Adding Hyponatremia to the “Rule-of-6” Prediction Tool Improves Performance in Identifying Hospitalised Patients with COVID-19 at Risk of Adverse Clinical Outcomes
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- García Clemente, M.M.; Herrero Huertas, J.; Fernández Fernández, A.; De La Escosura Muñoz, C.; Enríquez Rodríguez, A.I.; Pérez Martínez, L.; Gómez Mañas, S.; Iscar Urrutia, M.; López González, F.J.; Madrid Carbajal, C.J.; et al. Assessment of risk scores in COVID-19. Int. J. Clin. Pract. 2021, 75, e13705. [Google Scholar] [CrossRef] [PubMed]
- Dickens, B.S.L.; Lim, J.T.; Low, J.W.; Lee, C.K.; Sun, Y.; Nasir, H.B.M.; Akramullah, F.A.B.M.; Yan, G.; Oon, J.; Yan, B.; et al. Simple “Rule-of-6” Predicts Severe Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 2021, 72, 1861–1862. [Google Scholar] [CrossRef] [PubMed]
- Berni, A.; Malandrino, D.; Parenti, G.; Maggi, M.; Poggesi, L.; Peri, A. Hyponatremia, IL-6, and SARS-CoV-2 (COVID-19) infection: May all fit together? J. Endocrinol. Investig. 2020, 43, 1137–1139. [Google Scholar] [CrossRef] [PubMed]
- Khidir, R.J.Y.; Ibrahim, B.A.Y.; Adam, M.H.M.; Hassan, R.M.E.; Fedail, A.S.S.; Abdulhamid, R.O.; Mohamed, S.O.O. Prevalence and outcomes of hyponatremia among COVID-19 patients: A systematic review and meta-analysis. Int. J. Health Sci. 2022, 16, 69–84. [Google Scholar]
- Akbar, M.R.; Pranata, R.; Wibowo, A.; Irvan Sihite, T.A.; Martha, J.W. The Prognostic Value of Hyponatremia for Predicting Poor Outcome in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 666949. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Giuliani, C.; Parenti, G.; Norello, D.; Verbalis, J.G.; Forti, G.; Maggi, M.; Peri, A. Moderate hyponatremia is associated with increased risk of mortality: Evidence from a meta-analysis. PLoS ONE 2013, 8, e80451. [Google Scholar] [CrossRef] [PubMed]
- Goei, A.; Mohan Tiruchittampalam, Grad Dip Healthcare Management & Leadership, FRCS (A&E). Community Care Facility-A Novel Concept to Deal with the COVID-19 Pandemic: A Singaporean Institution’s Experience. J. Public Health Manag. Pract. 2020, 26, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Koh, M.C.; Liong, T.S.; Sim, M.Y.; Chhabra, S.; Goh, W.; Chew, N.W.; Sia, C.H.; Goon, P.K.; Soong, J.T.; et al. Inflammatory phenotypes may be more important than age and comorbidities in predicting clinical outcomes in hospitalised patients with COVID-19. IJID Reg. 2023, 8, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Chhabra, S.; Goh, W.; Sim, M.Y.; Chew, N.W.; Sia, C.H.; Cross, G.B.; Tambyah, P.A. Continued demographic shifts in hospitalised patients with COVID-19 from migrant workers to a vulnerable and more elderly local population at risk of severe disease. Int. J. Infect. Dis. 2023, 127, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Chew, N.W.S.; Tham, S.M.; Lim, Z.Y.; Li, T.Y.W.; Cen, S.; Tambyah, P.A.; Santosa, A.; Sia, C.H.; Cross, G.B. Utility of conventional clinical risk scores in a low-risk COVID-19 cohort. BMC Infect. Dis. 2021, 21, 1094. [Google Scholar] [CrossRef] [PubMed]
- Ravioli, S.; Niebuhr, N.; Ruchti, C.; Pluess, E.; Stoeckli, T.; Lindner, G. The syndrome of inappropriate antidiuresis in COVID-19 pneumonia: Report of two cases. Clin. Kidney J. 2020, 13, 461–462. [Google Scholar] [CrossRef] [PubMed]
- Habas, E.; Ali, E.; Habas, A.; Rayani, A.; Ghazouani, H.; Khan, F.; Farfar, K.; Elzouki, A.N. Hyponatremia and SARS-CoV-2 infection: A narrative review. Medicine 2022, 101, e30061. [Google Scholar] [CrossRef] [PubMed]
- Batlle, D.; Soler, M.J.; Sparks, M.A.; Hiremath, S.; South, A.M.; Welling, P.A.; Swaminathan, S. COVID-19 and ACE2 in Cardiovascular, Lung, and Kidney Working Group. Acute Kidney Injury in COVID-19: Emerging Evidence of a Distinct Pathophysiology. J. Am. Soc. Nephrol. 2020, 31, 1380–1383. [Google Scholar] [CrossRef] [PubMed]
- Romero Starke, K.; Reissig, D.; Petereit-Haack, G.; Schmauder, S.; Nienhaus, A.; Seidler, A. The isolated effect of age on the risk of COVID-19 severe outcomes: A systematic review with meta-analysis. BMJ Glob. Health 2021, 6, e006434. [Google Scholar] [CrossRef] [PubMed]
- Ngiam, J.N.; Liong, T.S.; Chew, N.W.S.; Li, T.Y.; Chang, Z.Y.; Lim, Z.Y.; Chua, H.R.; Tham, S.M.; Tambyah, P.A.; Santosa, A.; et al. Serum creatinine to absolute lymphocyte count ratio effectively risk stratifies patients who require intensive care in hospitalized patients with coronavirus disease 2019. Medicine 2022, 101, e30755. [Google Scholar] [CrossRef] [PubMed]
Parameter | Hyponatraemia (n = 161) | No Hyponatraemia (n = 1620) | p-Value |
---|---|---|---|
Baseline characteristics | |||
Age (years) | 51.9 (±16.9) | 41.2 (±14.0) | <0.001 |
Admitted in 2021 (compared with admission in 2020) | 58 (36.0%) | 363 (22.4%) | <0.001 |
Cycle threshold value of initial nasopharyngeal swab polymerase chain reaction for SARS-CoV-2 | 20.5 (±6.6) | 22.0 (±14.4) | 0.479 |
Absolute lymphocyte count (×109/L) | 1.5 (±0.9) | 1.9 (±1.4) | <0.001 |
C-reactive protein (mg/L) | 43.6 (±62.1) | 11.9 (±22.0) | <0.001 |
Ferritin (mcg/L) | 456.4 (±513.7) | 183.9 (±249.7) | <0.001 |
Lactate dehydrogenase (U/L) | 513.3 (±242.0) | 410.5 (±262.4) | <0.001 |
Serum sodium (mmol/L) | 131.9 (±2.6) | 138.5 (±1.9) | <0.001 |
Serum potassium (mmol/L) | 3.8 (±0.4) | 4.0 (±3.6) | 0.443 |
Serum urea (mmol/L) | 4.9 (±3.5) | 3.9 (±3.0) | <0.001 |
Serum creatinine (mmol/L) | 83.3 (±49.6) | 79.0 (±53.3) | 0.333 |
HbA1c (%) | 7.8 (±2.6) | 5.9 (±1.3) | <0.001 |
Sex (male) | 123 (77.4%) | 1303 (80.5%) | 0.338 |
Smoker | 17 (11.0%) | 113 (7.3%) | 0.104 |
Hypertension | 54 (33.5%) | 200 (12.3%) | <0.001 |
Hyperlipidaemia | 41 (25.5%) | 132 (8.1%) | <0.001 |
Diabetes mellitus | 45 (28.8%) | 85 (5.2%) | <0.001 |
Ischaemic heart disease | 13 (8.1%) | 38 (2.3%) | <0.001 |
No past medical history | 78 (48.4%) | 1321 (81.5%) | <0.001 |
Vaccinated against COVID-19 | 32 (19.9%) | 241 (14.9%) | 0.093 |
Asymptomatic | 14 (8.7%) | 293 (18.1%) | 0.003 |
Persistent fever beyond 72h | 48 (29.8%) | 156 (9.6%) | <0.001 |
Presence of pneumonia | 74 (46.0%) | 211 (13.0%) | <0.001 |
COVID-19 therapeutics | |||
Remdesivir | 33 (20.5%) | 53 (3.3%) | <0.001 |
Dexamethasone | 23 (14.3%) | 23 (2.1%) | <0.001 |
Baricitinib | 2 (1.2%) | 7 (0.4%) | 0.192 |
Tocilizumab | 0 (0.0%) | 3 (0.2%) | 0.999 |
Received COVID-19 therapeutics | 37 (23.0%) | 61 (3.8%) | <0.001 |
Clinical outcomes | |||
Length of hospital stay (days) | 2.2 (±2.5) | 1.0 (±2.0) | <0.001 |
Requiring supplemental oxygenation | 36 (22.4%) | 50 (3.1%) | <0.001 |
Acute kidney injury | 16 (9.9%) | 59 (3.6%) | <0.001 |
Required intensive care or experienced mortality | 27 (16.8%) | 33 (2.0%) | <0.001 |
Mortality | 4 (2.5%) | 9 (0.6%) | 0.024 |
Composite adverse outcome (requiring supplemental oxygenation, intensive care or mortality) | 41 (25.5%) | 67 (4.1%) | <0.001 |
Parameter | Adjusted Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Older age (per year) | 1.03 (1.01–1.05) | 0.003 |
No past medical history | 0.29 (0.16–0.54) | <0.001 |
Received COVID-19 vaccination | 0.81 (0.34–1.95) | 0.639 |
Hospital admission in 2021 (compared with 2020) | 1.42 (0.63–3.24) | 0.399 |
Elevated C-reactive protein (mg/L) | 1.01 (1.01–1.02) | <0.001 |
Elevated ferritin (mcg/L) | 1.00 (1.00–1.01) | 0.245 |
Elevated lactate dehydrogenase (U/L) | 1.00 (1.00–1.01) | 0.012 |
Hyponatremia (serum Na < 135 mmol/L) at presentation | 2.60 (1.45–4.67) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sim, M.Y.; Ngiam, J.N.; Koh, M.C.Y.; Goh, W.; Chhabra, S.; Chew, N.W.S.; Chai, L.Y.A.; Tambyah, P.A.; Sia, C.-H. Adding Hyponatremia to the “Rule-of-6” Prediction Tool Improves Performance in Identifying Hospitalised Patients with COVID-19 at Risk of Adverse Clinical Outcomes. Pathogens 2024, 13, 694. https://doi.org/10.3390/pathogens13080694
Sim MY, Ngiam JN, Koh MCY, Goh W, Chhabra S, Chew NWS, Chai LYA, Tambyah PA, Sia C-H. Adding Hyponatremia to the “Rule-of-6” Prediction Tool Improves Performance in Identifying Hospitalised Patients with COVID-19 at Risk of Adverse Clinical Outcomes. Pathogens. 2024; 13(8):694. https://doi.org/10.3390/pathogens13080694
Chicago/Turabian StyleSim, Meng Ying, Jinghao Nicholas Ngiam, Matthew Chung Yi Koh, Wilson Goh, Srishti Chhabra, Nicholas W. S. Chew, Louis Yi Ann Chai, Paul Anantharajah Tambyah, and Ching-Hui Sia. 2024. "Adding Hyponatremia to the “Rule-of-6” Prediction Tool Improves Performance in Identifying Hospitalised Patients with COVID-19 at Risk of Adverse Clinical Outcomes" Pathogens 13, no. 8: 694. https://doi.org/10.3390/pathogens13080694
APA StyleSim, M. Y., Ngiam, J. N., Koh, M. C. Y., Goh, W., Chhabra, S., Chew, N. W. S., Chai, L. Y. A., Tambyah, P. A., & Sia, C.-H. (2024). Adding Hyponatremia to the “Rule-of-6” Prediction Tool Improves Performance in Identifying Hospitalised Patients with COVID-19 at Risk of Adverse Clinical Outcomes. Pathogens, 13(8), 694. https://doi.org/10.3390/pathogens13080694