Biol. Med. 2018, 129, 227–236. [Google Scholar] [CrossRef]
- Martins Santos, F.; Carvalho de Macedo, G.; Teixeira Gomes Barreto, W.; Rodrigues Oliveira-Santos, L.G.; Martins Garcia, C.; Miranda Mourão, G.d.; Edith de Oliveira Porfírio, G.; Domenis Marino, E.; Rogério André, M.; Perles, L. Outcomes of Trypanosoma cruzi and Trypanosoma evansi infections on health of Southern coati (Nasua nasua), crab-eating fox (Cerdocyon thous), and ocelot (Leopardus pardalis) in the Brazilian Pantanal. PLoS ONE 2018, 13, e0201357. [Google Scholar] [CrossRef]
- Ogbu, C.; Nwachukwu, E.; Kalla, D.; Ukwu, H.; Ezea, J.; Onoja, S.; Onyeabor, A. Trypanosome infection in indigenous cattle breeds and their crossbred genotypes: Effect on haematological variables and assessment of trypanotolerance. Niger. J. Anim. Sci. 2023, 25, 56–77. [Google Scholar]
- Pawłowska, M.; Mila-Kierzenkowska, C.; Szczegielniak, J.; Woźniak, A. Oxidative stress in parasitic diseases—Reactive oxygen species as mediators of interactions between the host and the parasites. Antioxidants 2023, 13, 38. [Google Scholar] [CrossRef]
- Shoraba, M.; Shoulah, S.A.; Arnaout, F.; Selim, A. Equine trypanosomiasis: Molecular detection, hematological, and oxidative stress profiling. Vet. Med. Int. 2024, 2024, 6550276. [Google Scholar] [CrossRef]
- Stijlemans, B.; De Baetselier, P.; Magez, S.; Van Ginderachter, J.A.; De Trez, C. African trypanosomiasis-associated anemia: The contribution of the interplay between parasites and the mononuclear phagocyte system. Front. Immunol. 2018, 9, 218. [Google Scholar] [CrossRef] [PubMed]
Primers | Sequence | Amplicon Size | Reference |
---|---|---|---|
ITS-1 | F: 5′-CCGGAAGTTCACCGATATTG-3′ | 480 bp | [18] |
R:5′-TGCTGCGTTCTTCAACGAA-3′ | |||
RoTat 1.2 | F: 5′-GCGGGGTGTTTAAAGCAATA-3′ | 205 bp | [19] |
R: 5′-ATTAGTGCTGCGTGTGTTCG-3′ |
FST | ITS-1 | RoTat 1.2 | aOR (95%CI) | p-Value | |
---|---|---|---|---|---|
Gender | |||||
Female | 10 (8.62%) | 12 (10.34%) | 12 (10.34%) | * | 0.91 |
Male | 5 (9.8%) | 5 (9.8%) | 5 (9.8%) | 0.94 (0.31–2.82) | |
Age | |||||
<1 year | 3 (6%) | 5 (10%) | 5 (10%) | * | 0.8 |
>4 years | 6 (12.5%) | 6 (12.5%) | 6 (12.5%) | 1.3 (0.36–4.53) | |
1–4 years | 6 (8.7%) | 6 (8.7%) | 6 (8.7%) | 0.86 (0.25–2.98) |
Class 0 | Class 1 | Class 2 | Class 3 | Class 4 | GDI | p-Value | |
---|---|---|---|---|---|---|---|
Infected | 58.56% | 27.54% | 9.7% | 4.19% | 2.51% | 0.7 ± 0.04 | <0.0001 |
Healthy | 83.74% | 13.37% | 2.89% | 0% | 0% | 0.196 ± 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, W.; Tipu, M.Y.; Khan, M.u.R.; Akbar, H.; Anjum, A.A.; Omer, M.O. Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions. Pathogens 2025, 14, 66. https://doi.org/10.3390/pathogens14010066
Ahmad W, Tipu MY, Khan MuR, Akbar H, Anjum AA, Omer MO. Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions. Pathogens. 2025; 14(1):66. https://doi.org/10.3390/pathogens14010066
Chicago/Turabian StyleAhmad, Waqas, Muhammad Yasin Tipu, Muti ur Rehman Khan, Haroon Akbar, Aftab Ahmad Anjum, and Muhammad Ovais Omer. 2025. "Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions" Pathogens 14, no. 1: 66. https://doi.org/10.3390/pathogens14010066
APA StyleAhmad, W., Tipu, M. Y., Khan, M. u. R., Akbar, H., Anjum, A. A., & Omer, M. O. (2025). Molecular Characterization, Oxidative Stress-Mediated Genotoxicity, and Hemato-Biochemical Changes in Domestic Water Buffaloes Naturally Infected with Trypanosoma evansi Under Field Conditions. Pathogens, 14(1), 66. https://doi.org/10.3390/pathogens14010066