Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Shallow Burial Pit Construction
2.3. Sample Processing
2.4. Detection of African Swine Fever Virus by Real-Time PCR
2.5. Isolation of African Swine Fever Virus by Cell Culture
2.6. Bioassay
2.7. Statistical Methodology
3. Results
3.1. Temperature Profile
3.2. Detection and Viability of African Swine Fever Virus
3.3. Carcass Decomposition
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sang, H.; Miller, G.; Lokhandwala, S.; Sangewar, N.; Waghela, S.D.; Bishop, R.P.; Mwangi, W. Progress Toward Development of Effective and Safe African Swine Fever Virus Vaccines. Front. Vet. Sci. 2020, 7, 84. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cordón, P.J.; Montoya, M.; Reis, A.L.; Dixon, L.K. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet. J. 2018, 233, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.A.; Condoleo, R.; Simons, R.R.L.; Gale, P.; Kelly, L.A.; Snary, E.L. The Risk of Infection by African Swine Fever Virus in European Swine Through Boar Movement and Legal Trade of Pigs and Pig Meat. Front. Vet. Sci. 2020, 6, 486. [Google Scholar] [CrossRef] [PubMed]
- Olesen, A.S.; Belsham, G.J.; Bruun Rasmussen, T.; Lohse, L.; Bodker, R.; Halasa, T.; Boklund, A.; Botner, A. Potential routes for indirect transmission of African swine fever virus into domestic pig herds. Transbound. Emerg. Dis. 2020, 67, 1472–1484. [Google Scholar] [CrossRef]
- Efsa Stop African Swine Fever. Available online: https://multimedia.efsa.europa.eu/asf/#/ (accessed on 17 December 2022).
- FAO ASF Situation in Asia Update. Available online: https://www.fao.org/ag/againfo/programmes/en/empres/ASF/Situation_update.html#:~:text=Sinceitsfirstreporton,theASFoutbreaks%5Breference%5D. (accessed on 31 March 2022).
- USDA Vietnam African Swine Fever Update. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=VietnamAfricanSwineFeverUpdate_Hanoi_Vietnam_09-19-2020 (accessed on 28 September 2020).
- Costa, T.; Akdeniz, N. A review of the animal disease outbreaks and biosecure animal mortality composting systems. Waste Manag. 2019, 90, 121–131. [Google Scholar] [CrossRef]
- Keaten, J.E.; Hutchinson, M. Efficacy and efficiency of poultry carcass composting using different mechanical mixing equipment for avian influenza outbreaks. Int. J. One Heal. 2017, 3, 19–27. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, H.; Park, S.; Jeon, H.; Park, J.; Park, J. Pilot-Scale Bio-Augmented Aerobic Composting of Excavated Foot-And-Mouth Disease Carcasses. Sustainability 2017, 9, 445. [Google Scholar] [CrossRef]
- Lori Miller, G.F. Carcass Management for Small- and Medium-Scale Livestock Farms. Available online: https://www.fao.org/publications/card/en/c/CA2073EN/ (accessed on 26 February 2022).
- Ducey, T.F.; Collins, J.C.; Ro, K.S.; Woodbury, B.L.; Griffin, D.D. Hydrothermal carbonization of livestock mortality for the reduction of pathogens and microbially-derived DNA. Front. Environ. Sci. Eng. 2017, 11, 9. [Google Scholar] [CrossRef]
- Gwyther, C.L.; Williams, A.P.; Golyshin, P.N.; Edwards-Jones, G.; Jones, D.L. The environmental and biosecurity characteristics of livestock carcass disposal methods: A review. Waste Manag. 2011, 31, 767–778. [Google Scholar] [CrossRef]
- Brown, P.; Rau, E.H.; Lemieux, P.; Johnson, B.K.; Bacote, A.E.; Gajdusek, D.C. Infectivity studies of both ash and air emissions from simulated incineration of scrapie-contaminated tissues. Environ. Sci. Technol. 2004, 38, 6155–6160. [Google Scholar] [CrossRef]
- Paisley, L.G.; Hostrup-Pedersen, J. A quantitative assessment of the BSE risk associated with fly ash and slag from the incineration of meat-and-bone meal in a gas-fired power plant in Denmark. Prev. Vet. Med. 2005, 68, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Elving, J.; Emmoth, E.; Albihn, A.; Vinneras, B.; Ottoson, J. Composting for avian influenza virus elimination. Appl. Environ. Microbiol. 2012, 78, 3280–3285. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Chan, M.; Grenier, C.; Wilkie, D.C.; Brooks, B.W.; Spencer, J.L. Survival of Avian Influenza and Newcastle Disease Viruses in Compost and at Ambient Temperatures Based on Virus Isolation and Real-Time Reverse Transcriptase PCR. Avian Dis. Dig. 2009, 4, e8. [Google Scholar] [CrossRef]
- Wilkinson, K.G. The biosecurity of on-farm mortality composting. J. Appl. Microbiol. 2007, 102, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Reuter, T.; Inglis, G.D.; Larney, F.J.; Alexander, T.W.; Guan, J.; Stanford, K.; Xu, Y.; McAllister, T.A. A biosecure composting system for disposal of cattle carcasses and manure following infectious disease outbreak. J. Environ. Qual. 2009, 38, 437–450. [Google Scholar] [CrossRef]
- Vitosh-Sillman, S.; Loy, J.D.; Brodersen, B.; Kelling, C.; Eskridge, K.; Schmidt, A.M. Effectiveness of composting as a biosecure disposal method for porcine epidemic diarrhea virus (PEDV)-infected pig carcasses. Porc. Heal. Manag. 2017, 3, 22. [Google Scholar] [CrossRef]
- Ebling, R.; Paim, W.P.; Turner, J.; Flory, G.; Seiger, J.; Whitcomb, C.; Remmenga, M.; Vuolo, M.; Ramachandran, A.; Cole, L.; et al. Virus viability in spiked swine bone marrow tissue during above-ground burial method and under in vitro conditions. Transbound. Emerg. Dis. 2022, 69, 2987–2995. [Google Scholar] [CrossRef]
- USDA. African Swine Fever in Vietnam. In USDA Foreign Agricultural Service in Vietnam; USDA: Washington, DC, USA, 2019. [Google Scholar]
- Flory, G.A.; Peer, W.R.; Clark, A.R.; Baccar, M.N.; Le, T.T.; Mbarek, A.B.; Farsi, S. Above ground burial for managing catastrophic losses of livestock. Int. J. One Heal. 2017, 3, 50–56. [Google Scholar] [CrossRef]
- Tignon, M.; Gallardo, C.; Iscaro, C.; Hutet, E.; Van der Stede, Y.; Kolbasov, D.; De Mia, G.M.; Le Potier, M.F.; Bishop, R.P.; Arias, M.; et al. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J. Virol. Methods 2011, 178, 161–170. [Google Scholar] [CrossRef]
- Scudamore, J.M.; Trevelyan, G.M.; Tas, M.V.; Varley, E.M.; Hickman, G.A.W. Carcass disposal: Lessons from Great Britain following the foot and mouth disease outbreaks of 2001. OIE Rev. Sci. Tech. 2002, 21, 775–787. [Google Scholar] [CrossRef]
- Duc, H.M.; Ngan, P.H.; Son, H.M.; Lan, N.T.; Van Hung, L.; Ha, C.T.T.; Hoa, N.T.; Lam, T.Q.; Van Thang, N.; Flory, G.A.; et al. The use of composting for the disposal of African swine fever virus-infected swine carcasses. Transbound. Emerg. Dis. 2022, 69, e3036–e3044. [Google Scholar] [CrossRef] [PubMed]
- Zani, L.; Masiulis, M.; Bušauskas, P.; Dietze, K.; Pridotkas, G.; Globig, A.; Blome, S.; Mettenleiter, T.; Depner, K.; Karvelienė, B. African swine fever virus survival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020, 67, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Hühr, J.; Blome, S.; Conraths, F.J.; Probst, C. Stability of African Swine Fever Virus in Carcasses of Domestic Pigs and Wild Boar Experimentally Infected with the ASFV “Estonia 2014” Isolate. Viruses 2020, 12, 1118. [Google Scholar] [CrossRef] [PubMed]
- Petrini, S.; Feliziani, F.; Casciari, C.; Giammarioli, M.; Torresi, C.; De Mia, G.M. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev. Vet. Med. 2019, 162, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Niederwerder, M.C.; Stoian, A.M.M.; Rowland, R.R.R.; Dritz, S.S.; Petrovan, V.; Constance, L.A.; Gebhardt, J.T.; Olcha, M.; Jones, C.K.; Woodworth, J.C.; et al. Infectious Dose of African Swine Fever Virus When Consumed Naturally in Liquid or Feed. Emerg. Infect. Dis. 2019, 25, 891–897. [Google Scholar] [CrossRef]
- Guan, J.; Chan, M.; Brooks, B.W.; Spencer, J.L.; Algire, J. Comparing escherichia coli o157:h7 phage and bovine viral diarrhea virus as models for destruction of classical swine fever virus in compost. Compost Sci. Util. 2012, 20, 18–23. [Google Scholar] [CrossRef]
- Mazur-Panasiuk, N.; Żmudzki, J.; Woźniakowski, G. African Swine Fever Virus–Persistence in Different Environmental Conditions and the Possibility of its Indirect Transmission. J. Vet. Res. 2019, 63, 303–310. [Google Scholar] [CrossRef]
- Cowan, L.; Haines, F.J.; Everett, H.E.; Crudgington, B.; Johns, H.L.; Clifford, D.; Drew, T.W.; Crooke, H.R. Factors affecting the infectivity of tissues from pigs with classical swine fever: Thermal inactivation rates and oral infectious dose. Vet. Microbiol. 2015, 176, 1–9. [Google Scholar] [CrossRef]
- Edwards, S. Survival and inactivation of classical swine fever virus. Vet. Microbiol. 2000, 73, 175–181. [Google Scholar] [CrossRef]
- Benninger, L.A.; Carter, D.O.; Forbes, S.L. The biochemical alteration of soil beneath a decomposing carcass. Forensic. Sci. Int. 2008, 180, 70–75. [Google Scholar] [CrossRef]
- Dee, S.A.; Bauermann, F.V.; Niederwerder, M.C.; Singrey, A.; Clement, T.; de Lima, M.; Long, C.; Patterson, G.; Sheahan, M.A.; Stoian, A.M.M.; et al. Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE 2018, 13, e0194509. [Google Scholar] [CrossRef] [PubMed]
- de Bertoldi, M.; Vallini, G.; Pera, A. The Biology of Composting: A Review. Waste Manag. Res. 1983, 1, 157–176. [Google Scholar] [CrossRef]
- Joerger, R.D. Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poult. Sci. 2003, 82, 640–647. [Google Scholar] [CrossRef] [PubMed]
Tissue | Mean Number of Days to 1 HAD50 | Prediction Interval Confidence (%) | Number of Days to 1 HAD50 |
---|---|---|---|
Spleen | 6.17 | 95 | 3.33–9.01 |
98 | 2.65–9.69 | ||
99.8 | 0.89–11.45 | ||
Bone Marrow | 5.88 | 95 | 3.94–7.81 |
98 | 3.48–8.28 | ||
99.8 | 2.28–9.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, H.M.; Hutchinson, M.; Flory, G.A.; Ngan, P.H.; Son, H.M.; Hung, L.V.; Hoa, T.T.K.; Lan, N.T.; Lam, T.Q.; Rozeboom, D.; et al. Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method. Pathogens 2023, 12, 628. https://doi.org/10.3390/pathogens12040628
Duc HM, Hutchinson M, Flory GA, Ngan PH, Son HM, Hung LV, Hoa TTK, Lan NT, Lam TQ, Rozeboom D, et al. Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method. Pathogens. 2023; 12(4):628. https://doi.org/10.3390/pathogens12040628
Chicago/Turabian StyleDuc, Hoang Minh, Mark Hutchinson, Gary A. Flory, Pham Hong Ngan, Hoang Minh Son, Le Van Hung, Tran Thi Khanh Hoa, Nguyen Thi Lan, Truong Quang Lam, Dale Rozeboom, and et al. 2023. "Viability of African Swine Fever Virus with the Shallow Burial with Carbon Carcass Disposal Method" Pathogens 12, no. 4: 628. https://doi.org/10.3390/pathogens12040628