Trypanosoma cruzi: Genomic Diversity and Structure
Abstract
:1. Introduction to the Biology and Genetics of Trypanosoma cruzi
2. Genomic Variability of T. cruzi
2.1. Genetic Classification of T. cruzi
2.2. Strain Diversity
Strain | DTU | Size (Mb) | Contigs | Contig N50 (kb) | %GC | Date of Version | Sequencing Method | Reference |
---|---|---|---|---|---|---|---|---|
G | I | 25.17 | 5531 | 6.70 | 50 | 11-2018 | Roche 454 | [49] |
Dm28c | I | 27.35 | 1210 | 78.39 | 50.5 | 11-2013 | [46] | |
Dm28c | I | 53.27 | 636 | 317.64 | 51.5 | 05-2018 | PacBio | [55] |
Dm28 | I | 17.23 | 6541 | 3.66 | 48.5 | 07-2021 | Ion Torrent | [52] |
B.M. López | I | 18.51 | 5923 | 5.13 | 48.5 | 02-2020 | ||
Sylvio X10/1 | I | 38.59 | 27,019 | 2.31 | 51 | 10-2012 | Roche 454 + Illumina | [45] |
STIB980 | I | 27.90 | 400 | 165.58 | 50.5 | 11-2023 | Illumina + Nanopore | [60] |
Brazil clone A4 | I | 45.56 | 697 | 191.35 | 51.5 | 11-2020 | Illumina + PacBio | [59] |
Dm25 | I | 45.40 | 179 | 496.17 | 51.5 | 02-2024 | PacBio HiFi | [57] |
Arequipa | I | 19.05 | 10,332 | 1.91 | 51 | Roche 454 | [18] | |
Colombiana | I | 30.85 | 9547 | 4.90 | 51 | |||
S11 | II | 28.48 | 32,451 | 1.75 | 49 | 09-2018 | Illumina | [53] |
S154a | II | 19.27 | 17,529 | 1.72 | 49 | |||
S15 | II | 27.51 | 31,694 | 2.00 | 49 | |||
S162 | II | 27.30 | 30,605 | 1.85 | 49 | |||
S23b | II | 28.13 | 32,315 | 1.87 | 49 | |||
S44a | II | 17.19 | 16,687 | 2.16 | 49 | |||
S92a | II | 27.08 | 31,256 | 1.91 | 49 | |||
Y cl2 | II | 25.91 | 26,074 | 2.03 | 49 | |||
Y cl4 | II | 26.14 | 26,957 | 2.06 | 49 | |||
Y cl6 | II | 25.78 | 26,253 | 2.05 | 49 | |||
Y nc | II | 29.99 | 9164 | 5.13 | 50.5 | Roche 454 | [18] | |
Y | II | 39.04 | 9821 | 11.96 | 50 | 10-2017 | Illumina | [47] |
Y | II | 15.55 | 6942 | 2.89 | 50 | 07-2021 | Ion Torrent | [52] |
Y clone C6 | II | 47.22 | 477 | 396.94 | 51.5 | 11-2020 | Illumina + PacBio | [59] |
Berenice | II | 40.80 | 934 | 148.96 | 51 | 06-2020 | Illumina + Nanopore | [58] |
Ikiakarora | III | 18.49 | 11,096 | 2.19 | 48.5 | 02-2020 | Ion Torrent | [52] |
231 | III | 35.36 | 8469 | 5.30 | 48.6 | 01-2018 | Illumina | [48] |
SOL | V | 20.06 | 11,944 | 2.17 | 49.5 | 07-2021 | Ion Torrent | [52] |
Bug2148 | I/V | 55.16 | 929 | 200.36 | 51.5 | 10-2017 | PacBio | [47] |
SC43 | V | 79.9 | 1318 | 238.74 | 51.5 | 11-2020 | Illumina | [50] |
CL | VI | 26.77 | 6344 | 4.07 | 50.5 | 11-2018 | Roche 454 | [49] |
TCC | VI | 87.06 | 1236 | 264.20 | 51.5 | 05-2018 | PacBio | [55] |
Tulahuen | VI | 48.46 | 75 | 872.48 | 52 | 12-2023 | Nanopore | [56] |
CL Brener | VI | 19.53 | 11,101 | 2.3 | 49.5 | 07-2021 | Ion Torrent | [52] |
CL Brener | VI | 89.94 | 32,746 | 14.67 | 51.5 | 08-2005 | Sanger | [42] |
B7 | --- | 34.23 | 23,154 | 2.85 | 51 | 10-2012 | Roche 454 + Illumina | [51] |
Strain | DTU | Size (Mb) | Contigs | Contig N50 (kb) | %GC | Date of Version | Sequencing Method |
---|---|---|---|---|---|---|---|
JR cl4 | I | 41.48 | 18,103 | 7.41 | 51.5 | 01-2013 | Roche 454 |
Tula cl2 | I | 83.51 | 53,083 | 2.19 | 51.5 | 04-2013 | Roche 454 |
Dm28c | I | 50.93 | 1028 | 110.59 | 51.5 | 09-2017 | PacBio |
H1 | I | 27.34 | 11,257 | 16.44 | 49.5 | 02-2023 | Illumina + PacBio + Nanopore |
Esmeraldo cl3 | II | 38.08 | 20,187 | 5.35 | 51 | 01-2013 | Roche 454 |
3. Genomic Structure
3.1. Chromosomes and Ploidy
3.2. Genome Organization
3.3. Replication Origin
3.4. Chromatin, Transcription and Gene Regulation of T. cruzi
4. Multi-Gene Families of T. cruzi
4.1. Trans-Sialidases (TSs)
4.2. Mucin-Associated Surface Proteins (MASPs)
4.3. Mucins
4.4. DGF-1
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maslov, D.A.; Opperdoes, F.R.; Kostygov, A.Y.; Hashimi, H.; Lukeš, J.; Yurchenko, V. Recent Advances in Trypanosomatid Research: Genome Organization, Expression, Metabolism, Taxonomy and Evolution. Parasitology 2019, 146, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Lukeš, J.; Butenko, A.; Hashimi, H.; Maslov, D.A.; Votýpka, J.; Yurchenko, V. Trypanosomatids Are Much More than Just Trypanosomes: Clues from the Expanded Family Tree. Trends Parasitol. 2018, 34, 466–480. [Google Scholar] [CrossRef] [PubMed]
- Hajduk, S.; Ochsenreiter, T. RNA Editing in Kinetoplastids. RNA Biol. 2010, 7, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.P. Genome Evolution in Trypanosomatid Parasites. Parasitology 2015, 142 (Suppl. 1), S40–S56. [Google Scholar] [CrossRef]
- Kaufer, A.; Ellis, J.; Stark, D.; Barratt, J. The Evolution of Trypanosomatid Taxonomy. Parasit. Vectors 2017, 10, 287. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.C.F.; Godinho, J.L.P.; de Souza, W. Biology of Human Pathogenic Trypanosomatids: Epidemiology, Lifecycle and Ultrastructure. Subcell. Biochem. 2014, 74, 1–42. [Google Scholar] [CrossRef] [PubMed]
- Schwabl, P.; Imamura, H.; Van den Broeck, F.; Costales, J.A.; Maiguashca-Sánchez, J.; Miles, M.A.; Andersson, B.; Grijalva, M.J.; Llewellyn, M.S. Meiotic Sex in Chagas Disease Parasite Trypanosoma cruzi. Nat. Commun. 2019, 10, 3972. [Google Scholar] [CrossRef]
- Berry, A.S.F.; Salazar-Sánchez, R.; Castillo-Neyra, R.; Borrini-Mayorí, K.; Chipana-Ramos, C.; Vargas-Maquera, M.; Ancca-Juarez, J.; Náquira-Velarde, C.; Levy, M.Z.; Brisson, D.; et al. Sexual Reproduction in a Natural Trypanosoma cruzi Population. PLoS Negl. Trop. Dis. 2019, 13, e0007392. [Google Scholar] [CrossRef] [PubMed]
- Gaunt, M.W.; Yeo, M.; Frame, I.A.; Stothard, J.R.; Carrasco, H.J.; Taylor, M.C.; Mena, S.S.; Veazey, P.; Miles, G.A.J.; Acosta, N.; et al. Mechanism of Genetic Exchange in American Trypanosomes. Nature 2003, 421, 936–939. [Google Scholar] [CrossRef]
- de Paula Baptista, R.; D’Ávila, D.A.; Segatto, M.; do Valle, Í.F.; Franco, G.R.; Valadares, H.M.; Gontijo, E.D.; da Cunha Galvão, L.M.; Pena, S.D.; Chiari, E.; et al. Evidence of Substantial Recombination among Trypanosoma cruzi II Strains from Minas Gerais. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2014, 22, 183–191. [Google Scholar] [CrossRef]
- Minning, T.A.; Weatherly, D.B.; Flibotte, S.; Tarleton, R.L. Widespread, Focal Copy Number Variations (CNV) and Whole Chromosome Aneuploidies in Trypanosoma cruzi Strains Revealed by Array Comparative Genomic Hybridization. BMC Genom. 2011, 12, 139. [Google Scholar] [CrossRef] [PubMed]
- Messenger, L.A.; Miles, M.A. Evidence and Importance of Genetic Exchange among Field Populations of Trypanosoma cruzi. Acta Trop. 2015, 151, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Tibayrenc, M.; Ayala, F.J. Reproductive Clonality of Pathogens: A Perspective on Pathogenic Viruses, Bacteria, Fungi, and Parasitic Protozoa. Proc. Natl. Acad. Sci. USA 2012, 109, E3305–E3313. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Ayala, F.J. The Population Genetics of Trypanosoma cruzi Revisited in the Light of the Predominant Clonal Evolution Model. Acta Trop. 2015, 151, 156. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, J.D.; Llewellyn, M.S. Reproductive Clonality in Protozoan Pathogens—Truth or Artefact? Mol. Ecol. 2014, 23, 4195–4202. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Macedo, A.M. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life 2023, 13, 2339. [Google Scholar] [CrossRef]
- Machado, C.A.; Ayala, F.J. Nucleotide Sequences Provide Evidence of Genetic Exchange among Distantly Related Lineages of Trypanosoma cruzi. Proc. Natl. Acad. Sci. USA 2001, 98, 7396. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Rodrigues-Luiz, G.F.; Valdivia, H.O.; Baptista, R.P.; Mendes, T.A.O.; de Morais, G.L.; Guedes, R.; Macedo, A.M.; Bern, C.; Gilman, R.H.; et al. Chromosomal Copy Number Variation Reveals Differential Levels of Genomic Plasticity in Distinct Trypanosoma cruzi Strains. BMC Genom. 2015, 16, 499. [Google Scholar] [CrossRef]
- Souza, R.T.; Lima, F.M.; Barros, R.M.; Cortez, D.R.; Santos, M.F.; Cordero, E.M.; Ruiz, J.C.; Goldenberg, S.; Teixeira, M.M.G.; da Silveira, J.F. Genome Size, Karyotype Polymorphism and Chromosomal Evolution in Trypanosoma cruzi. PLoS ONE 2011, 6, e23042. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Dujardin, J.C.; Barnabé, C.; Brisse, S.; Timperman, G.; Venegas, J.; Pettersson, U.; Tibayrenc, M.; Solari, A. Chromosomal Size Variation in Trypanosoma cruzi Is Mainly Progressive and Is Evolutionarily Informative. Parasitology 2002, 124, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Lukes, J.; Guilbride, D.L.; Votýpka, J.; Zíková, A.; Benne, R.; Englund, P.T. Kinetoplast DNA Network: Evolution of an Improbable Structure. Eukaryot. Cell 2002, 1, 495–502. [Google Scholar] [CrossRef]
- Thomas, S.; Martinez, L.I.T.; Westenberger, S.J.; Sturm, N.R. A Population Study of the Minicircles in Trypanosoma cruzi: Predicting Guide RNAs in the Absence of Empirical RNA Editing. BMC Genom. 2007, 8, 133. [Google Scholar] [CrossRef]
- Gerasimov, E.S.; Zamyatnina, K.A.; Matveeva, N.S.; Rudenskaya, Y.A.; Kraeva, N.; Kolesnikov, A.A.; Yurchenko, V. Common Structural Patterns in the Maxicircle Divergent Region of Trypanosomatidae. Pathogens 2020, 9, 100. [Google Scholar] [CrossRef] [PubMed]
- Aphasizhev, R.; Aphasizheva, I. Mitochondrial RNA Editing in Trypanosomes: Small RNAs in Control. Biochimie 2014, 100, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Brenière, S.F.; Waleckx, E.; Barnabé, C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl. Trop. Dis. 2016, 10, e0004792. [Google Scholar] [CrossRef] [PubMed]
- Lewis, M.D.; Llewellyn, M.S.; Gaunt, M.W.; Yeo, M.; Carrasco, H.J.; Miles, M.A. Flow Cytometric Analysis and Microsatellite Genotyping Reveal Extensive DNA Content Variation in Trypanosoma cruzi Populations and Expose Contrasts between Natural and Experimental Hybrids. Int. J. Parasitol. 2009, 39, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Dvorak, J.A.; Hall, T.E.; Crane, M.S.; Engel, J.C.; McDaniel, J.P.; Uriegas, R. Trypanosoma cruzi: Flow Cytometric Analysis. I. Analysis of Total DNA/Organism by Means of Mithramycin-Induced Fluorescence. J. Protozool. 1982, 29, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Bartholomeu, D.C. Trypanosoma cruzi Genetic Diversity: Impact on Transmission Cycles and Chagas Disease. Mem. Inst. Oswaldo Cruz 2022, 117, e210193. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B. Trypanosoma cruzi Genetic Diversity: Something New for Something Known about Chagas Disease Manifestations, Serodiagnosis and Drug Sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef]
- Miles, M.A.; Llewellyn, M.S.; Lewis, M.D.; Yeo, M.; Baleela, R.; Fitzpatrick, S.; Gaunt, M.W.; Mauricio, I.L. The Molecular Epidemiology and Phylogeography of Trypanosoma cruzi and Parallel Research on Leishmania: Looking Back and to the Future. Parasitology 2009, 136, 1509–1528. [Google Scholar] [CrossRef] [PubMed]
- Souto, R.P.; Fernandes, O.; Macedo, A.M.; Campbell, D.A.; Zingales, B. DNA Markers Define Two Major Phylogenetic Lineages of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1996, 83, 141–152. [Google Scholar] [CrossRef]
- Tibayrenc, M.; Neubauer, K.; Barnabé, C.; Guerrini, F.; Skarecky, D.; Ayala, F.J. Genetic Characterization of Six Parasitic Protozoa: Parity between Random-Primer DNA Typing and Multilocus Enzyme Electrophoresis. Proc. Natl. Acad. Sci. USA 1993, 90, 1335–1339. [Google Scholar] [CrossRef]
- Robello, C.; Gamarro, F.; Castanys, S.; Alvarez-Valin, F. Evolutionary Relationships in Trypanosoma cruzi: Molecular Phylogenetics Supports the Existence of a New Major Lineage of Strains. Gene 2000, 246, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Brisse, S.; Barnabé, C.; Tibayrenc, M. Identification of Six Trypanosoma cruzi Phylogenetic Lineages by Random Amplified Polymorphic DNA and Multilocus Enzyme Electrophoresis. Int. J. Parasitol. 2000, 30, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Miles, M.A.; Campbell, D.A.; Tibayrenc, M.; Macedo, A.M.; Teixeira, M.M.G.; Schijman, A.G.; Llewellyn, M.S.; Lages-Silva, E.; Machado, C.R.; et al. The Revised Trypanosoma cruzi Subspecific Nomenclature: Rationale, Epidemiological Relevance and Research Applications. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2012, 12, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Zingales, B.; Andrade, S.G.; Briones, M.R.S.; Campbell, D.A.; Chiari, E.; Fernandes, O.; Guhl, F.; Lages-Silva, E.; Macedo, A.M.; Machado, C.R.; et al. A New Consensus for Trypanosoma cruzi Intraspecific Nomenclature: Second Revision Meeting Recommends TcI to TcVI. Mem. Inst. Oswaldo Cruz 2009, 104, 1051–1054. [Google Scholar] [CrossRef]
- Tibayrenc, M. Genetic Epidemiology of Parasitic Protozoa and Other Infectious Agents: The Need for an Integrated Approach. Int. J. Parasitol. 1998, 28, 85–104. [Google Scholar] [CrossRef]
- Lima, L.; Espinosa-Álvarez, O.; Ortiz, P.A.; Trejo-Varón, J.A.; Carranza, J.C.; Pinto, C.M.; Serrano, M.G.; Buck, G.A.; Camargo, E.P.; Teixeira, M.M.G. Genetic Diversity of Trypanosoma cruzi in Bats, and Multilocus Phylogenetic and Phylogeographical Analyses Supporting Tcbat as an Independent DTU (Discrete Typing Unit). Acta Trop. 2015, 151, 166–177. [Google Scholar] [CrossRef]
- Flores-López, C.A.; Mitchell, E.A.; Reisenman, C.E.; Sarkar, S.; Williamson, P.C.; Machado, C.A. Phylogenetic Diversity of Two Common Trypanosoma cruzi Lineages in the Southwestern United States. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2022, 99, 105251. [Google Scholar] [CrossRef]
- Barnabé, C.; Mobarec, H.I.; Jurado, M.R.; Cortez, J.A.; Brenière, S.F. Reconsideration of the Seven Discrete Typing Units within the Species Trypanosoma cruzi, a New Proposal of Three Reliable Mitochondrial Clades. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 39, 176–186. [Google Scholar] [CrossRef]
- Berná, L.; Greif, G.; Pita, S.; Faral-Tello, P.; Díaz-Viraqué, F.; Souza, R.D.C.M.D.; Vallejo, G.A.; Alvarez-Valin, F.; Robello, C. Maxicircle Architecture and Evolutionary Insights into Trypanosoma cruzi Complex. PLoS Negl. Trop. Dis. 2021, 15, e0009719. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Myler, P.J.; Bartholomeu, D.C.; Nilsson, D.; Aggarwal, G.; Tran, A.-N.; Ghedin, E.; Worthey, E.A.; Delcher, A.L.; Blandin, G.; et al. The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science 2005, 309, 409–415. [Google Scholar] [CrossRef]
- Reis-Cunha, J.L.; Bartholomeu, D.C. Trypanosoma cruzi Genome Assemblies: Challenges and Milestones of Assembling a Highly Repetitive and Complex Genome. Methods Mol. Biol. 2019, 1955, 1–22. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, N.M.; Myler, P.J.; Blandin, G.; Berriman, M.; Crabtree, J.; Aggarwal, G.; Caler, E.; Renauld, H.; Worthey, E.A.; Hertz-Fowler, C.; et al. Comparative Genomics of Trypanosomatid Parasitic Protozoa. Science 2005, 309, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Franzén, O.; Ochaya, S.; Sherwood, E.; Lewis, M.D.; Llewellyn, M.S.; Miles, M.A.; Andersson, B. Shotgun Sequencing Analysis of Trypanosoma cruzi I Sylvio X10/1 and Comparison with T. Cruzi VI CL Brener. PLoS Negl. Trop. Dis. 2011, 5, e984. [Google Scholar] [CrossRef] [PubMed]
- Grisard, E.C.; Teixeira, S.M.R.; de Almeida, L.G.P.; Stoco, P.H.; Gerber, A.L.; Talavera-López, C.; Lima, O.C.; Andersson, B.; de Vasconcelos, A.T.R. Trypanosoma cruzi Clone Dm28c Draft Genome Sequence. Genome Announc. 2014, 2, e01114. [Google Scholar] [CrossRef]
- Callejas-Hernández, F.; Rastrojo, A.; Poveda, C.; Gironès, N.; Fresno, M. Genomic Assemblies of Newly Sequenced Trypanosoma cruzi Strains Reveal New Genomic Expansion and Greater Complexity. Sci. Rep. 2018, 8, 14631. [Google Scholar] [CrossRef]
- Baptista, R.P.; Reis-Cunha, J.L.; DeBarry, J.D.; Chiari, E.; Kissinger, J.C.; Bartholomeu, D.C.; Macedo, A.M. Assembly of Highly Repetitive Genomes Using Short Reads: The Genome of Discrete Typing Unit III Trypanosoma cruzi Strain 231. Microb. Genom. 2018, 4, e000156. [Google Scholar] [CrossRef] [PubMed]
- Bradwell, K.R.; Koparde, V.N.; Matveyev, A.V.; Serrano, M.G.; Alves, J.M.P.; Parikh, H.; Huang, B.; Lee, V.; Espinosa-Alvarez, O.; Ortiz, P.A.; et al. Genomic Comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi Strains of High and Low Virulence. BMC Genom. 2018, 19, 770. [Google Scholar] [CrossRef] [PubMed]
- DeCuir, J.; Tu, W.; Dumonteil, E.; Herrera, C. Sequence of Trypanosoma cruzi Reference Strain SC43 Nuclear Genome and Kinetoplast Maxicircle Confirms a Strong Genetic Structure among Closely Related Parasite Discrete Typing Units. Genome 2020, 64, 525. [Google Scholar] [CrossRef]
- Franzén, O.; Talavera-López, C.; Ochaya, S.; Butler, C.E.; Messenger, L.A.; Lewis, M.D.; Llewellyn, M.S.; Marinkelle, C.J.; Tyler, K.M.; Miles, M.A.; et al. Comparative Genomic Analysis of Human Infective Trypanosoma cruzi Lineages with the Bat-Restricted Subspecies T. cruzi marinkellei. BMC Genom. 2012, 13, 531. [Google Scholar] [CrossRef] [PubMed]
- Gómez, I.; López, M.C.; Rastrojo, A.; Lorenzo-Díaz, F.; Requena, J.M.; Aguado, B.; Valladares, B.; Thomas, M.C. Variability of the Pr77 Sequence of L1Tc Retrotransposon among Six T. cruzi Strains Belonging to Different Discrete Typing Units (DTUs). Acta Trop. 2021, 222, 106053. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Baptista, R.P.; Rodrigues-Luiz, G.F.; Coqueiro-dos-Santos, A.; Valdivia, H.O.; de Almeida, L.V.; Cardoso, M.S.; D’Ávila, D.A.; Dias, F.H.C.; Fujiwara, R.T.; et al. Whole Genome Sequencing of Trypanosoma cruzi Field Isolates Reveals Extensive Genomic Variability and Complex Aneuploidy Patterns within TcII DTU. BMC Genom. 2018, 19, 816. [Google Scholar] [CrossRef] [PubMed]
- Camacho, E.; González-de la Fuente, S.; Rastrojo, A.; Peiró-Pastor, R.; Solana, J.C.; Tabera, L.; Gamarro, F.; Carrasco-Ramiro, F.; Requena, J.M.; Aguado, B. Complete Assembly of the Leishmania Donovani (HU3 Strain) Genome and Transcriptome Annotation. Sci. Rep. 2019, 9, 6127. [Google Scholar] [CrossRef]
- Berná, L.; Rodriguez, M.; Chiribao, M.L.; Parodi-Talice, A.; Pita, S.; Rijo, G.; Alvarez-Valin, F.; Robello, C. Expanding an Expanded Genome: Long-Read Sequencing of Trypanosoma cruzi. Microb. Genom. 2018, 4, e000177. [Google Scholar] [CrossRef] [PubMed]
- Hakim, J.M.C.; Gutierrez Guarnizo, S.A.; Málaga Machaca, E.; Gilman, R.H.; Mugnier, M.R. Whole-Genome Assembly of a Hybrid Trypanosoma cruzi Strain Assembled with Nanopore Sequencing Alone. G3 Genes Genomes Genet. 2024, 14, jkae076. [Google Scholar] [CrossRef]
- Hoyos Sanchez, M.C.; Ospina Zapata, H.S.; Suarez, B.D.; Ospina, C.; Barbosa, H.J.; Carranza Martinez, J.C.; Vallejo, G.A.; Urrea Montes, D.; Duitama, J. A Phased Genome Assembly of a Colombian Trypanosoma cruzi TcI Strain and the Evolution of Gene Families. Sci. Rep. 2024, 14, 2054. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Viraqué, F.; Pita, S.; Greif, G.; de Souza, R.d.C.M.; Iraola, G.; Robello, C. Nanopore Sequencing Significantly Improves Genome Assembly of the Protozoan Parasite Trypanosoma cruzi. Genome Biol. Evol. 2019, 11, 1952–1957. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Peng, D.; Baptista, R.P.; Li, Y.; Kissinger, J.C.; Tarleton, R.L. Strain-Specific Genome Evolution in Trypanosoma cruzi, the Agent of Chagas Disease. PLoS Pathog. 2021, 17, e1009254. [Google Scholar] [CrossRef] [PubMed]
- Fesser, A.; Beilstein, S.; Kaiser, M.; Schmidt, R.S.; Mäser, P. Trypanosoma cruzi STIB980: A TcI Strain for Drug Discovery and Reverse Genetics. Pathogens 2023, 12, 1217. [Google Scholar] [CrossRef] [PubMed]
- Majeau, A.; Murphy, L.; Herrera, C.; Dumonteil, E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Callejas-Hernández, F.; Gutierrez-Nogues, Á.; Rastrojo, A.; Gironès, N.; Fresno, M. Analysis of mRNA Processing at Whole Transcriptome Level, Transcriptomic Profile and Genome Sequence Refinement of Trypanosoma cruzi. Sci. Rep. 2019, 9, 17376. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Aslund, L.; Pettersson, U. Karyotype Variability in Trypanosoma cruzi. Parasitol. Today 1996, 12, 108–114. [Google Scholar] [CrossRef]
- Santos, M.R.; Cano, M.I.; Schijman, A.; Lorenzi, H.; Vázquez, M.; Levin, M.J.; Ramirez, J.L.; Brandão, A.; Degrave, W.M.; da Silveira, J.F. The Trypanosoma cruzi Genome Project: Nuclear Karyotype and Gene Mapping of Clone CL Brener. Mem. Inst. Oswaldo Cruz 1997, 92, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Henriksson, J.; Porcel, B.; Rydåker, M.; Ruiz, A.; Sabaj, V.; Galanti, N.; Cazzulo, J.J.; Frasch, A.C.; Pettersson, U. Chromosome Specific Markers Reveal Conserved Linkage Groups in Spite of Extensive Chromosomal Size Variation in Trypanosoma cruzi. Mol. Biochem. Parasitol. 1995, 73, 63–74. [Google Scholar] [CrossRef]
- Vargas, N.; Pedroso, A.; Zingales, B. Chromosomal Polymorphism, Gene Synteny and Genome Size in T. cruzi I and T. cruzi II Groups. Mol. Biochem. Parasitol. 2004, 138, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, D.B.; Boehlke, C.; Tarleton, R.L. Chromosome Level Assembly of the Hybrid Trypanosoma cruzi Genome. BMC Genom. 2009, 10, 255. [Google Scholar] [CrossRef]
- Parmar, J.J.; Woringer, M.; Zimmer, C. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annu. Rev. Biophys. 2019, 48, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Downing, T.; Imamura, H.; Decuypere, S.; Clark, T.G.; Coombs, G.H.; Cotton, J.A.; Hilley, J.D.; de Doncker, S.; Maes, I.; Mottram, J.C.; et al. Whole Genome Sequencing of Multiple Leishmania Donovani Clinical Isolates Provides Insights into Population Structure and Mechanisms of Drug Resistance. Genome Res. 2011, 21, 2143–2156. [Google Scholar] [CrossRef]
- Dujardin, J.-C.; Mannaert, A.; Durrant, C.; Cotton, J.A. Mosaic Aneuploidy in Leishmania: The Perspective of Whole Genome Sequencing. Trends Parasitol. 2014, 30, 554–555. [Google Scholar] [CrossRef] [PubMed]
- Mannaert, A.; Downing, T.; Imamura, H.; Dujardin, J.-C. Adaptive Mechanisms in Pathogens: Universal Aneuploidy in Leishmania. Trends Parasitol. 2012, 28, 370–376. [Google Scholar] [CrossRef]
- Almeida, L.V.; Coqueiro-Dos-Santos, A.; Rodriguez-Luiz, G.F.; McCulloch, R.; Bartholomeu, D.C.; Reis-Cunha, J.L. Chromosomal Copy Number Variation Analysis by next Generation Sequencing Confirms Ploidy Stability in Trypanosoma brucei Subspecies. Microb. Genom. 2018, 4, e000223. [Google Scholar] [CrossRef] [PubMed]
- Reis-Cunha, J.L.; Valdivia, H.O.; Bartholomeu, D.C. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr. Genom. 2018, 19, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.L. An Evolutionary View of Trypanosoma cruzi Telomeres. Front. Cell. Infect. Microbiol. 2019, 9, 439. [Google Scholar] [CrossRef]
- Kim, D.; Chiurillo, M.A.; El-Sayed, N.; Jones, K.; Santos, M.R.M.; Porcile, P.E.; Andersson, B.; Myler, P.; da Silveira, J.F.; Ramírez, J.L. Telomere and Subtelomere of Trypanosoma cruzi Chromosomes Are Enriched in (Pseudo) Genes of Retrotransposon Hot Spot and Trans-Sialidase-like Gene Families: The Origins of T. cruzi Telomeres. Gene 2005, 346, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Azuaje, F.J.; Ramirez, J.L.; Da Silveira, J.F. In Silico, Biologically-Inspired Modelling of Genomic Variation Generation in Surface Proteins of Trypanosoma cruzi. Kinetoplastid Biol. Dis. 2007, 6, 6. [Google Scholar] [CrossRef]
- Dreesen, O.; Li, B.; Cross, G.A.M. Telomere Structure and Function in Trypanosomes: A Proposal. Nat. Rev. Microbiol. 2007, 5, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Berná, L.; Pita, S.; Chiribao, M.L.; Parodi-Talice, A.; Alvarez-Valin, F.; Robello, C. Biology of the Trypanosoma cruzi Genome. In Biology of Trypanosoma cruzi; IntechOpen: London, UK, 2019; ISBN 978-1-83968-204-9. [Google Scholar]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes 2020, 11, 1196. [Google Scholar] [CrossRef] [PubMed]
- Atwood, J.A.; Weatherly, D.B.; Minning, T.A.; Bundy, B.; Cavola, C.; Opperdoes, F.R.; Orlando, R.; Tarleton, R.L. The Trypanosoma cruzi Proteome. Science 2005, 309, 473–476. [Google Scholar] [CrossRef]
- Herreros-Cabello, A.; Callejas-Hernández, F.; Fresno, M.; Gironès, N. Comparative Proteomic Analysis of Trypomastigotes from Trypanosoma cruzi Strains with Different Pathogenicity. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2019, 76, 104041. [Google Scholar] [CrossRef] [PubMed]
- Avila, C.C.; Mule, S.N.; Rosa-Fernandes, L.; Viner, R.; Barisón, M.J.; Costa-Martins, A.G.; de Oliveira, G.S.; Teixeira, M.M.G.; Marinho, C.R.F.; Silber, A.M.; et al. Proteome-Wide Analysis of Trypanosoma cruzi Exponential and Stationary Growth Phases Reveals a Subcellular Compartment-Specific Regulation. Genes 2018, 9, 413. [Google Scholar] [CrossRef] [PubMed]
- de Godoy, L.M.F.; Marchini, F.K.; Pavoni, D.P.; Rampazzo, R.d.C.P.; Probst, C.M.; Goldenberg, S.; Krieger, M.A. Quantitative Proteomics of Trypanosoma cruzi during Metacyclogenesis. Proteomics 2012, 12, 2694–2703. [Google Scholar] [CrossRef] [PubMed]
- Kudla, G.; Helwak, A.; Lipinski, L. Gene Conversion and GC-Content Evolution in Mammalian Hsp70. Mol. Biol. Evol. 2004, 21, 1438–1444. [Google Scholar] [CrossRef] [PubMed]
- Galtier, N. Gene Conversion Drives GC Content Evolution in Mammalian Histones. Trends Genet. TIG 2003, 19, 65–68. [Google Scholar] [CrossRef]
- Chiurillo, M.A.; Cano, I.; Da Silveira, J.F.; Ramirez, J.L. Organization of Telomeric and Sub-Telomeric Regions of Chromosomes from the Protozoan Parasite Trypanosoma cruzi. Mol. Biochem. Parasitol. 1999, 100, 173–183. [Google Scholar] [CrossRef]
- Moraes Barros, R.R.; Marini, M.M.; Antônio, C.R.; Cortez, D.R.; Miyake, A.M.; Lima, F.M.; Ruiz, J.C.; Bartholomeu, D.C.; Chiurillo, M.A.; Ramirez, J.L.; et al. Anatomy and Evolution of Telomeric and Subtelomeric Regions in the Human Protozoan Parasite Trypanosoma cruzi. BMC Genom. 2012, 13, 229. [Google Scholar] [CrossRef]
- de Araujo, C.B.; da Cunha, J.P.C.; Inada, D.T.; Damasceno, J.; Lima, A.R.J.; Hiraiwa, P.; Marques, C.; Gonçalves, E.; Nishiyama-Junior, M.Y.; McCulloch, R.; et al. Replication Origin Location Might Contribute to Genetic Variability in Trypanosoma cruzi. BMC Genom. 2020, 21, 414. [Google Scholar] [CrossRef]
- de Araujo, C.B.; Calderano, S.G.; Elias, M.C. The Dynamics of Replication in Trypanosoma cruzi Parasites by Single-Molecule Analysis. J. Eukaryot. Microbiol. 2019, 66, 514–518. [Google Scholar] [CrossRef]
- Gonçalves, C.S.; Ávila, A.R.; de Souza, W.; Motta, M.C.M.; Cavalcanti, D.P. Revisiting the Trypanosoma cruzi Metacyclogenesis: Morphological and Ultrastructural Analyses during Cell Differentiation. Parasit. Vectors 2018, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.C.; Marques-Porto, R.; Freymüller, E.; Schenkman, S. Transcription Rate Modulation through the Trypanosoma cruzi Life Cycle Occurs in Parallel with Changes in Nuclear Organisation. Mol. Biochem. Parasitol. 2001, 112, 79–90. [Google Scholar] [CrossRef]
- Ferreira, L.R.P.; Dossin, F.d.M.; Ramos, T.C.; Freymüller, E.; Schenkman, S. Active Transcription and Ultrastructural Changes during Trypanosoma cruzi Metacyclogenesis. An. Acad. Bras. Cienc. 2008, 80, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.J.; Silva, H.G.d.S.; Poubel, S.; Rosón, J.N.; de Lima, L.P.O.; Costa-Silva, H.M.; Gonçalves, C.S.; Galante, P.A.F.; Holetz, F.; Motta, M.C.M.M.; et al. Open Chromatin Analysis in Trypanosoma cruzi Life Forms Highlights Critical Differences in Genomic Compartments and Developmental Regulation at tDNA Loci. Epigenetics Chromatin 2022, 15, 22. [Google Scholar] [CrossRef]
- Díaz-Viraqué, F.; Chiribao, M.L.; Libisch, M.G.; Robello, C. Genome-Wide Chromatin Interaction Map for Trypanosoma cruzi. Nat. Microbiol. 2023, 8, 2103. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.R.; Tschudi, C.; Ullu, E. A Common Pyrimidine-Rich Motif Governs Trans-Splicing and Polyadenylation of Tubulin Polycistronic Pre-mRNA in Trypanosomes. Genes Dev. 1994, 8, 491–501. [Google Scholar] [CrossRef]
- Chávez, S.; Urbaniak, M.D.; Benz, C.; Smircich, P.; Garat, B.; Sotelo-Silveira, J.R.; Duhagon, M.A. Extensive Translational Regulation through the Proliferative Transition of Trypanosoma cruzi Revealed by Multi-Omics. mSphere 2021, 6, e0036621. [Google Scholar] [CrossRef] [PubMed]
- Araújo, P.R.; Teixeira, S.M. Regulatory Elements Involved in the Post-Transcriptional Control of Stage-Specific Gene Expression in Trypanosoma cruzi: A Review. Mem. Inst. Oswaldo Cruz 2011, 106, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Lima, A.R.J.; de Araujo, C.B.; Bispo, S.; Patané, J.; Silber, A.M.; Elias, M.C.; da Cunha, J.P.C. Nucleosome Landscape Reflects Phenotypic Differences in Trypanosoma cruzi Life Forms. PLoS Pathog. 2021, 17, e1009272. [Google Scholar] [CrossRef] [PubMed]
- Rosón, J.N.; Vitarelli, M.d.O.; Costa-Silva, H.M.; Pereira, K.S.; Pires, D.d.S.; Lopes, L.d.S.; Cordeiro, B.; Kraus, A.J.; Cruz, K.N.T.; Calderano, S.G.; et al. H2B.V Demarcates Divergent Strand-Switch Regions, Some tDNA Loci, and Genome Compartments in Trypanosoma cruzi and Affects Parasite Differentiation and Host Cell Invasion. PLoS Pathog. 2022, 18, e1009694. [Google Scholar] [CrossRef]
- Nunes, V.S.; Moretti, N.S.; da Silva, M.S.; Elias, M.C.; Janzen, C.J.; Schenkman, S. Trimethylation of Histone H3K76 by Dot1B Enhances Cell Cycle Progression after Mitosis in Trypanosoma cruzi. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118694. [Google Scholar] [CrossRef]
- Martínez-Calvillo, S.; Vizuet-de-Rueda, J.C.; Florencio-Martínez, L.E.; Manning-Cela, R.G.; Figueroa-Angulo, E.E. Gene Expression in Trypanosomatid Parasites. J. Biomed. Biotechnol. 2010, 2010, 525241. [Google Scholar] [CrossRef]
- Obado, S.O.; Bot, C.; Nilsson, D.; Andersson, B.; Kelly, J.M. Repetitive DNA Is Associated with Centromeric Domains in Trypanosoma brucei but Not Trypanosoma cruzi. Genome Biol. 2007, 8, R37. [Google Scholar] [CrossRef] [PubMed]
- Obado, S.O.; Taylor, M.C.; Wilkinson, S.R.; Bromley, E.V.; Kelly, J.M. Functional Mapping of a Trypanosome Centromere by Chromosome Fragmentation Identifies a 16-Kb GC-Rich Transcriptional “Strand-Switch” Domain as a Major Feature. Genome Res. 2005, 15, 36. [Google Scholar] [CrossRef] [PubMed]
- Smircich, P.; El-Sayed, N.M.; Garat, B. Intrinsic DNA Curvature in Trypanosomes. BMC Res. Notes 2017, 10, 585. [Google Scholar] [CrossRef] [PubMed]
- Günzl, A. The Pre-mRNA Splicing Machinery of Trypanosomes: Complex or Simplified? Eukaryot. Cell 2010, 9, 1159. [Google Scholar] [CrossRef] [PubMed]
- De Gaudenzi, J.G.; Noé, G.; Campo, V.A.; Frasch, A.C.; Cassola, A. Gene Expression Regulation in Trypanosomatids. Essays Biochem. 2011, 51, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Rastrojo, A.; Carrasco-Ramiro, F.; Martín, D.; Crespillo, A.; Reguera, R.M.; Aguado, B.; Requena, J.M. The Transcriptome of Leishmania Major in the Axenic Promastigote Stage: Transcript Annotation and Relative Expression Levels by RNA-Seq. BMC Genom. 2013, 14, 223. [Google Scholar] [CrossRef] [PubMed]
- Kolev, N.G.; Franklin, J.B.; Carmi, S.; Shi, H.; Michaeli, S.; Tschudi, C. The Transcriptome of the Human Pathogen Trypanosoma Brucei at Single-Nucleotide Resolution. PLoS Pathog. 2010, 6, e1001090. [Google Scholar] [CrossRef] [PubMed]
- Pech-Canul, Á.d.l.C.; Monteón, V.; Solís-Oviedo, R.-L. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J. Parasitol. Res. 2017, 2017, 3751403. [Google Scholar] [CrossRef]
- Santi-Rocca, J.; Fernandez-Cortes, F.; Chillón-Marinas, C.; González-Rubio, M.-L.; Martin, D.; Gironès, N.; Fresno, M. A Multi-Parametric Analysis of Trypanosoma cruzi Infection: Common Pathophysiologic Patterns beyond Extreme Heterogeneity of Host Responses. Sci. Rep. 2017, 7, 8893. [Google Scholar] [CrossRef] [PubMed]
- Poveda, C.; Herreros-Cabello, A.; Callejas-Hernández, F.; Osuna-Pérez, J.; Maza, M.C.; Chillón-Marinas, C.; Calderón, J.; Stamatakis, K.; Fresno, M.; Gironès, N. Interaction of Signaling Lymphocytic Activation Molecule Family 1 (SLAMF1) Receptor with Trypanosoma cruzi Is Strain-Dependent and Affects NADPH Oxidase Expression and Activity. PLoS Negl. Trop. Dis. 2020, 14, e0008608. [Google Scholar] [CrossRef]
- De Pablos, L.M.; Osuna, A. Multigene Families in Trypanosoma cruzi and Their Role in Infectivity. Infect. Immun. 2012, 80, 2258–2264. [Google Scholar] [CrossRef] [PubMed]
- Chiurillo, M.A.; Cortez, D.R.; Lima, F.M.; Cortez, C.; Ramírez, J.L.; Martins, A.G.; Serrano, M.G.; Teixeira, M.M.G.; da Silveira, J.F. The Diversity and Expansion of the Trans-Sialidase Gene Family Is a Common Feature in Trypanosoma cruzi Clade Members. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2016, 37, 266–274. [Google Scholar] [CrossRef]
- Lantos, A.B.; Carlevaro, G.; Araoz, B.; Ruiz Diaz, P.; Camara, M.d.l.M.; Buscaglia, C.A.; Bossi, M.; Yu, H.; Chen, X.; Bertozzi, C.R.; et al. Sialic Acid Glycobiology Unveils Trypanosoma cruzi Trypomastigote Membrane Physiology. PLoS Pathog. 2016, 12, e1005559. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, K.S.; Vasconcellos, C.I.; Soares, R.P.; Mendes, M.T.; Ellis, C.C.; Aguilera-Flores, M.; de Almeida, I.C.; Schenkman, S.; Iwai, L.K.; Torrecilhas, A.C. Proteomic Analysis Reveals Different Composition of Extracellular Vesicles Released by Two Trypanosoma cruzi Strains Associated with Their Distinct Interaction with Host Cells. J. Extracell. Vesicles 2018, 7, 1463779. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Eichinger, D.; Pereira, M.E.; Nussenzweig, V. Structural and Functional Properties of Trypanosoma Trans-Sialidase. Annu. Rev. Microbiol. 1994, 48, 499–523. [Google Scholar] [CrossRef] [PubMed]
- Frasch, A.C. Functional Diversity in the Trans-Sialidase and Mucin Families in Trypanosoma cruzi. Parasitol. Today 2000, 16, 282–286. [Google Scholar] [CrossRef]
- Pereira, M.E.A.; Loures, M.A.; Villalta, F.; Andrade, A.F.B. Lectin Receptors as Markers for Trypanosoma cruzi. Developmental Stages and a Study of the Interaction of Wheat Germ Agglutinin with Sialic Acid Residues on Epimastigote Cells. J. Exp. Med. 1980, 152, 1375–1392. [Google Scholar] [CrossRef]
- Pereira-Chioccola, V.L.; Acosta-Serrano, A.; Correia de Almeida, I.; Ferguson, M.A.; Souto-Padron, T.; Rodrigues, M.M.; Travassos, L.R.; Schenkman, S. Mucin-like Molecules Form a Negatively Charged Coat That Protects Trypanosoma cruzi Trypomastigotes from Killing by Human Anti-Alpha-Galactosyl Antibodies. J. Cell Sci. 2000, 113 Pt 7, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Nardy, A.F.F.R.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma cruzi Trans-Sialidase on the Escape from Host Immune Surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.E. A Developmentally Regulated Neuraminidase Activity in Trypanosoma cruzi. Science 1983, 219, 1444–1446. [Google Scholar] [CrossRef] [PubMed]
- Freitas, L.M.; dos Santos, S.L.; Rodrigues-Luiz, G.F.; Mendes, T.A.O.; Rodrigues, T.S.; Gazzinelli, R.T.; Teixeira, S.M.R.; Fujiwara, R.T.; Bartholomeu, D.C. Genomic Analyses, Gene Expression and Antigenic Profile of the Trans-Sialidase Superfamily of Trypanosoma cruzi Reveal an Undetected Level of Complexity. PLoS ONE 2011, 6, e25914. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.A.; Freire-de-Lima, L.; Penha, L.L.; Dias, W.B.; Todeschini, A.R. Trypanosoma cruzi Trans-Sialidase: Structural Features and Biological Implications. Subcell. Biochem. 2014, 74, 181–201. [Google Scholar] [CrossRef] [PubMed]
- Bartholomeu, D.C.; Cerqueira, G.C.; Leão, A.C.A.; daRocha, W.D.; Pais, F.S.; Macedo, C.; Djikeng, A.; Teixeira, S.M.R.; El-Sayed, N.M. Genomic Organization and Expression Profile of the Mucin-Associated Surface Protein (Masp) Family of the Human Pathogen Trypanosoma cruzi. Nucleic Acids Res. 2009, 37, 3407. [Google Scholar] [CrossRef] [PubMed]
- Bayer-Santos, E.; Aguilar-Bonavides, C.; Rodrigues, S.P.; Cordero, E.M.; Marques, A.F.; Varela-Ramirez, A.; Choi, H.; Yoshida, N.; da Silveira, J.F.; Almeida, I.C. Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins. J. Proteome Res. 2013, 12, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Seco-Hidalgo, V.; De Pablos, L.M.; Osuna, A. Transcriptional and Phenotypical Heterogeneity of Trypanosoma cruzi Cell Populations. Open Biol. 2015, 5, 150190. [Google Scholar] [CrossRef]
- dos Santos, S.L.; Freitas, L.M.; Lobo, F.P.; Rodrigues-Luiz, G.F.; Mendes, T.A.d.O.; Oliveira, A.C.S.; Andrade, L.O.; Chiari, E.; Gazzinelli, R.T.; Teixeira, S.M.R.; et al. The MASP Family of Trypanosoma cruzi: Changes in Gene Expression and Antigenic Profile during the Acute Phase of Experimental Infection. PLoS Negl. Trop. Dis. 2012, 6, e1779. [Google Scholar] [CrossRef]
- Chuenkova, M.V.; PereiraPerrin, M. Chagas’ Disease Parasite Promotes Neuron Survival and Differentiation through TrkA Nerve Growth Factor Receptor. J. Neurochem. 2004, 91, 385–394. [Google Scholar] [CrossRef]
- Espinoza, B.; Martínez, I.; Martínez-Velasco, M.L.; Rodríguez-Sosa, M.; González-Canto, A.; Vázquez-Mendoza, A.; Terrazas, L.I. Role of a 49 kDa Trypanosoma cruzi Mucin-Associated Surface Protein (MASP49) during the Infection Process and Identification of a Mammalian Cell Surface Receptor. Pathogens 2023, 12, 105. [Google Scholar] [CrossRef] [PubMed]
- Leão, A.C.; Viana, L.A.; Fortes de Araujo, F.; de Lourdes Almeida, R.; Freitas, L.M.; Coqueiro-Dos-Santos, A.; da Silveira-Lemos, D.; Cardoso, M.S.; Reis-Cunha, J.L.; Teixeira-Carvalho, A.; et al. Antigenic Diversity of MASP Gene Family of Trypanosoma cruzi. Microbes Infect. 2022, 24, 104982. [Google Scholar] [CrossRef] [PubMed]
- Díaz Lozano, I.M.; De Pablos, L.M.; Longhi, S.A.; Zago, M.P.; Schijman, A.G.; Osuna, A. Immune Complexes in Chronic Chagas Disease Patients Are Formed by Exovesicles from Trypanosoma cruzi Carrying the Conserved MASP N-Terminal Region. Sci. Rep. 2017, 7, 44451. [Google Scholar] [CrossRef] [PubMed]
- De Pablos, L.M.; Díaz Lozano, I.M.; Jercic, M.I.; Quinzada, M.; Giménez, M.J.; Calabuig, E.; Espino, A.M.; Schijman, A.G.; Zulantay, I.; Apt, W.; et al. The C-Terminal Region of Trypanosoma cruzi MASPs Is Antigenic and Secreted via Exovesicles. Sci. Rep. 2016, 6, 27293. [Google Scholar] [CrossRef]
- Acosta-Serrano, A.; Almeida, I.C.; Freitas-Junior, L.H.; Yoshida, N.; Schenkman, S. The Mucin-like Glycoprotein Super-Family of Trypanosoma cruzi: Structure and Biological Roles. Mol. Biochem. Parasitol. 2001, 114, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Schenkman, S.; Ferguson, M.A.; Heise, N.; de Almeida, M.L.; Mortara, R.A.; Yoshida, N. Mucin-like Glycoproteins Linked to the Membrane by Glycosylphosphatidylinositol Anchor Are the Major Acceptors of Sialic Acid in a Reaction Catalyzed by Trans-Sialidase in Metacyclic Forms of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1993, 59, 293–303. [Google Scholar] [CrossRef]
- Cánepa, G.E.; Mesías, A.C.; Yu, H.; Chen, X.; Buscaglia, C.A. Structural Features Affecting Trafficking, Processing, and Secretion of Trypanosoma cruzi Mucins. J. Biol. Chem. 2012, 287, 26365–26376. [Google Scholar] [CrossRef]
- Bunkofske, M.E.; Perumal, N.; White, B.; Strauch, E.-M.; Tarleton, R. Epitopes in the GPI Attachment Signal Peptide of Trypanosoma cruzi Mucin Proteins Generate Robust but Delayed and Nonprotective CD8+ T Cell Responses. J. Immunol. 2023, 210, 420. [Google Scholar] [CrossRef] [PubMed]
- Buscaglia, C.A.; Campo, V.A.; Frasch, A.C.C.; Di Noia, J.M. Trypanosoma cruzi Surface Mucins: Host-Dependent Coat Diversity. Nat. Rev. Microbiol. 2006, 4, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Mucci, J.; Lantos, A.B.; Buscaglia, C.A.; Leguizamón, M.S.; Campetella, O. The Trypanosoma cruzi Surface, a Nanoscale Patchwork Quilt. Trends Parasitol. 2016, 33, 102. [Google Scholar] [CrossRef]
- Campo, V.; Di Noia, J.M.; Buscaglia, C.A.; Agüero, F.; Sánchez, D.O.; Frasch, A.C.C. Differential Accumulation of Mutations Localized in Particular Domains of the Mucin Genes Expressed in the Vertebrate Host Stage of Trypanosoma cruzi. Mol. Biochem. Parasitol. 2004, 133, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Soares, R.P.; Torrecilhas, A.C.; Assis, R.R.; Rocha, M.N.; Moura e Castro, F.A.; Freitas, G.F.; Murta, S.M.; Santos, S.L.; Marques, A.F.; Almeida, I.C.; et al. Intraspecies Variation in Trypanosoma cruzi GPI-Mucins: Biological Activities and Differential Expression of α-Galactosyl Residues. Am. J. Trop. Med. Hyg. 2012, 87, 87. [Google Scholar] [CrossRef]
- Cánepa, G.E.; Degese, M.S.; Budu, A.; Garcia, C.R.S.; Buscaglia, C.A. Involvement of TSSA (Trypomastigote Small Surface Antigen) in Trypanosoma cruzi Invasion of Mammalian Cells. Biochem. J. 2012, 444, 211–218. [Google Scholar] [CrossRef]
- Noia, J.M.D.; Buscaglia, C.A.; Marchi, C.R.D.; Almeida, I.C.; Frasch, A.C. A Trypanosoma cruzi Small Surface Molecule Provides the First Immunological Evidence That Chagas’ Disease Is Due to a Single Parasite Lineage. J. Exp. Med. 2002, 195, 401. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.d.l.M.; Cánepa, G.E.; Lantos, A.B.; Balouz, V.; Yu, H.; Chen, X.; Campetella, O.; Mucci, J.; Buscaglia, C.A. The Trypomastigote Small Surface Antigen (TSSA) Regulates Trypanosoma cruzi Infectivity and Differentiation. PLoS Negl. Trop. Dis. 2017, 11, e0005856. [Google Scholar] [CrossRef] [PubMed]
- Cámara, M.d.l.M.; Balouz, V.; Centeno Cameán, C.; Cori, C.R.; Kashiwagi, G.A.; Gil, S.A.; Macchiaverna, N.P.; Cardinal, M.V.; Guaimas, F.; Lobo, M.M.; et al. Trypanosoma cruzi Surface Mucins Are Involved in the Attachment to the Triatoma Infestans Rectal Ampoule. PLoS Negl. Trop. Dis. 2019, 13, e0007418. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, N. Molecular Basis of Mammalian Cell Invasion by Trypanosoma cruzi. An. Acad. Bras. Cienc. 2006, 78, 87–111. [Google Scholar] [CrossRef]
- Onofre, T.S.; Loch, L.; Rodrigues, J.P.F.; Macedo, S.; Yoshida, N. Gp35/50 Mucin Molecules of Trypanosoma cruzi Metacyclic Forms That Mediate Host Cell Invasion Interact with Annexin A2. PLoS Negl. Trop. Dis. 2022, 16, e0010788. [Google Scholar] [CrossRef] [PubMed]
- Mortara, R.A.; da Silva, S.; Araguth, M.F.; Blanco, S.A.; Yoshida, N. Polymorphism of the 35- and 50-Kilodalton Surface Glycoconjugates of Trypanosoma cruzi Metacyclic Trypomastigotes. Infect. Immun. 1992, 60, 4673–4678. [Google Scholar] [CrossRef]
- Urban, I.; Santurio, L.B.; Chidichimo, A.; Yu, H.; Chen, X.; Mucci, J.; Agüero, F.; Buscaglia, C.A. Molecular Diversity of the Trypanosoma cruzi TcSMUG Family of Mucin Genes and Proteins. Biochem. J. 2011, 438, 303–313. [Google Scholar] [CrossRef] [PubMed]
- Nogueira, N.F.S.; Gonzalez, M.S.; Gomes, J.E.; de Souza, W.; Garcia, E.S.; Azambuja, P.; Nohara, L.L.; Almeida, I.C.; Zingales, B.; Colli, W. Trypanosoma cruzi: Involvement of Glycoinositolphospholipids in the Attachment to the Luminal Midgut Surface of Rhodnius Prolixus. Exp. Parasitol. 2007, 116, 120–128. [Google Scholar] [CrossRef]
- Chanda, I.; Pan, A.; Saha, S.K.; Dutta, C. Comparative Codon and Amino Acid Composition Analysis of Tritryps-Conspicuous Features of Leishmania Major. FEBS Lett. 2007, 581, 5751–5758. [Google Scholar] [CrossRef]
- Lander, N.; Bernal, C.; Diez, N.; Añez, N.; Docampo, R.; Ramírez, J.L. Localization and Developmental Regulation of a Dispersed Gene Family 1 Protein in Trypanosoma cruzi. Infect. Immun. 2010, 78, 231–240. [Google Scholar] [CrossRef]
- Kawashita, S.Y.; da Silva, C.V.; Mortara, R.A.; Burleigh, B.A.; Briones, M.R.S. Homology, Paralogy and Function of DGF-1, a Highly Dispersed Trypanosoma cruzi Specific Gene Family and Its Implications for Information Entropy of Its Encoded Proteins. Mol. Biochem. Parasitol. 2009, 165, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Munjal, G.; Hanmandlu, M.; Srivastava, S. Phylogenetics Algorithms and Applications. Ambient Commun. Comput. Syst. 2018, 904, 187–194. [Google Scholar] [CrossRef]
- Ramírez, J.L. The Elusive Trypanosoma cruzi Disperse Gene Protein Family (DGF-1). Pathogens 2023, 12, 292. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Weiss, L.M.; Braunstein, V.L.; Huang, H. Role of Protein Kinase A in Trypanosoma cruzi. Infect. Immun. 2008, 76, 4757–4763. [Google Scholar] [CrossRef] [PubMed]
- Atwood, J.A.; Minning, T.; Ludolf, F.; Nuccio, A.; Weatherly, D.B.; Alvarez-Manilla, G.; Tarleton, R.; Orlando, R. Glycoproteomics of Trypanosoma cruzi Trypomastigotes Using Subcellular Fractionation, Lectin Affinity, and Stable Isotope Labeling. J. Proteome Res. 2006, 5, 3376–3384. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herreros-Cabello, A.; Callejas-Hernández, F.; Gironès, N.; Fresno, M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens 2025, 14, 61. https://doi.org/10.3390/pathogens14010061
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens. 2025; 14(1):61. https://doi.org/10.3390/pathogens14010061
Chicago/Turabian StyleHerreros-Cabello, Alfonso, Francisco Callejas-Hernández, Núria Gironès, and Manuel Fresno. 2025. "Trypanosoma cruzi: Genomic Diversity and Structure" Pathogens 14, no. 1: 61. https://doi.org/10.3390/pathogens14010061
APA StyleHerreros-Cabello, A., Callejas-Hernández, F., Gironès, N., & Fresno, M. (2025). Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens, 14(1), 61. https://doi.org/10.3390/pathogens14010061