A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Recombinant Proteins Preparation
2.3. Lanthanide-Labeled SPA Preparation
2.4. Fluorescence Strip Fabrication
2.5. EuNPs-ICTS Analysis
2.6. EuNPs-ICTS Evaluation
2.7. ELISA Comparison for Serum Sample Detection
2.8. Sample Analysis
2.9. Statistical Analyses
3. Results
3.1. Expression and Purification of Recombinant Proteins
3.2. Preparation of EuNPs–SPA Conjugates
3.3. Principle of the EuNPs-ICTS
3.4. Experimental Parameter Optimization
3.5. EuNPs-ICTS Cut-Off Value
3.6. Repeatability of the EuNPs-ICTS
3.7. Sensitivity of the EuNPs-ICTS
3.8. Specificity of the EuNPs-ICTS
3.9. Comparison of ELISA and EuNPs-ICTS Performance
3.10. Epidemiological Investigation of T. gondii Using the EuNPs-ICTS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- References Tenter, A.M.; Heckeroth, A.R.; Weiss, L.M. Toxoplasma gondii: From animals to humans. Int. J. Parasitol. 2000, 30, 1217–1258. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E. Toxoplasmosis. Semin. Fetal Neonatal Med. 2007, 12, 214–223. [Google Scholar] [CrossRef]
- Fietz, S.A.; Grochow, T.; Schares, G.; Topfer, T.; Heilmann, R.M. Fulminant Pneumonia Due to Reactivation of Latent Toxoplasmosis in a Cat-A Case Report. Pathogens 2023, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef]
- Pfaff, A.W.; Abou-Bacar, A.; Letscher-Bru, V.; Villard, O.; Senegas, A.; Mousli, M.; Candolfi, E. Cellular and molecular physiopathology of congenital toxoplasmosis: The dual role of IFN-gamma. Parasitology 2007, 134 Pt 13, 1895–1902. [Google Scholar] [CrossRef]
- Melamed, J.; Eckert, G.U.; Spadoni, V.S.; Lago, E.G.; Uberti, F. Ocular manifestations of congenital toxoplasmosis. Eye 2010, 24, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, P.R.; Devleesschauwer, B.; Praet, N.; Speybroeck, N.; Willingham, A.L.; Kasuga, F.; Rokni, M.B.; Zhou, X.N.; Fevre, E.M.; Sripa, B.; et al. World Health Organization Estimates of the Global and Regional Disease Burden of 11 Foodborne Parasitic Diseases, 2010: A Data Synthesis. PLoS Med. 2015, 12, e1001920. [Google Scholar] [CrossRef]
- Elmore, S.A.; Jones, J.L.; Conrad, P.A.; Patton, S.; Lindsay, D.S.; Dubey, J.P. Toxoplasma gondii: Epidemiology, feline clinical aspects, and prevention. Trends Parasitol. 2010, 26, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Torrey, E.F.; Yolken, R.H. Toxoplasma oocysts as a public health problem. Trends Parasitol. 2013, 29, 380–384. [Google Scholar] [CrossRef]
- Frenkel, J.K.; Parker, B.B. An apparent role of dogs in the transmission of Toxoplasma gondii. The probable importance of xenosmophilia. Ann. N. Y. Acad. Sci. 1996, 791, 402–407. [Google Scholar] [CrossRef]
- Lindsay, D.S.; Dubey, J.P.; Butler, J.M.; Blagburn, B.L. Mechanical transmission of Toxoplasma gondii oocysts by dogs. Vet. Parasitol. 1997, 73, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Etheredge, G.D.; Michael, G.; Muehlenbein, M.P.; Frenkel, J.K. The roles of cats and dogs in the transmission of Toxoplasma infection in Kuna and Embera children in eastern Panama. Rev. Panam. Salud Publ. 2004, 16, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Schares, G.; Pantchev, N.; Barutzki, D.; Heydorn, A.O.; Bauer, C.; Conraths, F.J. Oocysts of Neospora caninum, Hammondia heydorni, Toxoplasma gondii and Hammondia hammondi in faeces collected from dogs in Germany. Int. J. Parasitol. 2005, 35, 1525–1537. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.M.; Ding, H.; Lamberton, P.; Lu, D.B. Prevalence of Toxoplasma gondii in pet dogs in mainland China: A meta-analysis. Vet. Parasitol. 2016, 229, 126–130. [Google Scholar] [CrossRef]
- Redlich, A.; Muller, W.A. Serodiagnosis of acute toxoplasmosis using a recombinant form of the dense granule antigen GRA6 in an enzyme-linked immunosorbent assay. Parasitol. Res. 1998, 84, 700–706. [Google Scholar] [CrossRef]
- Ferra, B.T.; Holec-Gasior, L.; Gatkowska, J.; Dziadek, B.; Dzitko, K.; Grazlewska, W.; Lautenbach, D. The first study on the usefulness of recombinant tetravalent chimeric proteins containing fragments of SAG2, GRA1, ROP1 and AMA1 antigens in the detection of specific anti-Toxoplasma gondii antibodies in mouse and human sera. PLoS ONE 2019, 14, e0217866. [Google Scholar] [CrossRef]
- Grimwood, J.; Smith, J.E. Toxoplasma gondii: The role of parasite surface and secreted proteins in host cell invasion. Int. J. Parasitol. 1996, 26, 169–173. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, W.; Chen, Y.; Liu, Y.; Zhang, H.; Xiao, Y.; Qiao, Y.; Huang, K.; Wang, Q. Twenty-six circulating antigens and two novel diagnostic candidate molecules identified in the serum of canines with experimental acute toxoplasmosis. Parasite Vector 2016, 9, 374. [Google Scholar] [CrossRef]
- Seng, S.; Yokoyama, M.; Suzuki, R.; Maki, Y.; Kato, M.; Lim, C.; Zayatiin, B.; Inoue, N.; Xuan, X.; Igarashi, I.; et al. Expression of SAG-1 of Toxoplasma gondii in transgenic mice. Parasitol. Res. 2000, 86, 263–269. [Google Scholar] [CrossRef]
- Selseleh, M.M.; Keshavarz, H.; Mohebali, M.; Shojaee, S.; Modarressi, M.; Eshragian, M.; Selseleh, M.M. Production and Evaluation of Toxoplasma gondii Recombinant Surface Antigen 1 (SAG1) for Serodiagnosis of Acute and Chronic Toxoplasma Infection in Human Sera. Iran. J. Parasitol. 2012, 7, 1–9. [Google Scholar]
- Liu, Q.; Zhang, M.Y.; Zhao, B.; Chen, Y.; Jiang, W.; Geng, X.L.; Wang, Q. Diagnostic Value of Circulating Antigens in the Serum of Piglets with Experimental Acute Toxoplasmosis. J. Immunol. 2022, 208, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Prince, J.B.; Auer, K.L.; Huskinson, J.; Parmley, S.F.; Araujo, F.G.; Remington, J.S. Cloning, expression, and cDNA sequence of surface antigen P22 from Toxoplasma gondii. Mol. Biochem. Parasit. 1990, 43, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xuan, X.; Kimbita, E.N.; Battur, B.; Miyazawa, T.; Fukumoto, S.; Mishima, M.; Makala, L.H.; Suzuki, H.; Sugimoto, C.; et al. Development and evaluation of an enzyme-linked immunosorbent assay with recombinant SAG2 for diagnosis of Toxoplasma gondii infection in cats. J. Parasitol. 2002, 88, 804–807. [Google Scholar] [CrossRef] [PubMed]
- Abdelbaset, A.E.; Alhasan, H.; Salman, D.; Karram, M.H.; Ellah, R.M.; Xuenan, X.; Igarashi, M. Evaluation of recombinant antigens in combination and single formula for diagnosis of feline toxoplasmosis. Exp. Parasitol. 2017, 172, 1–4. [Google Scholar] [CrossRef]
- Pardini, L.; Maksimov, P.; Herrmann, D.C.; Bacigalupe, D.; Rambeaud, M.; Machuca, M.; More, G.; Basso, W.; Schares, G.; Venturini, M.C. Evaluation of an in-house TgSAG1 (P30) IgG ELISA for diagnosis of naturally acquired Toxoplasma gondii infection in pigs. Vet. Parasitol. 2012, 189, 204–210. [Google Scholar] [CrossRef]
- Ferra, B.; Holec-Gasior, L.; Grazlewska, W. Toxoplasma gondii Recombinant Antigens in the Serodiagnosis of Toxoplasmosis in Domestic and Farm Animals. Animals 2020, 10, 1245. [Google Scholar] [CrossRef]
- Hosseininejad, M. Evaluation of an indirect ELISA using a tachyzoite surface antigen SAG1 for diagnosis of Toxoplasma gondii infection in cats. Exp. Parasitol. 2012, 132, 556–560. [Google Scholar] [CrossRef]
- Aly, N.; Kim, H.S.; Marei, Y.M.; Elhamshary, A.S.; Bayoumi, I.R.; Omar, R.E.; Mohammed, D.A.; Miyoshi, S.I.; Rashed, G.A. Diagnosis of Toxoplasmosis Using Surface Antigen Grade 1 Detection by ELISA, Nano-Gold ELISA, and PCR in Pregnant Women. Int. J. Nanomed. 2023, 18, 1335–1345. [Google Scholar] [CrossRef]
- Lekutis, C.; Ferguson, D.J.; Grigg, M.E.; Camps, M.; Boothroyd, J.C. Surface antigens of Toxoplasma gondii: Variations on a theme. Int. J. Parasitol. 2001, 31, 1285–1292. [Google Scholar] [CrossRef]
- Graille, M.; Stura, E.A.; Bossus, M.; Muller, B.H.; Letourneur, O.; Battail-Poirot, N.; Sibai, G.; Gauthier, M.; Rolland, D.; Le Du, M.H.; et al. Crystal structure of the complex between the monomeric form of Toxoplasma gondii surface antigen 1 (SAG1) and a monoclonal antibody that mimics the human immune response. J. Mol. Biol. 2005, 354, 447–458. [Google Scholar] [CrossRef]
- Jiang, W.; Liu, Y.; Chen, Y.; Yang, Q.; Chun, P.; Yao, K.; Han, X.; Wang, S.; Yu, S.; Liu, Y.; et al. A novel dynamic flow immunochromatographic test (DFICT) using gold nanoparticles for the serological detection of Toxoplasma gondii infection in dogs and cats. Biosens. Bioelectron. 2015, 72, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Wang, Z.D.; Huang, S.Y.; Zhu, X.Q. Diagnosis of toxoplasmosis and typing of Toxoplasma gondii. Parasite Vector 2015, 8, 292. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Li, X.R.; Wang, G.X.; Yin, H.; Cai, X.P.; Fu, B.Q.; Zhang, D.L. Development of an immunochromatographic strip for the rapid detection of Toxoplasma gondii circulating antigens. Parasitol. Int. 2011, 60, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Terkawi, M.A.; Kameyama, K.; Rasul, N.H.; Xuan, X.; Nishikawa, Y. Development of an immunochromatographic assay based on dense granule protein 7 for serological detection of Toxoplasma gondii infection. Clin. Vaccine Immunol. 2013, 20, 596–601. [Google Scholar] [CrossRef]
- Alvarado-Esquivel, C.; Romero-Salas, D.; Cruz-Romero, A.; Garcia-Vazquez, Z.; Peniche-Cardena, A.; Ibarra-Priego, N.; Ahuja-Aguirre, C.; Perez-de-Leon, A.A.; Dubey, J.P. High prevalence of Toxoplasma gondii antibodies in dogs in Veracruz, Mexico. BMC Vet. Res. 2014, 10, 191. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.; Ferreira, F.; Dias, R.A.; Ajzenberg, D.; Marvulo, M.; Magalhaes, F.; Filho, C.; Oliveira, S.; Soares, H.S.; Feitosa, T.F.; et al. Cat-rodent Toxoplasma gondii Type II-variant circulation and limited genetic diversity on the Island of Fernando de Noronha, Brazil. Parasite Vector 2017, 10, 220. [Google Scholar] [CrossRef]
- Fernandes, S.; Brilhante-Simoes, P.; Coutinho, T.; Cardoso, L.; Dubey, J.P.; Lopes, A.P. Comparison of indirect and modified agglutination tests for detection of antibodies to Toxoplasma gondii in domestic cats. J. Vet. Diagn. Investig. 2019, 31, 774–777. [Google Scholar] [CrossRef]
- Huhtinen, P.; Kivela, M.; Kuronen, O.; Hagren, V.; Takalo, H.; Tenhu, H.; Lovgren, T.; Harma, H. Synthesis, characterization, and application of Eu(III), Tb(III), Sm(III), and Dy(III) lanthanide chelate nanoparticle labels. Anal. Chem. 2005, 77, 2643–2648. [Google Scholar] [CrossRef]
- Huhtinen, P.; Kivela, M.; Soukka, T.; Tenhu, H.; Lovgren, T.; Harma, H. Preparation, characterisation and application of europium(III) chelate-dyed polystyrene-acrylic acid nanoparticle labels. Anal. Chim. Acta 2008, 630, 211–216. [Google Scholar] [CrossRef]
- Soukka, T.; Paukkunen, J.; Harma, H.; Lonnberg, S.; Lindroos, H.; Lovgren, T. Supersensitive time-resolved immunofluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clin. Chem. 2001, 47, 1269–1278. [Google Scholar] [CrossRef]
- Sun, J.; Wang, L.; Shao, J.; Yang, D.; Fu, X.; Sun, X. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal. Bioanal. Chem. 2021, 413, 6489–6502. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Li, M.; Xing, F.; Wang, H.; Zhang, Y.; Sun, X. Novel dual immunochromatographic test strip based on double antibodies and biotin-streptavidin system for simultaneous sensitive detection of aflatoxin M1 and ochratoxin A in milk. Food Chem. 2022, 375, 131682. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zou, M.; Chen, Y.; Li, J.; Wang, Y.; Qi, X.; Xue, Q. Lanthanide-labeled immunochromatographic strips for the rapid detection of Pantoea stewartii subsp. stewartii. Biosens. Bioelectron. 2014, 51, 29–35. [Google Scholar] [CrossRef]
- Feng, M.; Chen, J.; Xun, J.; Dai, R.; Zhao, W.; Lu, H.; Xu, J.; Chen, L.; Sui, G.; Cheng, X. Development of a Sensitive Immunochromatographic Method Using Lanthanide Fluorescent Microsphere for Rapid Serodiagnosis of COVID-19. ACS Sens. 2020, 5, 2331–2337. [Google Scholar] [CrossRef]
- Wang, X.; Tang, B.; Zhao, Y.; Ding, J.; Wang, N.; Liu, Y.; Dong, Z.; Sun, X.; Xu, Q.; Liu, M.; et al. Development of a rapid and sensitive immunochromatographic strip based on EuNPs-ES fluorescent probe for the detection of early Trichinella spiralis-specific IgG antibody in pigs. Vet. Res. 2021, 52, 85. [Google Scholar] [CrossRef]
- Goudswaard, J.; van der Donk, J.A.; Noordzij, A.; van Dam, R.H.; Vaerman, J.P. Protein A reactivity of various mammalian immunoglobulins. Scand. J. Immunol. 1978, 8, 21–28. [Google Scholar] [CrossRef]
- Kelly, P.J.; Tagwira, M.; Matthewman, L.; Mason, P.R.; Wright, E.P. Reactions of sera from laboratory, domestic and wild animals in Africa with protein A and a recombinant chimeric protein AG. Comp. Immunol. Microb. 1993, 16, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Goding, J.W. Use of staphylococcal protein A as an immunological reagent. J. Immunol. Methods 1978, 20, 241–253. [Google Scholar] [CrossRef]
- Al-Adhami, B.H.; Gajadhar, A.A. A new multi-host species indirect ELISA using protein A/G conjugate for detection of anti-Toxoplasma gondii IgG antibodies with comparison to ELISA-IgG, agglutination assay and Western blot. Vet. Parasitol. 2014, 200, 66–73. [Google Scholar] [CrossRef]
- Bezerra, M.F.; Xavier, C.C.; Almeida, A.; Reis, C. Evaluation of a multi-species Protein A-ELISA assay for plague serologic diagnosis in humans and other mammal hosts. PLoS Negl. Trop. Dis. 2022, 16, e0009805. [Google Scholar] [CrossRef]
- You, Q.; Liu, M.; Liu, Y.; Zheng, H.; Hu, Z.; Zhou, Y.; Wang, B. Lanthanide-Labeled Immunochromatographic Strip Assay for the On-Site Identification of Ancient Silk. ACS Sens. 2017, 2, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Ren, M.; Li, Y.; Huang, Z.; Shu, M.; Yang, H.; Xiong, Y.; Xu, Y. Detection of aflatoxin B(1) with immunochromatographic test strips: Enhanced signal sensitivity using gold nanoflowers. Talanta 2015, 142, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jiang, W.; Chen, Y.J.; Jing, Z.Y. Prevalence of Toxoplasma gondii antibodies and DNA in dogs in Shanghai, China. J. Parasitol. 2011, 97, 367–369. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, W.; Chen, Y.J.; Liu, C.Y.; Shi, J.L.; Li, X.T. Prevalence of Toxoplasma gondii antibodies, circulating antigens and DNA in stray cats in Shanghai, China. Parasite Vector 2012, 5, 190. [Google Scholar] [CrossRef] [PubMed]
- Swets, J.A. Measuring the Accuracy of Diagnostic Systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef]
- Conraths, F.J.; Schares, G. Validation of molecular-diagnostic techniques in the parasitological laboratory. Vet. Parasitol. 2006, 136, 91–98. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Chen, X.; Fang, L.; Yang, Y.; Cao, G.; Zhang, H.; Bogere, A.; Meng, S.; Chen, J.; et al. Quantitative detection of malachite green in sediment by a time-resolved immunofluorescence method combined with a portable 3D printing equipment platform. Sci. Total Environ. 2023, 855, 158897. [Google Scholar] [CrossRef]
- Tom, F. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar]
- El-Sayyad, G.S.; Hasan, O.F.; Saad, M.; El-Batal, A.I. Improving the diagnosis of bovine tuberculosis using gold nanoparticles conjugated with purified protein derivative: Special regard to staphylococcal protein A and streptococcal protein G. Environ. Sci. Pollut. Res. 2021, 28, 29200–29220. [Google Scholar] [CrossRef]
- Kessler, S.W. Use of protein A-bearing staphylococci for the immunoprecipitation and isolation of antigens from cells. Method Enzymol. 1981, 73 Pt B, 442–459. [Google Scholar]
- Deng, B.; Ge, J.; Yang, X.C.; Li, K.H.; Zhou, J.P. Serological antibody survey of Toxoplasma gondii in domestic dogs and cats in Shanghai urban area in 2014. Shanghai J. Anim. Husb. Vet. Med. 2015, 44–45. [Google Scholar] [CrossRef]
- Stopic, M.; Stajner, T.; Markovic-Denic, L.; Nikolic, V.; Djilas, I.; Srzentic, S.J.; Djurkovic-Djakovic, O.; Bobic, B. Epidemiology of Toxoplasmosis in SERBIA: A Cross-Sectional Study on Blood Donors. Microorganisms 2022, 10, 492. [Google Scholar] [CrossRef] [PubMed]
- Olariu, T.R.; Ursoniu, S.; Hotea, I.; Dumitrascu, V.; Anastasiu, D.; Lupu, M.A. Seroprevalence and Risk Factors of Toxoplasma gondii Infection in Pregnant Women from Western Romania. Vector-Borne Zoonot. Dis. 2020, 20, 763–767. [Google Scholar] [CrossRef] [PubMed]
- Silaghi, C.; Knaus, M.; Rapti, D.; Kusi, I.; Shukullari, E.; Hamel, D.; Pfister, K.; Rehbein, S. Survey of Toxoplasma gondii and Neospora caninum, haemotropic mycoplasmas and other arthropod-borne pathogens in cats from Albania. Parasite Vector 2014, 7, 62. [Google Scholar] [CrossRef] [PubMed]
Criterion | Sensitivity | 95% CI | Specificity | 95% CI | +LR | −LR |
---|---|---|---|---|---|---|
≥0.13 | 100.00 | 92.7–100.0 | 0.00 | 0.0–4.5 | 1.00 | |
>1.71 | 100.00 | 92.7–100.0 | 56.79 | 45.3–67.8 | 2.31 | 0.00 |
>1.75 | 97.96 | 89.1–99.9 | 56.79 | 45.3–67.8 | 2.27 | 0.036 |
>1.78 | 97.96 | 89.1–99.9 | 58.02 | 46.5–68.9 | 2.33 | 0.035 |
>1.83 | 95.92 | 86.0–99.5 | 58.02 | 46.5–68.9 | 2.29 | 0.070 |
* >4.62 | 95.92 | 86.0–99.5 | 93.83 | 86.2–98.0 | 15.54 | 0.044 |
>4.76 | 93.88 | 83.1–98.7 | 93.83 | 86.2–98.0 | 15.21 | 0.065 |
>4.81 | 93.88 | 83.1–98.7 | 95.06 | 87.8–98.6 | 19.01 | 0.064 |
>5.17 | 89.80 | 77.8–96.6 | 95.06 | 87.8–98.6 | 18.18 | 0.11 |
>5.99 | 89.80 | 77.8–96.6 | 96.30 | 89.6–99.2 | 24.24 | 0.11 |
>7.8 | 85.71 | 72.8–94.1 | 96.30 | 89.6–99.2 | 23.14 | 0.15 |
>8.12 | 85.71 | 72.8–94.1 | 100.00 | 95.5–100.0 | 0.14 | |
>59.09 | 0.00 | 0.0–7.3 | 100.00 | 95.5–100.0 | 1.00 |
Criterion | Sensitivity | 95% CI | Specificity | 95% CI | +LR | −LR |
---|---|---|---|---|---|---|
≥0.31 | 100.00 | 93.4–100.0 | 0.00 | 0.0–4.6 | 1.00 | |
>3.16 | 100.00 | 93.4–100.0 | 67.09 | 55.6–77.3 | 3.04 | 0.00 |
>3.22 | 98.15 | 90.1–100.0 | 67.09 | 55.6–77.3 | 2.98 | 0.028 |
>3.85 | 98.15 | 90.1–100.0 | 79.75 | 69.2–88.0 | 4.85 | 0.023 |
>3.93 | 94.44 | 84.6–98.8 | 79.75 | 69.2–88.0 | 4.66 | 0.070 |
>4.06 | 94.44 | 84.6–98.8 | 81.01 | 70.6–89.0 | 4.97 | 0.069 |
>4.1 | 92.59 | 82.1–97.9 | 82.28 | 72.1–90.0 | 5.22 | 0.090 |
* >4.79 | 92.59 | 82.1–97.9 | 94.94 | 87.5–98.6 | 18.29 | 0.078 |
>6.24 | 88.89 | 77.4–95.8 | 94.94 | 87.5–98.6 | 17.56 | 0.12 |
>7.3 | 88.89 | 77.4–95.8 | 97.47 | 91.2–99.7 | 35.11 | 0.11 |
>7.71 | 87.04 | 75.1–94.6 | 97.47 | 91.2–99.7 | 34.38 | 0.13 |
>10.09 | 87.04 | 75.1–94.6 | 100.00 | 95.4–100.0 | 0.13 | |
>48.1 | 0.00 | 0.0–6.6 | 100.00 | 95.4–100.0 | 1.00 |
Sample | ± s (FITp) (107) | CV% |
---|---|---|
1 | 0.77 ± 0.02 | 2.30% |
2 | 19.18 ± 0.91 | 4.76% |
3 | 35.32 ± 1.90 | 5.39% |
Sample | ± s (FITp) (107) | CV% |
---|---|---|
1 | 0.75 ± 0.02 | 2.75% |
2 | 19.60 ± 20.94 | 4.82% |
3 | 32.92 ± 1.89 | 5.73% |
4 | 42.82 ± 1.96 | 4.57% |
5 | 24.61 ± 1.83 | 7.43% |
6 | 39.56 ± 3.29 | 8.32% |
7 | 9.84 ± 0.33 | 3.37% |
8 | 11.89 ± 0.42 | 3.50% |
9 | 47.67 ± 4.99 | 10.48% |
10 | 16.26 ± 0.50 | 3.07% |
Group | No. of Serum Samples | No. of Positive Samples | |
---|---|---|---|
ELISA | EuNPs-ICTS | ||
Positive serum samples | |||
Dog positive controls | 20 | 19 | 18 |
Cat positive controls | 12 | 11 | 12 |
Total | 32 | 30 | 30 |
Negative serum samples | |||
Dog negative controls | 17 | 1 | 0 |
Cat negative controls | 24 | 0 | 2 |
Total | 41 | 1 | 2 |
Group | ELISA | Sensitivity (%) | Specificity (%) | Accuracy (%) | McNemar | Kappa Statistics | |||
---|---|---|---|---|---|---|---|---|---|
EuNPs-ICTS | Positive | Negative | Total | χ2 | |||||
Domestic dogs | Positive | 54 | 2 | 56 | 96.43 | 94.87 | 95.79 | p > 0.05 | 0.91 |
Negative | 2 | 37 | 39 | ||||||
Total | 56 | 39 | 95 | ||||||
Domestic cats | Positive | 37 | 1 | 38 | 94.87 | 97.22 | 96.00 | p > 0.05 | 0.92 |
Negative | 2 | 35 | 37 | ||||||
Total | 39 | 36 | 75 |
Animal Group | Central Urban Area | Peripheral Urban Area | Total | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Positive | No. | Positive | No. | Positive | ||||
No. | % | No. | % | No. | % | ||||
Domestic dogs | 349 | 53 | 15.19 | 423 | 88 | 20.80 | 772 | 141 | 18.26 |
Stray dogs | 131 | 35 | 26.72 | 93 | 27 | 29.03 | 224 | 62 | 27.68 |
Domestic cats | 98 | 6 | 6.12 | 117 | 17 | 14.53 | 215 | 23 | 10.70 |
Stray cats | 146 | 21 | 14.38 | 55 | 15 | 27.27 | 201 | 36 | 17.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Liu, Q.; Li, R.; Jiang, W.; Zhao, H.; Sheng, W.; Xia, L.; Li, Z.; Sun, Q.; Du, J.; et al. A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats. Pathogens 2024, 13, 931. https://doi.org/10.3390/pathogens13110931
Zhang M, Liu Q, Li R, Jiang W, Zhao H, Sheng W, Xia L, Li Z, Sun Q, Du J, et al. A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats. Pathogens. 2024; 13(11):931. https://doi.org/10.3390/pathogens13110931
Chicago/Turabian StyleZhang, Manyu, Qi Liu, Ruifang Li, Wei Jiang, Hongjin Zhao, Wenwei Sheng, Luming Xia, Zengqiang Li, Qing Sun, Jingying Du, and et al. 2024. "A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats" Pathogens 13, no. 11: 931. https://doi.org/10.3390/pathogens13110931
APA StyleZhang, M., Liu, Q., Li, R., Jiang, W., Zhao, H., Sheng, W., Xia, L., Li, Z., Sun, Q., Du, J., Lei, L., & Wang, Q. (2024). A Novel Immunochromatographic Test Strip Using Lanthanide-Labeled Fluorescent Nanoparticles for the Serological Detection of Toxoplasma gondii in Dogs and Cats. Pathogens, 13(11), 931. https://doi.org/10.3390/pathogens13110931