Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meier, H.; Spinner, K.; Crump, L.; Kuenzli, E.; Schuepbach, G.; Zinsstag, J. State of Knowledge on the Acquisition, Diversity, Interspecies Attribution and Spread of Antimicrobial Resistance between Humans, Animals and the Environment: A Systematic Review. Antibiotics 2022, 12, 73. [Google Scholar] [CrossRef] [PubMed]
- Robinson, T.P.; Bu, D.P.; Carrique-Mas, J.; Fèvre, E.M.; Gilbert, M.; Grace, D.; Hay, S.I.; Jiwakanon, J.; Kakkar, M.; Kariuki, S.; et al. Antibiotic Resistance Is the Quintessential One Health Issue. Trans. R. Soc. Trop. Med. Hyg. 2016, 110, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.T.; Carvalho, J.; Cunha, M.V.; Serrano, E.; Palmeira, J.D.; Fonseca, C. Temporal and Geographical Research Trends of Antimicrobial Resistance in Wildlife—A Bibliometric Analysis. One Health 2020, 11, 100198. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Haenni, M.; Métayer, V.; Jarry, R.; Drapeau, A.; Puech, M.-P.; Madec, J.-Y.; Keck, N. Wide Spread of BlaCTX–M–9/Mcr-9 IncHI2/ST1 Plasmids and CTX-M-9-Producing Escherichia Coli and Enterobacter Cloacae in Rescued Wild Animals. Front. Microbiol. 2020, 11, 601317. [Google Scholar] [CrossRef]
- Mukerji, S.; Stegger, M.; Truswell, A.V.; Laird, T.; Jordan, D.; Abraham, R.J.; Harb, A.; Barton, M.; O’Dea, M.; Abraham, S. Resistance to Critically Important Antimicrobials in Australian Silver Gulls (Chroicocephalus Novaehollandiae) and Evidence of Anthropogenic Origins. J. Antimicrob. Chemother. 2019, 74, 2566–2574. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.-B.; Zeng, Z.-L.; Yang, X.-W.; Huang, Y.; Liu, J.-H. The Role of Wildlife (Wild Birds) in the Global Transmission of Antimicrobial Resistance Genes. Zool. Res. 2017, 38, 55–80. [Google Scholar] [CrossRef]
- Cao, J.; Hu, Y.; Liu, F.; Wang, Y.; Bi, Y.; Lv, N.; Li, J.; Zhu, B.; Gao, G.F. Metagenomic Analysis Reveals the Microbiome and Resistome in Migratory Birds. Microbiome 2020, 8, 26. [Google Scholar] [CrossRef]
- Gambino, D.; Vicari, D.; Vitale, M.; Schirò, G.; Mira, F.; Giglia, M.L.; Riccardi, A.; Gentile, A.; Giardina, S.; Carrozzo, A.; et al. Study on Bacteria Isolates and Antimicrobial Resistance in Wildlife in Sicily, Southern Italy. Microorganisms 2021, 9, 203. [Google Scholar] [CrossRef]
- Gutiérrez, J.; González-Acuña, D.; Fuentes-Castillo, D.; Fierro, K.; Hernández, C.; Zapata, L.; Verdugo, C. Antibiotic Resistance in Wildlife from Antarctic Peninsula. Sci. Total Environ. 2024, 916, 170340. [Google Scholar] [CrossRef]
- Kimani, T.; Kiambi, S.; Eckford, S.; Njuguna, J.; Makonnen, Y.; Rugalema, G.; Morzaria, S.P.; Lubroth, J.; Fasina, F.O. Expanding beyond Zoonoses: The Benefits of a National One Health Coordination Mechanism to Address Antimicrobial Resistance and Other Shared Health Threats at the Human–Animal–Environment Interface in Kenya. Rev. Sci. Tech. de l’OIE 2019, 38, 155–171. [Google Scholar] [CrossRef] [PubMed]
- Lagerstrom, K.M.; Hadly, E.A. The Under-Investigated Wild Side of Escherichia Coli: Genetic Diversity, Pathogenicity and Antimicrobial Resistance in Wild Animals. Proc. R. Soc. B Biol. Sci. 2021, 288, rspb.2021.0399. [Google Scholar] [CrossRef]
- Swift, B.M.C.; Bennett, M.; Waller, K.; Dodd, C.; Murray, A.; Gomes, R.L.; Humphreys, B.; Hobman, J.L.; Jones, M.A.; Whitlock, S.E.; et al. Anthropogenic Environmental Drivers of Antimicrobial Resistance in Wildlife. Sci. Total Environ. 2019, 649, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Abdullahi, I.N.; Juárez-Fernández, G.; Höfle, Ú.; Cardona-Cabrera, T.; Mínguez, D.; Pineda-Pampliega, J.; Lozano, C.; Zarazaga, M.; Torres, C. Nasotracheal Microbiota of Nestlings of Parent White Storks with Different Foraging Habits in Spain. Ecohealth 2023, 20, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Ahlstrom, C.A.; Bonnedahl, J.; Woksepp, H.; Hernandez, J.; Olsen, B.; Ramey, A.M. Acquisition and Dissemination of Cephalosporin-Resistant, E. Coli in Migratory Birds Sampled at an Alaska Landfill as Inferred through Genomic Analysis. Sci. Rep. 2018, 8, 7361. [Google Scholar] [CrossRef]
- Atterby, C.; Börjesson, S.; Ny, S.; Järhult, J.D.; Byfors, S.; Bonnedahl, J. ESBL-Producing Escherichia Coli in Swedish Gulls—A Case of Environmental Pollution from Humans? PLoS ONE 2017, 12, e0190380. [Google Scholar] [CrossRef]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-Mediated Resistance Is Going Wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef]
- Höfle, U.; Jose Gonzalez-Lopez, J.; Camacho, M.C.; Solà-Ginés, M.; Moreno-Mingorance, A.; Manuel Hernández, J.; De La Puente, J.; Pineda-Pampliega, J.; Aguirre, J.I.; Torres-Medina, F.; et al. Foraging at Solid Urban Waste Disposal Sites as Risk Factor for Cephalosporin and Colistin Resistant Escherichia Coli Carriage in White Storks (Ciconia Ciconia). Front. Microbiol. 2020, 11, 1397. [Google Scholar] [CrossRef]
- Woksepp, H.; Karlsson, K.; Börjesson, S.; Karlsson Lindsjö, O.; Söderlund, R.; Bonnedahl, J. Dissemination of Carbapenemase-Producing Enterobacterales through Wastewater and Gulls at a Wastewater Treatment Plant in Sweden. Sci. Total Environ. 2023, 886, 163997. [Google Scholar] [CrossRef]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High Prevalence and Diversity of Extended-Spectrum β-Lactamase and Emergence of OXA-48 Producing Enterobacterales in Wildlife in Catalonia. PLoS ONE 2019, 14, e0210686. [Google Scholar] [CrossRef]
- Suárez-pérez, A.; Corbera, J.A.; González-Martín, M.; Donázar, J.A.; Rosales, R.S.; Morales, M.; Tejedor-Junco, M.T. Microorganisms Resistant to Antimicrobials in Wild Canarian Egyptian Vultures (Neophron Percnopterus Majorensis). Animals 2020, 10, 970. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Pérez, A.; Corbera, J.A.; González-Martín, M.; Tejedor-Junco, M.T. Antimicrobial Resistance Patterns of Bacteria Isolated from Chicks of Canarian Egyptian Vultures (Neophron Percnopterus Majorensis): A “One Health” Problem? Comp. Immunol. Microbiol. Infect. Dis. 2023, 92, 101925. [Google Scholar] [CrossRef] [PubMed]
- Badia-Boher, J.A.; Sanz-Aguilar, A.; de la Riva, M.; Gangoso, L.; van Overveld, T.; García-Alfonso, M.; Luzardo, O.P.; Suarez-Pérez, A.; Donázar, J.A. Evaluating European LIFE Conservation Projects: Improvements in Survival of an Endangered Vulture. J. Appl. Ecol. 2019, 56, 1210–1219. [Google Scholar] [CrossRef]
- Cortés-Avizanda, A.; Blanco, G.; DeVault, T.L.; Markandya, A.; Virani, M.Z.; Brandt, J.; Donázar, J.A. Supplementary Feeding and Endangered Avian Scavengers: Benefits, Caveats, and Controversies. Front. Ecol. Environ. 2016, 14, 191–199. [Google Scholar] [CrossRef]
- Blanco, G.; Díaz de Tuesta, J.A. Culture- and Molecular-Based Detection of Swine-Adapted Salmonella Shed by Avian Scavengers. Sci. Total Environ. 2018, 634, 1513–1518. [Google Scholar] [CrossRef] [PubMed]
- Blanco, G.; Junza, A.; Segarra, D.; Barbosa, J.; Barrón, D. Wildlife Contamination with Fluoroquinolones from Livestock: Widespread Occurrence of Enrofloxacin and Marbofloxacin in Vultures. Chemosphere 2016, 144, 1536–1543. [Google Scholar] [CrossRef]
- Blanco, G.; Junza, A.; Barrón, D. Food Safety in Scavenger Conservation: Diet-Associated Exposure to Livestock Pharmaceuticals and Opportunist Mycoses in Threatened Cinereous and Egyptian Vultures. Ecotoxicol. Environ. Saf. 2017, 135, 292–301. [Google Scholar] [CrossRef]
- Blanco, G.; Gómez-Ramírez, P.; Lambertucci, S.A.; Wiemeyer, G.M.; Plaza, P.I.; Hiraldo, F.; Donázar, J.A.; Sánchez-Zapata, J.A.; García-Fernández, A.J. Unexpected Exposure of Andean Condors (Vultur Gryphus) to Pharmaceutical Mixtures. Biol. Conserv. 2023, 280, 109964. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A Review of Antimicrobial Resistance Mechanisms and Perspectives of Human and Animal Health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Alonso, C.A.; Ruiz-Ripa, L.; León-Sampedro, R.; Del Campo, R.; Coque, T.M. Antimicrobial Resistance in Enterococcus spp. of Animal Origin. Microbiol. Spectr. 2018, 6, 185–227. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, D.M.P.; Forde, B.M.; Kidd, T.J.; Harris, P.N.A.; Schembri, M.A.; Beatson, S.A.; Paterson, D.L.; Walker, M.J. Antimicrobial Resistance in ESKAPE Pathogens. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Souillard, R.; Laurentie, J.; Kempf, I.; Le Caër, V.; Le Bouquin, S.; Serror, P.; Allain, V. Increasing Incidence of Enterococcus-Associated Diseases in Poultry in France over the Past 15 Years. Vet. Microbiol. 2022, 269, 109426. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.W.; Donabedian, S.M.; Zervos, M.J. Superinfection with Enterococcus Faecalis During Quinupristin/Dalfopristin Therapy. Clin. Infect. Dis. 1996, 24, 91–93. [Google Scholar] [CrossRef]
- Herrero, I.A.; Issa, N.C.; Patel, R. Nosocomial Spread of Linezolid-Resistant, Vancomycin-Resistant Enterococcus Faecium. N. Engl. J. Med. 2002, 346, 867–869. [Google Scholar] [CrossRef]
- Lewis, J.S., II. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.CLSI Supplement M100; Clinical and Labortory Standards Institute: Wayne, PA, USA, 2023. [Google Scholar]
- Marrow, J.; Whittington, J.K.; Mitchell, M.; Hoyer, L.L.; Maddox, C. Prevalence and Antibiotic-Resistance Characteristics of Enterococcus Spp. Isolated from Free-Living and Captive Raptors in Central Illinois. J. Wildl. Dis. 2009, 45, 302–313. [Google Scholar] [CrossRef]
- Ben Yahia, H.; Chairat, S.; Hamdi, N.; Gharsa, H.; Ben Sallem, R.; Ceballos, S.; Torres, C.; Ben Slama, K. Antimicrobial Resistance and Genetic Lineages of Faecal Enterococci of Wild Birds: Emergence of VanA and VanB2 Harbouring Enterococcus Faecalis. Int. J. Antimicrob. Agents 2018, 52, 936–941. [Google Scholar] [CrossRef]
- Kwit, R.; Zając, M.; Śmiałowska-Węglińska, A.; Skarżyńska, M.; Bomba, A.; Lalak, A.; Skrzypiec, E.; Wojdat, D.; Koza, W.; Mikos-Wojewoda, E.; et al. Prevalence of Enterococcus Spp. and the Whole-Genome Characteristics of Enterococcus Faecium and Enterococcus Faecalis Strains Isolated from Free-Living Birds in Poland. Pathogens 2023, 12, 836. [Google Scholar] [CrossRef]
- Cagnoli, G.; Bertelloni, F.; Interrante, P.; Ceccherelli, R.; Marzoni, M.; Ebani, V.V. Antimicrobial-Resistant Enterococcus Spp. in Wild Avifauna from Central Italy. Antibiotics 2022, 11, 852. [Google Scholar] [CrossRef]
- Radhouani, H.; Poeta, P.; Gonçalves, A.; Pacheco, R.; Sargo, R.; Igrejas, G. Wild Birds as Biological Indicators of Environmental Pollution: Antimicrobial Resistance Patterns of Escherichia Coli and Enterococci Isolated from Common Buzzards (Buteo Buteo). J. Med. Microbiol. 2012, 61, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Cormican, M.; Flamm, R.K.; Mendes, R.E.; Jones, R.N. Temporal and Geographic Variation in Antimicrobial Susceptibility and Resistance Patterns of Enterococci: Results from the SENTRY Antimicrobial Surveillance Program, 1997–2016. Open Forum Infect. Dis. 2019, 6, S54–S62. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Miller, W.R.; Axell-House, D.; Munita, J.M.; Arias, C.A. Antimicrobial Susceptibility Testing for Enterococci. J. Clin. Microbiol. 2022, 60, e00843-21. [Google Scholar] [CrossRef] [PubMed]
- Balli, E.P.; Venetis, C.A.; Miyakis, S. Systematic Review and Meta-Analysis of Linezolid versus Daptomycin for Treatment of Vancomycin-Resistant Enterococcal Bacteremia. Antimicrob Agents Chemother. 2014, 58, 734–739. [Google Scholar] [CrossRef]
- Guyomard-Rabenirina, S.; Reynaud, Y.; Pot, M.; Albina, E.; Couvin, D.; Ducat, C.; Gruel, G.; Ferdinand, S.; Legreneur, P.; Le Hello, S.; et al. Antimicrobial Resistance in Wildlife in Guadeloupe (French West Indies): Distribution of a Single BlaCTX–M–1/IncI1/ST3 Plasmid Among Humans and Wild Animals. Front. Microbiol. 2020, 11, 1524. [Google Scholar] [CrossRef]
- Di Lallo, G.; D’Andrea, M.M.; Sennati, S.; Thaller, M.C.; Migliore, L.; Gentile, G. Evidence of Another Anthropic Impact on Iguana Delicatissima from the Lesser Antilles: The Presence of Antibiotic Resistant Enterobacteria. Antibiotics 2021, 10, 885. [Google Scholar] [CrossRef]
- Laborda, P.; Sanz-García, F.; Ochoa-Sánchez, L.E.; Gil-Gil, T.; Hernando-Amado, S.; Martínez, J.L. Wildlife and Antibiotic Resistance. Front. Cell. Infect. Microbiol. 2022, 12, 873989. [Google Scholar] [CrossRef]
- Guitart-Matas, J.; Espunyes, J.; Illera, L.; Gonzalez-Escalona, N.; Ribas, M.P.; Marco, I.; Migura-Garcia, L. High-Risk Lineages of Extended Spectrum Cephalosporinase Producing Escherichia Coli from Eurasian Griffon Vultures (Gyps Fulvus) Foraging in Landfills in North-Eastern Spain. Sci. Total Environ. 2024, 909, 168625. [Google Scholar] [CrossRef]
- Di Francesco, A.; Salvatore, D.; Bertelloni, F.; Ebani, V.V. Tetracycline Resistance Genes in Wild Birds from a Wildlife Recovery Centre in Central Italy. Animals 2023, 13, 76. [Google Scholar] [CrossRef]
- Ahlstrom, C.A.; Scott, L.C.; Woksepp, H.; Bonnedahl, J.; Ramey, A.M. Environmental Antimicrobial Resistance Gene Detection from Wild Bird Habitats Using Two Methods: A Commercially Available Culture-Independent QPCR Assay and Culture of Indicator Bacteria Followed by Whole-Genome Sequencing. J. Glob. Antimicrob Resist. 2023, 33, 186–193. [Google Scholar] [CrossRef]
Antimicrobial Categories | Antimicrobial Agents | Abbreviation and the Charge of Disks or MIC Breakpoint |
---|---|---|
Aminoglycosides except Streptomycin | Gentamicin (high level) | GM (500 µg) |
Streptomycin | Streptomycin (high level) | S (2000 µg) |
Carbapenems | Imipenem | IMP (10 µg) |
Glycopeptides | Vancomycin Teicoplanin | VAN (30 µg) TEI (30 µg) |
Oxazolidinones | Linezolid | LZD (30 µg) |
Fluoroquinolones | Ciprofloxacin Levofloxacin | CIP (5 µg) LVX (5 µg) |
Tetracyclines | Doxycycline | D (30 µg) |
Penicillins | Ampicillin | AM (10 µg) |
Streptogramins | Quinupristin/Dalfopristin | SYN (15 µg) |
Sample Type/Antibiotic | Choana (n = 50) R/I/S (% R + I) | Cloaca (n = 51) R/I/S (% R + I) | Isolates with Resistance in Both Samples from the Same Animal |
---|---|---|---|
Imipenem | 8/0/42 (16.0%) | 9/0/42 (17.6%) | 1 |
Ciprofloxacin | 17/27/6 (88.0%) | 21/23/7 (86.3%) | 7 |
Levofloxacin | 6/19/25 (50.0%) | 13/14/24 (52.9%) | 2 |
Teicoplanin | 0/7/43 (14.0%) | 2/8/41 (19.6%) | 0 |
Linezolid | 0/2/48 (4.0%) | 1/5/45 (11.8%) | 0 |
Ampicillin | 1/0/49 (2.0%) | 5/0/46 (9.8%) | 0 |
Quinupristin/Dalfopristin * | 28/4/6 (84.2%) | 27/2/2 (93.5%) | 15 |
Doxycycline | 11/3/36 (28.0%) | 10/12/29 (43.1%) | 3 |
Vancomycin | 5/13/32 (36.0%) | 10/10/31 (39.2%) | 1 |
Gentamicin | 0/0/50 (0.0%) | 0/0/51 (0.0%) | 0 |
Streptomycin | 5/0/45 (10.0%) | 1/0/50 (2.0%) | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Martín, M.R.; Suárez-Pérez, A.; Álamo-Peña, A.; Valverde Tercedor, C.; Corbera, J.A.; Tejedor-Junco, M.T. Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens 2024, 13, 855. https://doi.org/10.3390/pathogens13100855
González-Martín MR, Suárez-Pérez A, Álamo-Peña A, Valverde Tercedor C, Corbera JA, Tejedor-Junco MT. Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens. 2024; 13(10):855. https://doi.org/10.3390/pathogens13100855
Chicago/Turabian StyleGonzález-Martín, Margarita Rosa, Alejandro Suárez-Pérez, Alejandro Álamo-Peña, Carmen Valverde Tercedor, Juan Alberto Corbera, and María Teresa Tejedor-Junco. 2024. "Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture" Pathogens 13, no. 10: 855. https://doi.org/10.3390/pathogens13100855
APA StyleGonzález-Martín, M. R., Suárez-Pérez, A., Álamo-Peña, A., Valverde Tercedor, C., Corbera, J. A., & Tejedor-Junco, M. T. (2024). Antimicrobial Susceptibility of Enterococci Isolated from Nestlings of Wild Birds Feeding in Supplementary Feeding Stations: The Case of the Canarian Egyptian Vulture. Pathogens, 13(10), 855. https://doi.org/10.3390/pathogens13100855