Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Biomarker Assays
2.3. Definitions of Outcomes and Covariables
2.4. Statistical Analyses
3. Results
3.1. Clinical Characteristics of Mother–Neonate Dyads in the BBC
3.2. Differentially Abundant Cord Blood Immune Biomarkers between Infants with and without Early-Life LRTI
3.3. IFN-γ, TNF-β, MIP-1α, and MIP-1β are Associated with a Higher LRTI Risk during Infancy
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Black, R.E.; Cousens, S.; Johnson, H.L.; Lawn, J.E.; Rudan, I.; Bassani, D.G.; Jha, P.; Campbell, H.; Walker, C.F.; Cibulskis, R.; et al. Global, Regional, and National Causes of Child Mortality in 2008: A Systematic Analysis. Lancet 2010, 375, 1969–1987. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Johnson, H.L.; Cousens, S.; Perin, J.; Scott, S.; Lawn, J.E.; Rudan, I.; Campbell, H.; Cibulskis, R.; Li, M.; et al. Global, Regional, and National Causes of Child Mortality: An Updated Systematic Analysis for 2010 with Time Trends since 2000. Lancet 2012, 379, 2151–2161. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.A.; Medici, M.C.; Arcangeletti, M.C.; Lanari, M.; Merolla, R.; Paparatti, U.D.L.; Silvestri, M.; Pistorio, A.; Chezzi, C. Risk Factors for Severe RSV-Induced Lower Respiratory Tract Infection over Four Consecutive Epidemics. Eur. J. Pediatr. 2007, 166, 1267–1272. [Google Scholar] [CrossRef] [PubMed]
- Verwey, C.; Nunes, M.C.; Dangor, Z.; Madhi, S.A. Pulmonary Function Sequelae after Respiratory Syncytial Virus Lower Respiratory Tract Infection in Children: A Systematic Review. Pediatr. Pulmonol. 2020, 55, 1567–1583. [Google Scholar] [CrossRef]
- Gern, J.E.; Brooks, G.D.; Meyer, P.; Chang, A.; Shen, K.; Evans, M.D.; Tisler, C.; DaSilva, D.; Roberg, K.A.; Mikus, L.D.; et al. Bidirectional Interactions between Viral Respiratory Illnesses and Cytokine Responses in the First Year of Life. J. Allergy Clin. Immunol. 2006, 117, 72–78. [Google Scholar] [CrossRef]
- Copenhaver, C.C.; Gern, J.E.; Li, Z.; Shult, P.A.; Rosenthal, L.A.; Mikus, L.D.; Kirk, C.J.; Roberg, K.A.; Anderson, E.L.; Tisler, C.J.; et al. Cytokine Response Patterns, Exposure to Viruses, and Respiratory Infections in the First Year of Life. Am. J. Respir. Crit. Care Med. 2004, 170, 175–180. [Google Scholar] [CrossRef]
- Ly, N.P.; Rifas-Shiman, S.L.; Litonjua, A.A.; Tzianabos, A.O.; Schaub, B.; Ruiz-Pérez, B.; Tantisira, K.G.; Finn, P.W.; Gillman, M.W.; Weiss, S.T.; et al. Cord Blood Cytokines and Acute Lower Respiratory Illnesses in the First Year of Life. Pediatrics 2007, 119, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Alcamo, E.; Mizgerd, J.P.; Horwitz, B.H.; Bronson, R.; Beg, A.A.; Scott, M.; Doerschuk, C.M.; Hynes, R.O.; Baltimore, D. Targeted Mutation of TNF Receptor I Rescues the RelA-Deficient Mouse and Reveals a Critical Role for NF-ΚB in Leukocyte Recruitment. J. Immunol. 2001, 167, 1592–1600. [Google Scholar] [CrossRef]
- Quinton, L.J.; Jones, M.R.; Simms, B.T.; Kogan, M.S.; Robson, B.E.; Skerrett, S.J.; Mizgerd, J.P. Functions and Regulation of NF-κB RelA during Pneumococcal Pneumonia. J. Immunol. 2007, 178, 1896–1903. [Google Scholar] [CrossRef]
- Ye, P.; Rodriguez, F.H.; Kanaly, S.; Stocking, K.L.; Schurr, J.; Schwarzenberger, P.; Oliver, P.; Huang, W.; Zhang, P.; Zhang, J.; et al. Requirement of Interleukin 17 Receptor Signaling for Lung CXC Chemokine and Granulocyte Colony-Stimulating Factor Expression, Neutrophil Recruitment, and Host Defense. J. Exp. Med. 2001, 194, 519–528. [Google Scholar] [CrossRef]
- Sun, K.; Salmon, S.L.; Lotz, S.A.; Metzger, D.W. Interleukin-12 Promotes Gamma Interferon-Dependent Neutrophil Recruitment in the Lung and Improves Protection against Respiratory Streptococcus Pneumoniae Infection. Infect. Immun. 2007, 75, 1196–1202. [Google Scholar] [CrossRef]
- Bartlett, J.G. Soluble Triggering Receptor Expressed on Myeloid Cells and the Diagnosis of Pneumonia. Infect. Dis. Clin. Pract. 2004, 12, 268–269. [Google Scholar] [CrossRef]
- Klesney-Tait, J.; Turnbull, I.R.; Colonna, M. The TREM Receptor Family and Signal Integration. Nat. Immunol. 2006, 7, 1266–1273. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.; Bartell, T.; Wang, G.; Hong, X.; Rusk, S.A.; Fu, L.; Cerda, S.; Bustamante-Helfrich, B.; Kuohung, W.; Yarrington, C.; et al. Boston Birth Cohort Profile: Rationale and Study Design. Precis. Nutr. 2022, 1, e00011. [Google Scholar] [CrossRef]
- Matoba, N.; Yu, N.; Mestan, K.; Pearson, C.; Ortiz, K.; Porta, N.; Thorsen, P.; Skogstrand, K.; Hougaard, D.M.; Zuckerman, B.; et al. Differential Patterns of 27 Cord Blood Immune Biomarkers across Gestational Age. Pediatrics 2009, 123, 1320–1328. [Google Scholar] [CrossRef]
- Skogstrand, K.; Thorsen, P.; Nørgaard-Pedersen, B.; Schendel, D.E.; Sørensen, L.C.; Hougaard, D.M. Simultaneous Measurement of 25 Inflammatory Markers and Neurotrophins in Neonatal Dried Blood Spots by Immunoassay with XMAP Technology. Clin. Chem. 2005, 51, 1854–1866. [Google Scholar] [CrossRef] [PubMed]
- Vanker, A.; Barnett, W.; Workman, L.; Nduru, P.M.; Sly, P.D.; Gie, R.P.; Zar, H.J. Early-Life Exposure to Indoor Air Pollution or Tobacco Smoke and Lower Respiratory Tract Illness and Wheezing in African Infants: A Longitudinal Birth Cohort Study. Lancet Planet. Health 2017, 1, e328–e336. [Google Scholar] [CrossRef]
- Koopman, L.P.; Smit, H.A.; Heijnen, M.L.A.; Wijga, A.; Van Strien, R.T.; Kerkhof, M.; Gerritsen, J.; Brunekreef, B.; De Jongste, J.C.; Neijens, H.J. Respiratory Infections in Infants: Interaction of Parental Allergy, Child Care, and Siblings—The PIAMA Study. Pediatrics 2001, 108, 943–948. [Google Scholar] [CrossRef]
- Gutierrez, M. Prenatal and Perinatal Risk Factors for Lower Respiratory Tract Infections in Inner-City Minority Infants. J. Allergy Clin. Immunol. 2021, 147, AB78. [Google Scholar] [CrossRef]
- Fuentes-Leonarte, V.; Estarlich, M.; Ballester, F.; Murcia, M.; Esplugues, A.; Aurrekoetxea, J.J.; Basterrechea, M.; Fernández-Somoano, A.; Morales, E.; Gascón, M.; et al. Pre- and Postnatal Exposure to Tobacco Smoke and Respiratory Outcomes during the First Year. Indoor Air 2015, 25, 4–12. [Google Scholar] [CrossRef]
- Nafstad, P.; Jaakkola, J.J.K.; Hagen, J.A.; Botten, G.; Kongerud, J. Breastfeeding, Maternal Smoking and Lower Respiratory Tract Infections. Eur. Respir. J. 1996, 9, 2623–2629. [Google Scholar] [CrossRef] [PubMed]
- Singleton, R.J.; Wirsing, E.A.; Haberling, D.L.; Christensen, K.Y.; Paddock, C.D.; Hilinski, J.A.; Stoll, B.J.; Holman, R.C. Risk Factors for Lower Respiratory Tract Infection Death among Infants in the United States, 1999–2004. Pediatrics 2009, 124, 768–776. [Google Scholar] [CrossRef]
- Gutierrez, M.J.; Nino, G.; Hong, X.; Wang, X. Maternal Pre-Pregnancy Weight and Early Life Lower Respiratory Tract Infections in a Low-Income Urban Minority Birth Cohort. Sci. Rep. 2021, 11, 9790. [Google Scholar] [CrossRef] [PubMed]
- Haataja, P.; Korhonen, P.; Ojala, R.; Hirvonen, M.; Korppi, M.; Gissler, M.; Luukkaala, T.; Tammela, O. Hospital Admissions for Lower Respiratory Tract Infections in Children Born Moderately/Late Preterm. Pediatr. Pulmonol. 2018, 53, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Mosmann, T.R.; Coffman, R.L. TH1 and TH2 Cells: Different Patterns of Lymphokine Secretion Lead to Different Functional Properties. Annu. Rev. Immunol. 1989, 7, 145–173. [Google Scholar] [CrossRef] [PubMed]
- Bradley, L.M.; Dalton, D.K.; Croft, M. A Direct Role for IFN-Gamma in Regulation of Th1 Cell Development. J. Immunol. 1996, 157, 1350–1358. [Google Scholar] [CrossRef]
- Nathan, C.F.; Murray, H.W.; Wlebe, I.E.; Rubin, B.Y. Identification of Interferon-γ, as the Lymphokine That Activates Human Macrophage Oxidative Metabolism and Antimicrobial Activity. J. Exp. Med. 1983, 158, 670–689. [Google Scholar] [CrossRef]
- Prestwood, T.R.; Morar, M.M.; Zellweger, R.M.; Miller, R.; May, M.M.; Yauch, L.E.; Lada, S.M.; Shresta, S. Gamma Interferon (IFN-γ) Receptor Restricts Systemic Dengue Virus Replication and Prevents Paralysis in IFN-α/β Receptor-Deficient Mice. J. Virol. 2012, 86, 12561–12570. [Google Scholar] [CrossRef]
- Aberle, J.H.; Aberle, S.W.; Rebhandl, W.; Pracher, E.; Kundi, M.; Popow-Kraupp, T. Decreased Interferon-Gamma Response in Respiratory Syncytial Virus Compared to Other Respiratory Viral Infections in Infants. Clin. Exp. Immunol. 2004, 137, 146–150. [Google Scholar] [CrossRef]
- Tregoning, J.S.; Wang, B.L.; McDonald, J.U.; Yamaguchi, Y.; Harker, J.A.; Goritzka, M.; Johansson, C.; Bukreyev, A.; Collins, P.L.; Openshaw, P.J. Neonatal Antibody Responses Are Attenuated by Interferon-γ Produced by NK and T Cells during RSV Infection. Proc. Natl. Acad. Sci. USA 2013, 110, 5576–5581. [Google Scholar] [CrossRef]
- Yan, L.; Chen, Y.; Han, Y.; Tong, C. Role of CD8+ T Cell Exhaustion in the Progression and Prognosis of Acute Respiratory Distress Syndrome Induced by Sepsis: A Prospective Observational Study. BMC Emerg. Med. 2022, 22, 182. [Google Scholar] [CrossRef]
- Kim, B.S.; Kuen, D.S.; Koh, C.H.; Kim, H.D.; Chang, S.H.; Kim, S.; Jeon, Y.K.; Park, Y.J.; Choi, G.; Kim, J.; et al. Type 17 Immunity Promotes the Exhaustion of CD8+ T Cells in Cancer. J. Immunother. Cancer 2021, 9, e002603. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Feng, Y.; Xu, J.; Liang, J. T-Cell Exhaustion in Immune-Mediated Inflammatory Diseases: New Implications for Immunotherapy. Front. Immunol. 2022, 13, 977394. [Google Scholar] [CrossRef] [PubMed]
- Wherry, E.J.; Kurachi, M. Molecular and Cellular Insights into T Cell Exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Rogers, M.C.; Williams, J.V. Reining in the CD8+ T Cell: Respiratory Virus Infection and PD-1-Mediated T-Cell Impairment. PLoS Pathog. 2019, 15, e1007387. [Google Scholar] [CrossRef] [PubMed]
- Parks, O.B.; Eddens, T.; Sojati, J.; Lan, J.; Zhang, Y.; Oury, T.D.; Ramsey, M.; Erickson, J.J.; Byersdorfer, C.A.; Williams, J.V. Terminally Exhausted CD8+ T Cells Contribute to Age-Dependent Severity of Respiratory Virus Infection. Immun. Ageing 2023, 20, 40. [Google Scholar] [CrossRef]
- Brunet-Ratnasingham, E.; Morin, S.; Randolph, H.E.; Labrecque, M.; Bélair, J.; Lima-Barbosa, R.; Pagliuzza, A.; Marchitto, L.; Hultström, M.; Niessl, J.; et al. Sustained IFN Signaling Is Associated with Delayed Development of SARS-CoV-2-Specific Immunity. Nat. Commun. 2024, 15, 4177. [Google Scholar] [CrossRef]
- Forbester, J.L. Genetic in Fl Uences on Viral-Induced Cytokine Responses in the Lung. Mucosal Immunol. 2021, 14, 14–25. [Google Scholar] [CrossRef]
- Alhetheel, A.; Albarrag, A.; Shakoor, Z.; Somily, A.; Barry, M.; Altalhi, H.; Bakhrebah, M.; Nassar, M.; Alfageeh, M.; Assiri, A.; et al. Chemokine Levels among Patients with Middle East Respiratory Syndrome Coronavirus Infection. Vaccines 2023, 11, 1048. [Google Scholar] [CrossRef]
- Bisgaard, H.; Hermansen, M.N.; Buchvald, F.; Loland, L.; Halkjaer, L.B.; Bonnelykke, K.; Brasholt, M.; Heltberg, A.; Vissing, N.H.; Thorsen, S.V.; et al. Childhood Asthma after Bacterial Colonization of the Airway in Neonates. N. Engl. J. Med. 2007, 357, 1487–1495. [Google Scholar] [CrossRef]
- Branchett, W.J.; Lloyd, C.M. Regulatory Cytokine Function in the Respiratory Tract. Mucosal Immunol. 2019, 12, 589–600. [Google Scholar] [CrossRef]
- Kawai, T.; Seki, M.; Hiromatsu, K.; Eastcott, J.W.; Watts, G.F.M.; Sugai, M.; Smith, D.J.; Porcelli, S.A.; Taubman, M.A. Selective Diapedesis of Th1 Cells Induced by Endothelial Cell RANTES. J. Immunol. 1999, 163, 3269–3278. [Google Scholar] [CrossRef] [PubMed]
- Levy, J.A. The Unexpected Pleiotropic Activities of RANTES. J. Immunol. 2009, 182, 3945–3946. [Google Scholar] [CrossRef] [PubMed]
- Crawford, A.; Angelosanto, J.M.; Nadwodny, K.L.; Blackburn, S.D.; Wherry, E.J. A Role for the Chemokine RANTES in Regulating CD8 T Cell Responses during Chronic Viral Infection. PLoS Pathog. 2011, 7, e1002098. [Google Scholar] [CrossRef]
- Damdinsuren, B.; Zhang, Y.; Khalil, A.; Wood William, H.W., III; Becker, K.G.; Shlomchik, M.J.; Sen, R. Single Round of Antigen Receptor Signaling Programs Naive B Cells to Receive T Cell Help. Immunity 2010, 32, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Kohlmeier, J.E.; Miller, S.C.; Smith, J.; Lu, B.; Gerard, C.; Cookenham, T.; Roberts, A.D.; Woodland, D.L. The Chemokine Receptor CCR5 Plays a Key Role in the Early Memory CD8+ T Cell Response to Respiratory Virus Infections. Immunity 2008, 29, 101–113. [Google Scholar] [CrossRef]
- Silva, T.; Temerozo, J.R.; do Vale, G.; Ferreira, A.C.; Soares, V.C.; Dias, S.S.G.; Sardella, G.; Bou-Habib, D.C.; Siqueira, M.; Souza, T.M.L.; et al. The Chemokine CCL5 Inhibits the Replication of Influenza A Virus Through SAMHD1 Modulation. Front. Cell. Infect. Microbiol. 2021, 11, 549020. [Google Scholar] [CrossRef]
- Tyner, J.W.; Uchida, O.; Kajiwara, N.; Kim, E.Y.; Patel, A.C.; O’Sullivan, M.P.; Walter, M.J.; Schwendener, R.A.; Cook, D.N.; Danoff, T.M.; et al. CCL5-CCR5 Interaction Provides Antiapoptotic Signals for Macrophage Survival during Viral Infection. Nat. Med. 2005, 11, 1180–1187. [Google Scholar] [CrossRef]
- Tavares, L.P.; Garcia, C.C.; Gonçalves, A.P.F.; Kraemer, L.R.; Melo, E.M.; Oliveira, F.M.S.; Freitas, C.S.; Lopes, G.A.O.; Reis, D.C.; Cassali, G.D.; et al. ACKR2 Contributes to Pulmonary Dysfunction by Shaping CCL5:CCR5-Dependent Recruitment of Lymphocytes during Influenza a Infection in Mice. Am. J. Physiol. -Lung Cell. Mol. Physiol. 2020, 318, L655–L670. [Google Scholar] [CrossRef]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-Acquired Pneumonia Requiring Hospitalization among U.S. Children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef]
- Stockman, L.J.; Curns, A.T.; Anderson, L.J.; Fischer-Langley, G. Respiratory Syncytial Virus-Associated Hospitalizations among Infants and Young Children in the United States, 1997–2006. Pediatr. Infect. Dis. J. 2012, 31, 5–9. [Google Scholar] [CrossRef] [PubMed]
- Doucette, A.; Jiang, X.; Fryzek, J.; Coalson, J.; McLaurin, K.; Ambrose, C.S. Trends in Respiratory Syncytial Virus and Bronchiolitis Hospitalization Rates in High-Risk Infants in a United States Nationally Representative Database, 1997–2012. PLoS ONE 2016, 11, e0152208. [Google Scholar] [CrossRef] [PubMed]
No LRTI before 12 Months (n = 162) | LRTI before 12 Months (n = 29) | p | |
---|---|---|---|
Age of First LRTI, median, (IQR), months | - | 5 (3–6) | - |
Sex | |||
Female, n (%) | 78 (48.1) | 12 (41.4) | 0.5013 |
Male, n (%) | 84 (51.9) | 17 (58.6) | |
Mode of delivery | |||
C-section, n (%) | 45 (27.8) | 8 (27.6) | 0.9831 |
Vaginal, n (%) | 117 (72.2) | 21 (72.4) | |
N/A, n (%) | - | - | |
Gestational age | |||
≥37 weeks, n (%) | 115 (71) | 19 (65.5) | 0.5532 |
<37 weeks, n (%) | 47 (29) | 10 (34.5) | |
Birth weight mean, ± SD, grams | 2985.92 ± 648.5 | 2905.7 ± 743.6 | 0.589 |
Breastfeeding status | |||
Ever breastfed, n (%) | 125 (77.2) | 16 (55.2) | 0.01235 |
Never breastfed, n (%) | 33 (20.4) | 12 (41.4) | |
N/A, n (%) | 4 (2.5) | 1 (3.4) | |
Birth season | |||
Winter, n (%) | 45 (27.8) | 8 (27.6) | 0.965 |
Spring, n (%) | 28 (17.3) | 4 (13.8) | |
Summer, n (%) | 45 (27.8) | 9 (31) | |
Fall, (%) | 44 (27.2) | 8 (27.6) | |
Birth year | |||
2003, n (%) | 86 (53.1) | 21 (72.4) | 0.1616 |
2004, n (%) | 75 (46.3) | 8 (27.6) | |
2005, n (%) | 1 (0.6) | 0 (0) | |
Race | |||
White, n (%) | 6 (3.7) | 4 (13.8) | 0.1924 |
AA & Haitian, n (%) | 108 (66.7) | 17 (58.6) | |
Hispanic, n (%) | 31 (19.1) | 5 (17.2) | |
AAPI and Other, n (%) | 17 (10.5) | 3 (10.3) | |
Age at delivery mean, ± SD, years | 28.9 ± 6.5 | 27.9 ± 7.3 | 0.5011 |
Education level | |||
Less than some secondary school, n (%) | 53 (32.7) | 11 (38.0) | 0.814 |
HS diploma, n (%) | 53 (32.7) | 10 (34.5) | |
some college or more, n (%) | 55 (32.7) | 8 (27.6) | |
N/A, n (%) | 3 (1.9) | - | |
Parity | |||
No children, n (%) | 79 (48.8) | 17 (58.6) | 0.3283 |
Children, n (%) | 83 (51.2) | 12 (41.4) | |
BMI median, (IQR), kg/m² | 25.3 (21.9–28.6) | 26.8 (22.3–29.7) | 0.4021 |
Non-overweight (BMI < 25), n (%) | 73 (45.1) | 11 (37.9) | 0.3777 |
Overweight (≥25), n (%) | 78 (48.1) | 17 (58.6) | |
N/A, n (%) | 11 (6.8) | 1 (3.4) | |
Smoking during pregnancy | |||
No, n (%) | 148 (91.4) | 22 (75.9) | 0.001164 |
Yes, n (%) | 9 (5.6) | 7 (24.1) | |
N/A, n (%) | 5 (3.1) | - | |
Diabetes | |||
No, n (%) | 146 (90.1) | 26 (89.7) | 0.874 |
GDM, n (%) | 9 (5.6) | 2 (6.9) | |
DM, n (%) | 7 (4.3) | 1 (3.4) | |
N/A, n (%) | - | - | |
Eclampsia | |||
No, n (%) | 144 (88.9) | 25 (86.2) | 0.5177 |
Yes, n (%) | 16 (9.9) | 4 (13.8) | |
N/A, n (%) | 2 (1.2) | - | |
Chronic hypertension | |||
No, n (%) | 144 (88.9) | 25 (86.2) | 0.7513 |
Yes, n (%) | 18 (11.1) | 4 (13.8) | |
N/A, n (%) | - | - | |
Median age at start of childcare attendance, (IQR), years [n] | 0.96 (0.25–1.96), [72] | 0.75 (0.33–2.0), [22] | 0.4307 |
Immune Biomarker | Hazard Ratio | 95% CI | p |
---|---|---|---|
High [IFN-γ] | 2.35 | 1.07–5.17 | 0.03 |
High [IL-17] | 1.21 | 0.57–2.54 | 0.621 |
High [MIP-1α] | 2.82 | 1.22–6.51 | 0.025 |
High [MIP-1β] | 2.34 | 1.05–5.20 | 0.037 |
High [RANTES] | 0.43 | 0.19–0.97 | 0.042 |
High [TNF-β] | 2.86 | 1.27–6.47 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondell, E.; Nino, G.; Hong, X.; Wang, X.; Gutierrez, M.J. Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort. Pathogens 2024, 13, 765. https://doi.org/10.3390/pathogens13090765
Mondell E, Nino G, Hong X, Wang X, Gutierrez MJ. Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort. Pathogens. 2024; 13(9):765. https://doi.org/10.3390/pathogens13090765
Chicago/Turabian StyleMondell, Ethan, Gustavo Nino, Xiumei Hong, Xiaobin Wang, and Maria J. Gutierrez. 2024. "Immune Biomarkers at Birth Predict Lower Respiratory Tract Infection Risk in a Large Birth Cohort" Pathogens 13, no. 9: 765. https://doi.org/10.3390/pathogens13090765