BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. T. gondii Culture
2.2. BONCAT Labelling and PM Treatment
2.3. Click Chemistry-Based Proteome Enrichment, On-Bead Processing and iTRAQ Labelling for Quantitative Analysis
2.4. Liquid Chromatrography-Tandem Mass Spectrometry (LC-MS/MS) Analysis
2.5. Data Analysis
3. Results
3.1. BONCAT-iTRAQ Profiling of PM-Induced Changes in Global Nascent Protein Synthesis in T. gondii
3.2. Protein–Protein Interaction Network Analysis of PM-Modulated NSPs in T. gondii
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Montoya, J.G.; Liesenfeld, O. Toxoplasmosis. Lancet 2004, 363, 1965–1976. [Google Scholar] [CrossRef] [PubMed]
- Heppler, L.N.; Attarha, S.; Persaud, R.; Brown, J.I.; Wang, P.; Petrova, B.; Tosic, I.; Burton, F.B.; Flamand, Y.; Walker, S.R.; et al. The antimicrobial drug pyrimethamine inhibits STAT3 transcriptional activity by targeting the enzyme dihydrofolate reductase. J. Biol. Chem. 2022, 298, 101531. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Oh, J.; Roos, D.S. In vitro generation of novel pyrimethamine resistance mutations in the Toxoplasma gondii dihydrofolate reductase. Antimicrob. Agents Chemother. 2001, 45, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, M.; Mehrzadi, S.; Sharif, M.; Sarvi, S.; Tanzifi, A.; Aghayan, S.A.; Daryani, A. Drug Resistance in Toxoplasma gondii. Front. Microbiol. 2018, 9, 2587. [Google Scholar] [CrossRef]
- Garrison, E.M.; Arrizabalaga, G. Disruption of a mitochondrial MutS DNA repair enzyme homologue confers drug resistance in the parasite Toxoplasma gondii. Mol. Microbiol. 2009, 72, 425–441. [Google Scholar] [CrossRef]
- Shen, B.; Powell, R.H.; Behnke, M.S. QTL Mapping and CRISPR/Cas9 Editing to Identify a Drug Resistance Gene in Toxoplasma gondii. J. Vis. Exp. 2017, 124, 55185. [Google Scholar]
- Dieterich, D.C.; Link, A.J.; Graumann, J.; Tirrell, D.A.; Schuman, E.M. Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT). Proc. Natl. Acad. Sci. USA 2006, 103, 9482–9487. [Google Scholar] [CrossRef]
- Dieterich, D.C.; Lee, J.J.; Link, A.J.; Graumann, J.; Tirrell, D.A.; Schuman, E.M. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Nat. Protoc. 2007, 2, 532–540. [Google Scholar] [CrossRef]
- Ross, P.L.; Huang, Y.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteom. 2004, 3, 1154–1169. [Google Scholar] [CrossRef]
- Wiese, S.; Reidegeld, K.A.; Meyer, H.E.; Warscheid, B. Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7, 340–350. [Google Scholar] [CrossRef]
- Kalesh, K.; Denny, P.W. A BONCAT-iTRAQ method enables temporally resolved quantitative profiling of newly synthesised proteins in Leishmania mexicana parasites during starvation. PLoS Negl. Trop. Dis. 2019, 13, e0007651. [Google Scholar] [CrossRef] [PubMed]
- Kalesh, K.; Sundriyal, S.; Perera, H.; Cobb, S.L.; Denny, P.W. Quantitative Proteomics Reveals that Hsp90 Inhibition Dynamically Regulates Global Protein Synthesis in Leishmania mexicana. mSystems 2021, 6, e00089-21. [Google Scholar] [CrossRef] [PubMed]
- Koutsogiannis, Z.; Mina, J.G.; Albus, C.A.; Kol, M.A.; Holthuis, J.C.M.; Pohl, E.; Denny, P.W. Toxoplasma ceramide synthases: Gene duplication, functional divergence, and roles in parasite fitness. FASEB J. 2023, 37, e23229. [Google Scholar] [CrossRef] [PubMed]
- de Lima Bessa, G.; Vitor, R.W.A.; Lobo, L.M.S.; Rego, W.M.F.; de Souza, G.C.A.; Lopes, R.E.N.; Costa, J.G.L.; Martins-Duarte, E.S. In vitro and in vivo susceptibility to sulfadiazine and pyrimethamine of Toxoplasma gondii strains isolated from Brazilian free wild birds. Sci. Rep. 2023, 13, 7359. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Holmes, M.J.; Shah, P.; Wek, R.C.; Sullivan, W.J., Jr. Simultaneous Ribosome Profiling of Human Host Cells Infected with Toxoplasma gondii. mSphere 2019, 4, e00292-19. [Google Scholar] [CrossRef]
- Wang, X.; Qu, L.; Chen, J.; Jin, Y.; Hu, K.; Zhou, Z.; Zhang, J.; An, Y.; Zheng, J. Toxoplasma rhoptry proteins that affect encephalitis outcome. Cell Death Discov. 2023, 9, 439. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, H.M.; Xuan, X.; Nishikawa, Y. Toxoplasma gondii cyclophilin 18 regulates the proliferation and migration of murine macrophages and spleen cells. Clin. Vaccine Immunol. 2010, 17, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Narsimulu, B.; Qureshi, R.; Jakkula, P.; Singh, P.; Arifuddin, M.; Qureshi, I.A. Exploration of seryl tRNA synthetase to identify potent inhibitors against leishmanial parasites. Int. J. Biol. Macromol. 2023, 237, 124118. [Google Scholar] [CrossRef]
- Houl, J.H.; Ye, Z.; Brosey, C.A.; Balapiti-Modarage, L.P.F.; Namjoshi, S.; Bacolla, A.; Laverty, D.; Walker, B.L.; Pourfarjam, Y.; Warden, L.S.; et al. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat. Commun. 2019, 10, 5654. [Google Scholar] [CrossRef] [PubMed]
- Kalesh, K.; Lukauskas, S.; Borg, A.J.; Snijders, A.P.; Ayyappan, V.; Leung, A.K.L.; Haskard, D.O.; DiMaggio, P.A. An Integrated Chemical Proteomics Approach for Quantitative Profiling of Intracellular ADP-Ribosylation. Sci. Rep. 2019, 9, 6655. [Google Scholar] [CrossRef] [PubMed]
- Oliveira Souza, R.O.; Jacobs, K.N.; Back, P.S.; Bradley, P.J.; Arrizabalaga, G. IMC10 and LMF1 mediate mitochondrial morphology through mitochondrion-pellicle contact sites in Toxoplasma gondii. J. Cell Sci. 2022, 135, jcs260083. [Google Scholar] [CrossRef] [PubMed]
- Samland, A.K.; Sprenger, G.A. Transaldolase: From biochemistry to human disease. Int. J. Biochem. Cell Biol. 2009, 41, 1482–1494. [Google Scholar] [CrossRef]
- Guiton, P.S.; Sagawa, J.M.; Fritz, H.M.; Boothroyd, J.C. An in vitro model of intestinal infection reveals a developmentally regulated transcriptome of Toxoplasma sporozoites and a NF-kappaB-like signature in infected host cells. PLoS ONE 2017, 12, e0173018. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Wang, Y.; Gadahi, J.A.; Xu, L.; Yan, R.; Song, X.; Li, X. Toxoplasma gondii Elongation Factor 1-Alpha (TgEF-1alpha) Is a Novel Vaccine Candidate Antigen against Toxoplasmosis. Front. Microbiol. 2017, 8, 168. [Google Scholar]
- Perez, J.M.; Siegal, G.; Kriek, J.; Hard, K.; Dijk, J.; Canters, G.W.; Moller, W. The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure 1999, 7, 217–226. [Google Scholar] [CrossRef]
- Plattner, F.; Yarovinsky, F.; Romero, S.; Didry, D.; Carlier, M.F.; Sher, A.; Soldati-Favre, D. Toxoplasma profilin is essential for host cell invasion and TLR11-dependent induction of an interleukin-12 response. Cell Host Microbe 2008, 3, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Tombacz, K.; Burgess, G.; Holder, A.; Werners, A.; Werling, D. Toxoplasma gondii profilin does not stimulate an innate immune response through bovine or human TLR5. Innate Immun. 2018, 24, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Beck, J.R.; Chen, A.L.; Kim, E.W.; Bradley, P.J. RON5 is critical for organization and function of the Toxoplasma moving junction complex. PLoS Pathog. 2014, 10, e1004025. [Google Scholar] [CrossRef] [PubMed]
- Vaneynde, P.; Verbinnen, I.; Janssens, V. The role of serine/threonine phosphatases in human development: Evidence from congenital disorders. Front. Cell Dev. Biol. 2022, 10, 1030119. [Google Scholar] [CrossRef]
- Hortua Triana, M.A.; Marquez-Nogueras, K.M.; Vella, S.A.; Moreno, S.N.J. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 1846–1856. [Google Scholar] [CrossRef]
- Rojas-Pirela, M.; Andrade-Alviarez, D.; Rojas, V.; Kemmerling, U.; Caceres, A.J.; Michels, P.A.; Concepcion, J.L.; Quinones, W. Phosphoglycerate kinase: Structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol. 2020, 10, 200302. [Google Scholar] [CrossRef]
- Li, T.; Guo, Y. ADP-Ribosylation Factor Family of Small GTP-Binding Proteins: Their Membrane Recruitment, Activation, Crosstalk and Functions. Front. Cell Dev. Biol. 2022, 10, 813353. [Google Scholar] [CrossRef]
- Liendo, A.; Stedman, T.T.; Ngo, H.M.; Chaturvedi, S.; Hoppe, H.C.; Joiner, K.A. Toxoplasma gondii ADP-ribosylation factor 1 mediates enhanced release of constitutively secreted dense granule proteins. J. Biol. Chem. 2001, 276, 18272–18281. [Google Scholar] [CrossRef]
- Kremer, K.; Kamin, D.; Rittweger, E.; Wilkes, J.; Flammer, H.; Mahler, S.; Heng, J.; Tonkin, C.J.; Langsley, G.; Hell, S.W.; et al. An overexpression screen of Toxoplasma gondii Rab-GTPases reveals distinct transport routes to the micronemes. PLoS Pathog. 2013, 9, e1003213. [Google Scholar] [CrossRef]
- Das, S.; Hehnly, H.; Doxsey, S. A new role for Rab GTPases during early mitotic stages. Small GTPases 2014, 6, 11–15. [Google Scholar] [CrossRef]
- Xue, J.; Jiang, W.; Li, J.; Xiong, W.; Tian, Z.; Zhang, Q.; Li, S.; Liu, C.; Huang, K.; Wang, Q. Toxoplasma gondii RPL40 is a circulating antigen with immune protection effect. Folia Parasitol. 2019, 66, 13. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Mushegian, A.R.; Tatusov, R.L.; Altschul, S.F.; Bryant, S.H.; Bork, P.; Valencia, A. Eukaryotic translation elongation factor 1 gamma contains a glutathione transferase domain--study of a diverse, ancient protein superfamily using motif search and structural modeling. Protein Sci. 1994, 3, 2045–2054. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.; Alves, C.N.; Lameira, J.; Tunon, I.; Marti, S.; Moliner, V. The catalytic mechanism of glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma cruzi elucidated via the QM/MM approach. Phys. Chem. Chem. Phys. 2013, 15, 3772–3785. [Google Scholar] [CrossRef] [PubMed]
- Kravets, E.; Degrandi, D.; Ma, Q.; Peulen, T.O.; Klumpers, V.; Felekyan, S.; Kuhnemuth, R.; Weidtkamp-Peters, S.; Seidel, C.A.; Pfeffer, K. Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes. Elife 2016, 5, e11479. [Google Scholar] [CrossRef]
- Nazarova, L.A.; Ochoa, R.J.; Jones, K.A.; Morrissette, N.S.; Prescher, J.A. Extracellular Toxoplasma gondii tachyzoites metabolize and incorporate unnatural sugars into cellular proteins. Microbes Infect. 2016, 18, 199–210. [Google Scholar] [CrossRef]
- Wang, J.L.; Li, T.T.; Zhang, N.Z.; Wang, M.; Sun, L.X.; Zhang, Z.W.; Fu, B.Q.; Elsheikha, H.M.; Zhu, X.Q. The transcription factor AP2XI-2 is a key negative regulator of Toxoplasma gondii merogony. Nat. Commun. 2024, 15, 793. [Google Scholar] [CrossRef]
Protein Name | Protein ID | Log2 FC/5 µM | Log2 FC/50 µM |
---|---|---|---|
Transaldolase | S7V2K7 | 1.263 | 2.282 |
Profilin | S7UIQ6 | 0.656 | 2.216 |
S15 sporozoite-expressed protein | S7UKW3 | 1.643 | 2.147 |
Proteasome 26S regulatory subunit | S7W860 | N/A | 2.143 |
Lysine decarboxylase family protein | S7W5X6 | N/A | 2.105 |
IMC10 | S7WBA5 | 1.229 | 2.024 |
Fructose-bisphosphatase | A0A125YGG2 | N/A | 1.991 |
GTP-binding nuclear protein | S7V0L0 | N/A | 1.986 |
Phosphoglycerate kinase | S7VZ21 | N/A | 1.920 |
ADP ribosylation factor ARF1 | S7UMN8 | N/A | 1.916 |
T-complex protein 1 subunit eta | S7UKY6 | N/A | 1.891 |
Tubulin alpha chain | S7UL74 | N/A | 1.845 |
EF-1 GEF | S7UX25 | −0.670 | 1.771 |
PyrDOX | S7VY56 | N/A | 1.771 |
Major surface antigen | E0AEY9 | −0.499 | 1.702 |
Heat shock protein HSP70 | A0A125YP12 | N/A | 1.665 |
IMC1 | A0A125YFV6 | N/A | 1.653 |
Dense granule protein GRA12 | S7VY87 | N/A | 1.612 |
Rhoptry neck protein RON5 | S7W8Q7 | −0.274 | 1.610 |
26S protease regulatory subunit 4 | A0A125YSZ9 | N/A | 1.606 |
Preprotein translocase Sec61 | A0A125YSW3 | N/A | 1.606 |
CDPK1 | S7UHK8 | N/A | 1.606 |
Putative elongation factor 1-gamma | A0A125YG44 | N/A | 1.566 |
Nucleoside diphosphate kinase | A0A125YXT7 | N/A | 1.546 |
Serine/threonine-protein phosphatase | A0A125YWN7 | −0.660 | 1.492 |
Putative transmembrane protein | S7ULN4 | N/A | 1.478 |
Elongation factor 1-alpha | S7UIZ8 | −0.771 | 1.470 |
Rhoptry protein 5B | F2YGR7 | −0.780 | 1.467 |
Protein disulphide-isomerase | A0A125YQI9 | N/A | 1.453 |
Putative heat shock protein 90 | S7VTT7 | N/A | 1.451 |
Prolyl-tRNA synthetase | S7V2A6 | N/A | 1.448 |
Ribosomal protein RPL35A | A0A125YPQ6 | −0.653 | 1.446 |
Rhoptry protein ROP15 | S7UKJ6 | N/A | 1.444 |
GTPase RAB7 | S7V0V9 | N/A | 1.441 |
Small GTP binding protein rab1a | S7W5S1 | −0.643 | 1.425 |
DDX39 | A0A125YNR1 | N/A | 1.404 |
GDPH | S7UQ54 | N/A | 1.386 |
Actin ACT1 | A0A125YH17 | N/A | 1.360 |
Cyclophilin | A0A125YTE9 | −0.995 | 1.345 |
Adenine nucleotide translocator | A0A125YLS5 | N/A | 1.330 |
RRM-containing protein | A0A125YHM1 | N/A | 1.284 |
Microneme protein MIC5 | S7W847 | −1.200 | 1.275 |
Putative chaperonin | S7UXE3 | −1.322 | 1.264 |
Fructose-bisphosphate aldolase | A0A125YGE5 | −0.903 | 1.258 |
ATP synthase subunit beta | A0A125YYY4 | N/A | 1.256 |
Rhoptry protein ROP7 | A0A125YJ16 | N/A | 1.246 |
Rhoptry kinase family protein ROP26 | S7UKG8 | −1.281 | 1.077 |
Dense granule protein GRA7 | A0A125YVB8 | −1.235 | 1.071 |
Ribosomal protein RPL27A | A0A125YTM1 | −1.050 | 1.061 |
Ribosomal protein RPS5 | A0A125YNF8 | −1.441 | N/A |
Ribosomal protein RPL34 | A0A125YXF2 | −1.375 | N/A |
Cell division protein CDC48CY | A0A125YX44 | −1.361 | N/A |
Rhoptry protein ROP13 | A0A125YQ57 | −1.298 | N/A |
Ribosomal protein RPL21 | S7WHD1 | −1.291 | N/A |
Ribosomal protein RPL27 | S7UYE2 | −1.286 | N/A |
CCT-theta | S7UPG8 | −1.280 | N/A |
Ribosomal protein RPS15 | A0A125YHZ1 | −1.195 | N/A |
Ubiquitin | A0A125YNY4 | −1.195 | N/A |
Ribosomal protein RPL9 | A0A125YRM1 | −1.157 | N/A |
Seryl-tRNA synthetase | S7WG10 | −1.139 | N/A |
Histone H2B | A0A125YW36 | −1.100 | N/A |
Dense granule protein GRA1 | A0A125YRV6 | −1.037 | N/A |
Rhoptry protein ROP4 | S7UI50 | −1.024 | N/A |
Rhoptry protein ROP1 | S7W7R3 | −0.992 | N/A |
Putative peroxiredoxin 6 | S7W128 | −0.976 | N/A |
40S ribosomal protein S24 | S7UQS1 | −0.958 | N/A |
Histone H3 | A0A125YSM0 | −0.943 | N/A |
Succinate-CoA ligase, beta subunit | A0A125YHZ3 | −0.917 | N/A |
Histone H4 | A0A125YHU3 | −0.857 | N/A |
Uncharacterized protein | S7W723 | −0.818 | N/A |
Uncharacterized protein | A0A125YR22 | −0.750 | N/A |
14-3-3 protein | A0A125YLJ3 | −0.705 | N/A |
Ribosomal protein RPL19 | A0A125YMW0 | −0.651 | N/A |
Proliferation-associated protein 2G4 | A0A125YVJ6 | −0.504 | N/A |
Poly(ADP-ribose) glycohydrolase | S7W2K3 | 1.163 | N/A |
Uncharacterized protein | S7W7E3 | 1.207 | N/A |
IMP2_N domain-containing protein | S7WAV9 | 1.510 | N/A |
Acid phosphatase | S7V1S3 | 1.636 | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mina, J.G.; Parthasarathy, A.; Porta, E.O.; Denny, P.W.; Kalesh, K. BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment. Pathogens 2024, 13, 879. https://doi.org/10.3390/pathogens13100879
Mina JG, Parthasarathy A, Porta EO, Denny PW, Kalesh K. BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment. Pathogens. 2024; 13(10):879. https://doi.org/10.3390/pathogens13100879
Chicago/Turabian StyleMina, John G., Anutthaman Parthasarathy, Exequiel O. Porta, Paul W. Denny, and Karunakaran Kalesh. 2024. "BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment" Pathogens 13, no. 10: 879. https://doi.org/10.3390/pathogens13100879
APA StyleMina, J. G., Parthasarathy, A., Porta, E. O., Denny, P. W., & Kalesh, K. (2024). BONCAT-iTRAQ Labelling Reveals Molecular Markers of Adaptive Responses in Toxoplasma gondii to Pyrimethamine Treatment. Pathogens, 13(10), 879. https://doi.org/10.3390/pathogens13100879