Opportunistic Features of Non-Clostridium botulinum Strains Containing bont Gene Cluster
Abstract
1. Introduction
2. Saprophytic and Pathogenic Clostridium sporogenes
2.1. General Clostridium sporogenes Description
2.2. Pathogenic Strains of Clostridium sporogenes
3. Double Nature of Clostridium butyricum
3.1. Clostridium butyricum as a Probiotic
3.2. Role of Clostridium butyricum in Health Promotion
Clostridium botulinum as a Health Support | Source |
---|---|
With oral administration, the composition of the normal gastrointestinal microflora is regulated by increasing the beneficial microflora and reducing harmful strains of microorganisms; improves digestion and the functioning of the digestive system. | [39] |
Creates an unfavourable environment for pathogenic organisms mainly by producing butyric acid and adhering to human epithelial cells, creating a protective mucosal barrier. | [39] |
Prevents post-antibiotic diarrhea. | [39] |
LAB could synergistically enhance the probiotic functions of C. butyricum. | [40] |
Administration of C. butyricum effectively restores the intestinal microbial balance after colonoscopy and contributes to faster recovery. | [41] |
Negative correlation between C. butyricum content and the predisposition to the development of obesity, and potential effective use as supplements in inhibiting the development of obesity. | [45,46] |
Effectively balances blood glucose, alleviates vascular changes, and improves the intestinal microbiome, suggesting support of type 2 diabetes treatment. | [47,48] |
Improves the effectiveness of HSCT and maintains the balance of the intestinal microflora. | [49] |
In non-small cell lung cancer patients, supports the effectiveness of treatment that uses inhibitors of immunological control points. | [56] |
Supports polypectomy treatment. | [57] |
3.3. Pathogenicity and Threats of Clostridium butyricum
4. Genetic Mechanism of bont Genes Expression in Non-C. botulinum Strains
5. Non-Clostridium BoNT-like Producing Strains
6. Problem with Classifications and Taxonomy
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samul, D.; Worsztynowicz, P.; Leja, K.; Grajek, W. Beneficial and harmful roles of bacteria from the Clostridium genus. Acta Biochim. Pol. 2013, 60, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Zhang, K.; Ma, X.; He, P. Clostridium species as probiotics: Potentials and challenges. J. Anim. Sci. Biotechnol. 2020, 11, 24. [Google Scholar] [CrossRef]
- Erbguth, F.J. From poison to remedy: The chequered history of botulinum toxin. J. Neural Transm. 2008, 115, 559–565. [Google Scholar] [CrossRef]
- Ciccarelli, A.S.; Giménez, D.F. Cryoprotein produced by Clostridium botulinum type G. Infect. Immun. 1972, 5, 985–986. [Google Scholar] [CrossRef] [PubMed]
- Cato, E.P.; Stackebrandt, E. Taxonomy and Phylogeny. In Clostridia; Minton, N.P., Clarke, D.J., Eds.; Springer: Boston, MA, USA, 1989; pp. 1–26. ISBN 978-1-4757-9718-3. [Google Scholar]
- Carter, A.T.; Peck, M.W. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res. Microbiol. 2015, 166, 303–317. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.D.; East, A.K. Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins. J. Appl. Microbiol. 1998, 84, 5–17. [Google Scholar] [CrossRef]
- Scalfaro, C.; Iacobino, A.; Grande, L.; Morabito, S.; Franciosa, G. Effects of megaplasmid loss on growth of neurotoxigenic Clostridium butyricum strains and botulinum neurotoxin type E expression. Front. Microbiol. 2016, 7, 217. [Google Scholar] [CrossRef]
- Brunt, J.; Carter, A.T.; Stringer, S.C.; Peck, M.W. Identification of a novel botulinum neurotoxin gene cluster in Enterococcus. FEBS Lett. 2018, 592, 310–317. [Google Scholar] [CrossRef]
- Truong, R.D.; Do, V.A.; Njaravelil, K.A.; Ayesu, K.; Madruga, M.; Carlan, S.J. Unusual Case of Ludwig Angina Caused by Clostridium sporogenes in an Immunocompromised HIV-Positive Patient with Alcoholism and Dental Abscess. Am. J. Case Rep. 2023, 24, e941731. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Munekata, P.E.; Dominguez, R.; Pateiro, M.; Saraiva, J.A.; Franco, D. Main Groups of Microorganisms of Relevance for Food Safety and Stability: General Aspects and Overall Description; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128110324. [Google Scholar]
- Alataby, H.A.; Krishnamoorthy, V.; Ndzelen, L.; Kenne, F.M.; Valenti, K.; Savermuttu, J.; Nfonoyim, J. Clostridium Sporogenes Causing Bacteremia Originated from the Skin and Soft Tissue Infection in an Immunocompetent Patient—Case Report and Literature Review. Int. J. Crit. Care Emerg. Med. 2020, 6, 95. [Google Scholar] [CrossRef]
- Vecchio, M.J.; Jankowich, M.; Qadir, H.; Gaitanis, M.; Menon, A. Cognitive Biases in the Era of COVID-19: A Case of Clostridium sporogenes Bacteremia in a Patient with Small Bowel Obstruction. Case Rep. Infect. Dis. 2020, 2020, 8812635. [Google Scholar] [CrossRef] [PubMed]
- Bodey, G.P.; Rodriguez, S.; Fainstein, V.; Elting, L.S. Clostridial bacteremia in cancer patients. A 12-year experience. Cancer 1991, 67, 1928–1942. [Google Scholar] [CrossRef] [PubMed]
- Abusnina, W.; Shehata, M.; Karem, E.; Koc, Z.; Khalil, E. Clostridium sporogenes bacteremia in an immunocompetent patient. IDCases 2019, 15, e00481. [Google Scholar] [CrossRef] [PubMed]
- Rechner, P.M.; Agger, W.A.; Mruz, K.; Cogbill, T.H. Clinical features of clostridial bacteremia: A review from a rural area. Clin. Infect. Dis. 2001, 33, 349–353. [Google Scholar] [CrossRef]
- Shen, D.X.; Babady, N.E.; Chen, R.; Gilhuley, K.; Tang, Y.W. Septicaemia caused by Clostridium sporogenes: Two case reports and a literature review. Rev. Res. Med. Microbiol. 2013, 24, 81–83. [Google Scholar] [CrossRef]
- Cobo, F.; Pérez-Carrasco, V.; García-Salcedo, J.A.; Navarro-Marí, J.M. Bacteremia caused by Clostridium sporogenes in an oncological patient. Rev. Esp. Quimioter. 2023, 36, 217–219. [Google Scholar] [CrossRef]
- Stabler, S.; Titécat, M.; Duployez, C.; Kipnis, E.; Dessein, R.; Le Guern, R. Clinical relevance of Clostridium bacteremia: An 8-year retrospective study. Anaerobe 2020, 63, 102202. [Google Scholar] [CrossRef]
- Corbett, C.E.; Wall, B.M.; Cohen, M. Empyema With Hydropneumothorax and Bacteremia Caused by Clostridium sporogenes. Am. J. Med. Sci. 1996, 312, 242–245. [Google Scholar] [CrossRef]
- Malmborg, A.S.; Rylander, M.; Selander, H. Case report: Primary thoracic empyema caused by clostridium sporogenes. Scand. J. Infect. Dis. 1970, 2, 155–156. [Google Scholar] [CrossRef]
- Inkster, T.; Cordina, C.; Siegmeth, A. Septic arthritis following anterior cruciate ligament reconstruction secondary to Clostridium sporogenes; a rare clinical pathogen. J. Clin. Pathol. 2011, 64, 820–821. [Google Scholar] [CrossRef] [PubMed]
- Hitchcock, C.R.; Demello, F.J.; Haglin, J.J. Gangrene infection: New approaches to an old disease. Surg. Clin. N. Am. 1975, 55, 1403–1410. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, R.; Dahiya, D.; Banda, A.R.; Ray, P.; Angrup, A. Non-traumatic gas gangrene due to Clostridium sporogenes. Lancet Infect. Dis. 2020, 20, 754. [Google Scholar] [CrossRef] [PubMed]
- Sárvári, K.P.; Schoblocher, D. The antibiotic susceptibility pattern of gas gangrene-forming Clostridium spp. clinical isolates from South-Eastern Hungary. Infect. Dis. 2020, 52, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Hara-Kudo, Y.; Yamakawa, Y.; Kumagai, S. Purification and some properties of Clostridium sporogenes hemorrhagic toxin. Biochem. Biophys. Res. Commun. 1996, 227, 413–418. [Google Scholar] [CrossRef]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef]
- Williamson, C.H.D.; Sahl, J.W.; Smith, T.J.; Xie, G.; Foley, B.T.; Smith, L.A.; Fernández, R.A.; Lindström, M.; Korkeala, H.; Keim, P.; et al. Comparative genomic analyses reveal broad diversity in botulinum-toxinproducing Clostridia. BMC Genom. 2016, 17, 180. [Google Scholar] [CrossRef]
- Mazuet, C.; Legeay, C.; Sautereau, J.; Ma, L.; Bouchier, C.; Bouvet, P.; Popoff, M.R. Diversity of group i and II clostridium botulinum strains from France including recently identified subtypes. Genome Biol. Evol. 2016, 8, 1643–1660. [Google Scholar] [CrossRef]
- Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and current perspectives on Clostridium botulinum diversity. Res. Microbiol. 2015, 166, 290–302. [Google Scholar] [CrossRef]
- Giordani, F.; Fillo, S.; Anselmo, A.; Palozzi, A.M.; Fortunato, A.; Gentile, B.; Azarnia Tehran, D.; Ciammaruconi, A.; Spagnolo, F.; Pittiglio, V.; et al. Genomic characterization of Italian Clostridium botulinum group I strains. Infect. Genet. Evol. 2015, 36, 62–71. [Google Scholar] [CrossRef]
- McLauchlin, J.; Grant, K.A.; Little, C.L. Food-borne botulism in the United Kingdom. J. Public Health 2006, 28, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Franciosa, G.; Maugliani, A.; Scalfaro, C.; Aureli, P. Evidence that plasmid-borne botulinum neurotoxin type B genes are widespread among Clostridium botulinum serotype B strains. PLoS ONE 2009, 4, e4829. [Google Scholar] [CrossRef]
- Liberato, V.; Benevenuti, C.; Coelho, F.; Botelho, A.; Amaral, P.; Pereira, N.; Ferreira, T. Clostridium sp. as Bio-Catalyst for Fuels and Chemicals Production in a Biorefinery Context. Catalysts 2019, 9, 962. [Google Scholar] [CrossRef]
- Moțățăianu, A.; Șerban, G.; Andone, S. The Role of Short-Chain Fatty Acids in Microbiota-Gut-Brain Cross-Talk with a Focus on Amyotrophic Lateral Sclerosis: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 15094. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, X.; Wang, Y.; Wang, T.; Fang, D.; Hu, K. Effects of Clostridium butyricum on Intestinal Microflora and Metabolism of Eriocheir sinensis. Int. J. Mol. Sci. 2023, 24, 13784. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Implementing Decision of 10 March 2014. Off. J. Eur. Union 2014, 588, 30–33. [Google Scholar]
- Ariyoshi, T.; Hagihara, M.; Takahashi, M.; Mikamo, H. Effect of Clostridium butyricum on Gastrointestinal Infections. Biomedicines 2022, 10, 483. [Google Scholar] [CrossRef]
- Seki, H.; Shiohara, M.; Matsumura, T.; Miyagawa, N.; Tanaka, M.; Komiyama, A.; Kurata, S. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatr. Int. 2003, 45, 86–90. [Google Scholar] [CrossRef]
- Hagihara, M.; Kuroki, Y.; Ariyoshi, T.; Higashi, S.; Fukuda, K.; Yamashita, R.; Matsumoto, A.; Mori, T.; Mimura, K.; Yamaguchi, N.; et al. Clostridium butyricum Modulates the Microbiome to Protect Intestinal Barrier Function in Mice with Antibiotic-Induced Dysbiosis. iScience 2020, 23, 100772. [Google Scholar] [CrossRef]
- So, J.S.; Oh, K.; Shin, Y. Growth stimulation of Clostridium butyricum in the presence of Lactobacillus brevis JL16 and Lactobacillus parabuchneri MH44. Food Sci. Technol. Braz. 2022, 42, 1–8. [Google Scholar] [CrossRef]
- Chen, Z.; Yu, L.; Liu, J.; Kong, J.; Deng, X.; Guo, X.; Shan, J.; Zhou, D.; Li, W.; Lin, Y.; et al. Gut microbiota dynamics and fecal SCFAs after colonoscopy: Accelerating microbiome stabilization by Clostridium butyricum. J. Transl. Med. 2024, 22, 222. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhang, Z.; Zhang, X.; Lu, C.; Yang, W.; Xie, X.; Xin, H.; Lu, X.; Ni, M.; Yang, X.; et al. Effects of dietary Clostridium butyricum and rumen protected fat on meat quality, oxidative stability, and chemical composition of finishing goats. J. Anim. Sci. Biotechnol. 2024, 15, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yun, Y.; Lai, Z.; Ji, S.; Yu, G.; Xie, Z.; Zhang, H.; Zhong, X.; Wang, T.; Zhang, L. Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets. J. Anim. Sci. Biotechnol. 2023, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Ma, J.; Lin, H.; Zhou, S.; Long, Z.; Qin, H.; Lin, Y.; Liu, L.; Huang, Z.; Li, Z. Analyzing the influence of Clostridium butyricum on liver health in spotted sea bass (Lateolabrax maculatus) via transcriptomics and metabolomics. Aquac. Int. 2024, 32, 4717–4736. [Google Scholar] [CrossRef]
- Liao, J.; Liu, Y.; Pei, Z.; Wang, H.; Zhu, J.; Zhao, J.; Lu, W.; Chen, W. Clostridium butyricum Reduces Obesity in a Butyrate-Independent Way. Microorganisms 2023, 11, 1292. [Google Scholar] [CrossRef]
- Liao, J.; Liu, Y.; Yao, Y.; Zhang, J.; Wang, H.; Zhao, J.; Chen, W.; Lu, W. Clostridium butyricum Strain CCFM1299 Reduces Obesity via Increasing Energy Expenditure and Modulating Host Bile Acid Metabolism. Nutrients 2023, 15, 4339. [Google Scholar] [CrossRef]
- Tayyib, H.M.U.; Ali, A.; Jabeen, S.; Habib-ur-Rehman; Kamran, H.; Bajaber, M.A.; Usman, M.; Zhang, X. Restoration of gut dysbiosis through Clostridium butyricum and magnesium possibly balance blood glucose levels: An experimental study. BMC Microbiol. 2024, 24, 105. [Google Scholar] [CrossRef]
- Zhou, T.; Qiu, S.; Zhang, L.; Li, Y.; Zhang, J.; Shen, D.; Zhao, P.; Yuan, L.; Zhao, L.; Duan, Y.; et al. Supplementation of Clostridium butyricum Alleviates Vascular Inflammation in Diabetic Mice. Diabetes Metab. J. 2024, 48, 390–404. [Google Scholar] [CrossRef]
- Fukushima, K.; Kudo, H.; Oka, K.; Hayashi, A.; Onizuka, M.; Kusakabe, S.; Hino, A.; Takahashi, M.; Takeda, K.; Mori, M.; et al. Clostridium butyricum MIYAIRI 588 contributes to the maintenance of intestinal microbiota diversity early after haematopoietic cell transplantation. Bone Marrow Transplant. 2024, 59, 795–802. [Google Scholar] [CrossRef]
- West, H.; McCleod, M.; Hussein, M.; Morabito, A.; Rittmeyer, A.; Conter, H.J.; Kopp, H.-G.; Daniel, D.; McCune, S.; Mekhail, T.; et al. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019, 20, 924–937. [Google Scholar] [CrossRef]
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; et al. Five-Year Survival and Correlates among Patients with Advanced Melanoma, Renal Cell Carcinoma, or Non-Small Cell Lung Cancer Treated with Nivolumab. JAMA Oncol. 2019, 5, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Boyero, L.; Sánchez-Gastaldo, A.; Alonso, M.; Noguera-Uclés, J.F.; Molina-Pinelo, S.; Bernabé-Caro, R. Primary and Acquired Resistance to Immunotherapy in Lung Cancer: Unveiling the Mechanisms Underlying of Immune Checkpoint Blockade Therapy. Cancers 2020, 12, 3729. [Google Scholar] [CrossRef]
- Kovács, S.A.; Győrffy, B. Transcriptomic datasets of cancer patients treated with immune-checkpoint inhibitors: A systematic review. J. Transl. Med. 2022, 20, 249. [Google Scholar] [CrossRef] [PubMed]
- Vu, S.H.; Vetrivel, P.; Kim, J.; Lee, M.-S. Cancer Resistance to Immunotherapy: Molecular Mechanisms and Tackling Strategies. Int. J. Mol. Sci. 2022, 23, 10906. [Google Scholar] [CrossRef] [PubMed]
- Paz Del Socorro, T.; Oka, K.; Boulard, O.; Takahashi, M.; Poulin, L.F.; Hayashi, A.; Chamaillard, M. The biotherapeutic Clostridium butyricum MIYAIRI 588 strain potentiates enterotropism of Rorγt+Treg and PD-1 blockade efficacy. Gut Microbes 2024, 16, 2315631. [Google Scholar] [CrossRef]
- Saitsu, Y.; Yoneda, S.; Fukuta, K. Management of a pregnant woman with a large cervical polyp and moderate genital bleeding in the first trimester. BMJ Case Rep. 2024, 17, e258163. [Google Scholar] [CrossRef]
- Cassir, N.; Benamar, S.; La Scola, B. Clostridium butyricum: From beneficial to a new emerging pathogen. Clin. Microbiol. Infect. 2016, 22, 37–45. [Google Scholar] [CrossRef]
- Ferraris, L.; Balvay, A.; Bellet, D.; Delannoy, J.; Maudet, C.; Larcher, T.; Rozé, J.C.; Philippe, C.; Meylheuc, T.; Butel, M.J.; et al. Neonatal necrotizing enterocolitis: Clostridium butyricum and Clostridium neonatale fermentation metabolism and enteropathogenicity. Gut Microbes 2023, 15, 2172666. [Google Scholar] [CrossRef]
- Oguma, K.; Inoue, K.; Fujinaga, Y.; Yokota, K.; Watanabe, T.; Ohyama, T.; Takeshi, K.; Inoue, K. Structure and Function of Clostridium Botulinum Progenitor Toxin. J. Toxicol. Toxin Rev. 1999, 18, 17–34. [Google Scholar] [CrossRef]
- Gu, S.; Jin, R. Assembly and Function of the Botulinum Neurotoxin Progenitor Complex. Curr. Top. Microbiol. Immunol. 2013, 364, 21–44. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.J.; Hill, K.K.; Foley, B.T.; Detter, J.C.; Munk, A.C.; Bruce, D.C.; Doggett, N.A.; Smith, L.A.; Marks, J.D.; Xie, G.; et al. Analysis of the Neurotoxin Complex Genes in Clostridium botulinum A1-A4 and B1 Strains: BoNT/A3, /Ba4 and /B1 Clusters Are Located within Plasmids. PLoS ONE 2007, 2, e1271. [Google Scholar] [CrossRef] [PubMed]
- Skarin, H.; Segerman, B. Horizontal gene transfer of toxin genes in Clostridium botulinum. Mob. Genet. Elem. 2011, 1, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Nawrocki, E.M.; Bradshaw, M.; Johnson, E.A. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci. Rep. 2018, 8, 3100. [Google Scholar] [CrossRef] [PubMed]
- Ng, V.; Lin, W.-J. Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship. Genomics 2014, 103, 94–106. [Google Scholar] [CrossRef]
- Hill, K.K.; Xie, G.; Foley, B.T.; Smith, T.J.; Munk, A.C.; Bruce, D.; Smith, L.A.; Brettin, T.S.; Detter, J.C. Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Biol. 2009, 7, 66. Available online: https://bmcbiol.biomedcentral.com/articles/10.1186/1741-7007-7-66 (accessed on 28 August 2024). [CrossRef]
- Paul, C.J.; Twine, S.M.; Tam, K.J.; Mullen, J.A.; Kelly, J.F.; Austin, J.W.; Logan, S.M. Flagellin Diversity in Clostridium botulinum Groups I and II: A New Strategy for Strain Identification. Appl. Environ. Microbiol. 2007, 73, 2963–2975. [Google Scholar] [CrossRef]
- Woudstra, C.; Lambert, D.; Anniballi, F.; De Medici, D.; Austin, J.; Fach, P. Genetic Diversity of the Flagellin Genes of Clostridium botulinum Groups I and II. Appl. Environ. Microbiol. 2013, 79, 3926–3932. [Google Scholar] [CrossRef]
- Valdezate, S.; Carrasco, G.; Medina, M.J.; Garrido, N.; Del Pino, S.; Valiente, M.; Pallarés, M.P.; Villalon, P. Exploring the genetic background of the botulism neurotoxin BoNT/B2 in Spain. Microbiol. Spectr. 2023, 11, e0238023. [Google Scholar] [CrossRef]
- Smith, T.J.; Tian, R.; Imanian, B.; Williamson, C.H.D.; Johnson, S.L.; Daligault, H.E.; Schill, K.M. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins 2021, 13, 473. [Google Scholar] [CrossRef]
- Grenda, T.; Grenda, A.; Krawczyk, P.; Kwiatek, K. Botulinum toxin in cancer therapy—Current perspectives and limitations. Appl. Microbiol. Biotechnol. 2022, 106, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lebreton, F.; Mansfield, M.J.; Miyashita, S.-I.; Zhang, J.; Schwartzman, J.A.; Tao, L.; Masuyer, G.; Martínez-Carranza, M.; Stenmark, P.; et al. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium. Cell Host Microbe 2018, 23, 169–176.e6. [Google Scholar] [CrossRef]
- Tehran, D.A.; Pirazzini, M. Novel Botulinum Neurotoxins: Exploring Underneath the Iceberg Tip. Toxins 2018, 10, 190. [Google Scholar] [CrossRef]
- Poulain, B.; Popoff, M.R. Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic? Toxins 2019, 11, 34. [Google Scholar] [CrossRef]
- Grenda, T.; Jarosz, A.; Sapała, M.; Stasiak, K.; Grenda, A.; Domaradzki, P.; Kwiatek, K. Molecular Diversity of BoNT-Producing Clostridia—A Still-Emerging and Challenging Problem. Diversity 2023, 15, 392. [Google Scholar] [CrossRef]
- Hayashi, H.; Sakamoto, M.; Kitahara, M.; Benno, Y. Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. FEMS Microbiol. Lett. 2006, 257, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Lawson, P.A.; Rainey, F.A. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species. Int. J. Syst. Evol. Microbiol. 2016, 66, 1009–1016. [Google Scholar] [CrossRef]
- Smith, T.; Williamson, C.H.D.; Hill, K.; Sahl, J.; Keim, P. Botulinum Neurotoxin-Producing Bacteria. Isn’t It Time that We Called a Species a Species? mBio 2018, 9, e01469-18. [Google Scholar] [CrossRef]
- Peck, M.W. Biology and Genomic Analysis of Clostridium botulinum. In Advances in Microbial Physiology; Poole, R.K., Ed.; Academic Press: Cambridge, MA, USA, 2009; Volume 55, pp. 183–320. [Google Scholar]
- Suen, J.C.; Hatheway, C.L.; Steigerwalt, A.G.; Brenner, D.J. Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J. Clin. Microbiol. 1988, 26, 2191–2192. [Google Scholar] [CrossRef]
Group of C. botulinum Species | Other Genera of BoNT-like Producing Bacteria | ||||||
---|---|---|---|---|---|---|---|
Other BoNT-Producing Clostridia | Organisms Potentially Able to Produce BoNT-like Proteins (I/Wo/J/En/Cp1 Toxin) | ||||||
I | II | III | IV | ||||
C. botulinum A and proteolytic strains of C. botulinum B and F | C. botulinum E and glucidolytic strains of C. botulinum B and F | C. botulinum C and D | C. botulinum G, which was assigned to a new species C. argentinense. | C. baratii Type F | C. butyricum Type E | C. sporogenes Type B | E. faecalis Weisella oryzae Enterococcus faecium Chryseobacterium piperi |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grenda, T.; Grenda, A.; Jakubczyk, A.; Rybczyńska-Tkaczyk, K. Opportunistic Features of Non-Clostridium botulinum Strains Containing bont Gene Cluster. Pathogens 2024, 13, 780. https://doi.org/10.3390/pathogens13090780
Grenda T, Grenda A, Jakubczyk A, Rybczyńska-Tkaczyk K. Opportunistic Features of Non-Clostridium botulinum Strains Containing bont Gene Cluster. Pathogens. 2024; 13(9):780. https://doi.org/10.3390/pathogens13090780
Chicago/Turabian StyleGrenda, Tomasz, Anna Grenda, Anna Jakubczyk, and Kamila Rybczyńska-Tkaczyk. 2024. "Opportunistic Features of Non-Clostridium botulinum Strains Containing bont Gene Cluster" Pathogens 13, no. 9: 780. https://doi.org/10.3390/pathogens13090780
APA StyleGrenda, T., Grenda, A., Jakubczyk, A., & Rybczyńska-Tkaczyk, K. (2024). Opportunistic Features of Non-Clostridium botulinum Strains Containing bont Gene Cluster. Pathogens, 13(9), 780. https://doi.org/10.3390/pathogens13090780