Borrelia, Leishmania, and Babesia: An Emerging Triad of Vector-Borne Co-Infections?
Conflicts of Interest
References
- Morales-Yuste, M.; Martín-Sánchez, J.; Corpas-Lopez, V. Canine leishmaniasis: Update on epidemiology, diagnosis, treatment, and prevention. Vet. Sci. 2022, 9, 387. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.R.; Michalick, M.S.M.; da Silva, M.E.; Dos Santos, C.C.P.; Frézard, F.J.G.; da Silva, S.M. Canine leishmaniasis: An overview of the current status and strategies for control. BioMed Res. Int. 2018, 1, 3296893. [Google Scholar] [CrossRef] [PubMed]
- Beasley, E.A.; Pessôa-Pereira, D.; Scorza, B.M.; Petersen, C.A. Epidemiologic, clinical and immunological consequences of co-infections during canine leishmaniosis. Animals 2021, 11, 3206. [Google Scholar] [CrossRef]
- Pessôa-Pereira, D.; Scorza, B.M.; Cyndari, K.I.; Beasley, E.A.; Petersen, C.A. Modulation of Macrophage Redox and Apoptotic Processes to Leishmania infantum during Coinfection with the Tick-Borne Bacteria Borrelia burgdorferi. Pathogens 2023, 12, 1128. [Google Scholar] [CrossRef] [PubMed]
- LaDeau, S.L.; Allan, B.F.; Leisnham, P.T.; Levy, M.Z. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct. Ecol. 2015, 29, 889–901. [Google Scholar] [CrossRef]
- Martina, B.E.; Barzon, L.; Pijlman, G.P.; de la Fuente, J.; Rizzoli, A.; Wammes, L.J.; Takken, W.; van Rij, R.P.; Papa, A. Human to human transmission of arthropod-borne pathogens. Curr. Opin. Virol. 2017, 22, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Sutherst, R.W. Global change and human vulnerability to vector-borne diseases. Clin. Microbiol. Rev. 2004, 17, 136–173. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, D.I.; Piche-Ovares, M.; Romero-Vega, L.M.; Wagman, J.; Troyo, A. The impact of deforestation, urbanization, and changing land use patterns on the ecology of mosquito and tick-borne diseases in Central America. Insects 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, L.; Yisaschar-Mekuzas, Y.; Rodrigues, F.T.; Costa, Á.; Machado, J.; Diz-Lopes, D.; Baneth, G. Canine babesiosis in northern Portugal and molecular characterization of vector-borne co-infections. Parasites Vectors 2010, 3, 27. [Google Scholar] [CrossRef] [PubMed]
- Ortuño, M.; Nachum-Biala, Y.; García-Bocanegra, I.; Resa, M.; Berriatua, E.; Baneth, G. An epidemiological study in wild carnivores from Spanish Mediterranean ecosystems reveals association between Leishmania infantum, Babesia spp. and Hepatozoon spp. infection and new hosts for Hepatozoon martis, Hepatozoon canis and Sarcocystis spp. Transbound. Emerg. Dis. 2022, 69, 2110–2125. [Google Scholar] [CrossRef] [PubMed]
- Toepp, A.J.; Monteiro, G.R.; Coutinho, J.F.; Lima, A.L.; Larson, M.; Wilson, G.; Grinnage-Pulley, T.; Bennett, C.; Mahachi, K.; Anderson, B.; et al. Comorbid infections induce progression of visceral leishmaniasis. Parasites Vectors 2019, 12, 54. [Google Scholar] [CrossRef] [PubMed]
- Little, S.; Braff, J.; Place, J.; Buch, J.; Dewage, B.G.; Knupp, A.; Beall, M. Canine Infection with Dirofilaria immitis, Borrelia burgdorferi, Anaplasma spp., and Ehrlichia spp. in the United States, 2013–2019. Parasites Vectors 2021, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Attipa, C.; Solano-Gallego, L.; Leutenegger, C.M.; Papasouliotis, K.; Soutter, F.; Balzer, J.; Carver, S.; Buch, J.S.; Tasker, S. Associations between Clinical Canine Leishmaniosis and Multiple Vector-Borne Co-Infections: A Case-Control Serological Study. BMC Vet. Res. 2019, 15, 331. [Google Scholar] [CrossRef]
- Miró, G.; Montoya, A.; Roura, X.; Gálvez, R.; Sainz, A. Seropositivity Rates for Agents of Canine Vector-Borne Diseases in Spain: A Multicentre Study. Parasites Vectors 2013, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Evaristo, A.M.C.; Santos, P.T.T.; Sé, F.S.; Collere, F.C.M.; Silva, B.B.; Cardoso, E.R.; Kakimori, M.T.A.; Vieira, T.S.W.J.; Krawczak, F.S.; Moraes-Filho, J.; et al. Co-infection by tick-borne pathogens and Leishmania spp. in dogs with clinical signs suggestive of leishmaniasis from an endemic area in northeastern Brazil. Pesqui. Veterinária Bras. 2024, 44, e07437. [Google Scholar] [CrossRef]
- De Sousa, K.C.M.; André, M.R.; Herrera, H.M.; de Andrade, G.B.; Jusi, M.M.G.; dos Santos, L.L.; Barreto, W.T.G.; Machado, R.Z.; de Oliveira, G.P. Molecular and Serological Detection of Tick-Borne Pathogens in Dogs from an Area Endemic for Leishmania infantum in Mato Grosso Do Sul, Brazil. Rev. Bras. Parasitol. Vet. 2013, 22, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Blondel, J. Guilds or functional groups: Does it matter? Oikos 2003, 100, 223–231. [Google Scholar] [CrossRef]
- Lello, J.; Hussell, T. Functional group/guild modelling of inter-specific pathogen interactions: A potential tool for predicting the consequences of co-infection. Parasitology 2008, 135, 825–839. [Google Scholar] [CrossRef]
- Baxarias, M.; Álvarez-Fernández, A.; Martínez-Orellana, P.; Montserrat-Sangrà, S.; Ordeix, L.; Rojas, A.; Nachum-Biala, Y.; Baneth, G.; Solano-Gallego, L. Does co-infection with vector-borne pathogens play a role in clinical canine leishmaniosis? Parasites Vectors 2018, 11, 135. [Google Scholar] [CrossRef] [PubMed]
- Homer, M.J.; Aguilar-Delfin, I.; Telford III, S.R.; Krause, P.J.; Persing, D.H. Babesiosis. Clin. Microbiol. Rev. 2000, 13, 451–469. [Google Scholar] [CrossRef] [PubMed]
- Krawczak, F.D.S.; Reis, I.A.; Silveira, J.A.D.; Avelar, D.M.; Marcelino, A.P.; Werneck, G.L.; Labruna, M.B.; Paz, G.F. Leishmania, Babesia and Ehrlichia in urban pet dogs: Co-infection or cross-reaction in serological methods? Rev. Soc. Bras. Med. Trop. 2015, 48, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.J.; Neitzel, D.; Reed, K.D.; Belongia, E.A. Coinfections acquired from Ixodes ticks. Clin. Microbiol. Rev. 2006, 19, 708–727. [Google Scholar] [CrossRef]
- Snelling, W.J.; Moore, J.E.; McKenna, J.P.; Lecky, D.M.; Dooley, J.S. Bacterial–protozoa interactions; an update on the role these phenomena play towards human illness. Microbes Infect. 2006, 8, 578–587. [Google Scholar] [CrossRef]
- Eriksson, K.I.; Thelaus, J.; Andersson, A.; Ahlinder, J. Microbial interactions—Underexplored links between public health relevant bacteria and protozoa in coastal environments. Front. Microbiol. 2022, 13, 877483. [Google Scholar] [CrossRef]
- Clarholm, M. Protozoan grazing of bacteria in soil—Impact and importance. Microb. Ecol. 1981, 7, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Mazzola, M.; Cheng, X.; Oetjen, J.; Alexandrov, T.; Dorrestein, P.; Watrous, J.; van der Voort, M.; Raaijmakers, J.M. Molecular and chemical dialogues in bacteria-protozoa interactions. Sci. Rep. 2015, 5, 12837. [Google Scholar] [CrossRef]
- Gupta, R.; Rajendran, V.; Ghosh, P.C.; Srivastava, S. Assessment of anti-plasmodial activity of non-hemolytic, non-immunogenic, non-toxic antimicrobial peptides (AMPs LR14) produced by Lactobacillus plantarum LR/14. Drugs R&D 2014, 14, 95–103. [Google Scholar]
- Strle, K.; Sulka, K.B.; Pianta, A.; Crowley, J.T.; Arvikar, S.L.; Anselmo, A.; Sadreyev, R.; Steere, A.C. T-Helper 17 Cell Cytokine Responses in Lyme Disease Correlate with Borrelia burgdorferi Antibodies during Early Infection and with Autoantibodies Late in the Illness in Patients with Antibiotic-Refractory Lyme Arthritis. Clin. Infect. Dis. 2017, 64, 930–938. [Google Scholar] [CrossRef]
- Saha, S.; Basu, M.; Guin, S.; Gupta, P.; Mitterstiller, A.-M.; Weiss, G.; Jana, K.; Ukil, A. Leishmania donovani Exploits Macrophage Heme Oxygenase-1 To Neutralize Oxidative Burst and TLR Signaling–Dependent Host Defense. J. Immunol. 2019, 202, 827–840. [Google Scholar] [CrossRef]
- Djokic, V.; Akoolo, L.; Primus, S.; Schlachter, S.; Kelly, K.; Bhanot, P.; Parveen, N. Protozoan parasite Babesia microti subverts adaptive immunity and enhances Lyme disease severity. Front. Microbiol. 2019, 10, 1596. [Google Scholar] [CrossRef] [PubMed]
- Bowser, N.H.; Anderson, N.E. Dogs (Canis familiaris) as sentinels for human infectious disease and application to Canadian populations: A systematic review. Vet. Sci. 2018, 5, 83. [Google Scholar] [CrossRef] [PubMed]
- Cevidanes, A.; Di Cataldo, S.; Muñoz-San Martín, C.; Latrofa, M.S.; Hernández, C.; Cattan, P.E.; Otranto, D.; Millán, J. Co-infection patterns of vector-borne zoonotic pathogens in owned free-ranging dogs in central Chile. Vet. Res. Commun. 2023, 47, 575–585. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piloto-Sardiñas, E.; Cano-Argüelles, A.L.; Cabezas-Cruz, A. Borrelia, Leishmania, and Babesia: An Emerging Triad of Vector-Borne Co-Infections? Pathogens 2025, 14, 36. https://doi.org/10.3390/pathogens14010036
Piloto-Sardiñas E, Cano-Argüelles AL, Cabezas-Cruz A. Borrelia, Leishmania, and Babesia: An Emerging Triad of Vector-Borne Co-Infections? Pathogens. 2025; 14(1):36. https://doi.org/10.3390/pathogens14010036
Chicago/Turabian StylePiloto-Sardiñas, Elianne, Ana Laura Cano-Argüelles, and Alejandro Cabezas-Cruz. 2025. "Borrelia, Leishmania, and Babesia: An Emerging Triad of Vector-Borne Co-Infections?" Pathogens 14, no. 1: 36. https://doi.org/10.3390/pathogens14010036
APA StylePiloto-Sardiñas, E., Cano-Argüelles, A. L., & Cabezas-Cruz, A. (2025). Borrelia, Leishmania, and Babesia: An Emerging Triad of Vector-Borne Co-Infections? Pathogens, 14(1), 36. https://doi.org/10.3390/pathogens14010036