Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease
Abstract
:1. Introduction
2. Pathogenic Mechanisms of Immune Response Evasion in Chagas Disease
3. Histopathological Mechanisms Related to Tissue Parasitism
4. Autoimmune Mechanisms in Chagas Disease
5. Inflammatory and Cytotoxic Process in the Immunopathogenesis of Chagas Disease
6. Fibrotic Mechanisms in Chagas Disease
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chagas, C. Nova Tripanozomiaze Humana: Estudos Sobre a Morfolojia e o Ciclo Evolutivo Do Schizotrypanum Cruzi n. Gen., n. Sp., Ajente Etiolojico de Nova Entidade Morbida Do Homem. Mem. Inst. Oswaldo Cruz 1909, 1, 159–218. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Asamblea Mundial de la Salud. In Enfermedad de Chagas: Control y eliminación; World Health Organization: Geneva, Swithzerand, 2009; p. 4. [Google Scholar]
- Organización Panamericana de la Salud. Enfermedad de Chagas. Available online: https://bit.ly/3HrzTwF (accessed on 6 January 2023).
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas Disease: From Discovery to a Worldwide Health Problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Secretaría de Salud Manual De Procedimientos Para La Enfermedad De Chagas En México; Secretaría de Salud: Ciudad de México, México, 2019; pp. 32–33.
- Gómez-Ochoa, S.A.; Rojas, L.Z.; Echeverría, L.E.; Muka, T.; Franco, O.H. Global, Regional, and National Trends of Chagas Disease from 1990 to 2019: Comprehensive Analysis of the Global Burden of Disease Study. Global Heart 2022, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Schettino, P.M.; Bucio Torres, M.I.; Cabrera-Bravo, M.; De Alba-Alvarado, M.; Castillo-Saldaña, D.R.; Zenteno-Galindo, E.; Rojo-Medina, J.; Fernández-Santos, N.; Perera-Salazar, M.G. Enfermedad de Chagas en México. Rev. Fac. Med. UNAM 2016, 59, 6–16. [Google Scholar]
- Salazar-Schettino, P.M.; Perera, R.; Ruiz-Hernandez, A.L.; Bucio Torres, M.I.; Zamora-Gonzalez, C.; Cabrera-Bravo, M.; Harnden, A. Chagas Disease as a Cause of Symptomatic Chronic Myocardopathy in Mexican Children. Pediatr. Infect. Dis. J. 2009, 28, 1011–1013. [Google Scholar] [CrossRef]
- UNAM; OPS. WHO Manual para el Diagnostico de la Infección por Trypanosoma Cruzi; OPS/OMS: Mexico, Mexico, 2006; p. 45. [Google Scholar]
- Retyk, D.E.O. Consensus Statement on Primary and Secondary Prevention of Sudden Death. Argentine Society of Cardiology—Uruguayan Society of Cardiology (with the collaboration of the CONAREC). Rev. Argent. Cardiol. 2012, 80. [Google Scholar]
- Kidder, D.P.; Fletcher, D.P. Brazil and The Brazilians, Portrayed in Historical and Descriptive Sketches Kidder, 1st ed.; Childs & Peterson: Philadelphia, PA, USA, 1857; ISBN 13: 9781484118269. [Google Scholar]
- Salazar-Schettino, P.M.; Tay, J.; De Haro, I.; de Anzures, M.; Flores, A.G. Primer caso de megaesófago con serología positiva a Trypanosoma cruzi. Salud Pública México 1984, 26, 452–455. [Google Scholar]
- Tay, J.; Salazar-Schettino, P.M.; Ontiveros, A.; Jimenez, J. Estudio Epidemiológico de Enfermedad de Chagas en una Población de Oaxaca. Primer Caso de Megasigmoides en México. Parasitology 1985, 1, 17–24. [Google Scholar]
- Ribeiro, A.L.P.; Cavalvanti, P.S.; Lombardi, F.; Nunes, M.D.C.P.; Barros, M.V.L.; Rocha, M.O.D.C. Prognostic Value of Signal-Averaged Electrocardiogram in Chagas Disease. J. Cardiovasc. Electrophysiol. 2008, 19, 502–509. [Google Scholar] [CrossRef]
- Cardoso, C.S.; Sabino, E.C.; Oliveira, C.D.L.; de Oliveira, L.C.; Ferreira, A.M.; Cunha-Neto, E.; Bierrenbach, A.L.; Ferreira, J.E.; Haikal, D.S.; Reingold, A.L.; et al. Longitudinal Study of Patients with Chronic Chagas Cardiomyopathy in Brazil (SaMi-Trop Project): A Cohort Profile. BMJ Open 2016, 6, e011181. [Google Scholar] [CrossRef] [Green Version]
- Rassi, A.; Rassi, A.; Little, W.C.; Xavier, S.S.; Rassi, S.G.; Rassi, A.G.; Rassi, G.G.; Hasslocher-Moreno, A.; Sousa, A.S.; Scanavacca, M.I. Development and Validation of a Risk Score for Predicting Death in Chagas’ Heart Disease. N. Engl. J. Med. 2006, 355, 799–808. [Google Scholar] [CrossRef] [Green Version]
- Di Lorenzo Oliveira, C.; Nunes, M.C.P.; Colosimo, E.A.; de Lima, E.M.; Cardoso, C.S.; Ferreira, A.M.; de Oliveira, L.C.; Moreira, C.H.V.; Bierrenbach, A.L.; Haikal, D.S.; et al. Risk Score for Predicting 2-Year Mortality in Patients with Chagas Cardiomyopathy From Endemic Areas: SaMi-Trop Cohort Study. JAHA 2020, 9, e014176. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Schettino, P.M.; Majumder, S.; Kierszenbaum, F. Regulatory Effect of the Level of Free Ca2+ of the Host Cell on the Capacity of Trypanosoma Cruzi to Invade and Multiply Intracellularly. J. Parasitol. 1995, 81, 597–602. [Google Scholar] [CrossRef]
- Giordanengo, L.; Guiñazú, N.; Stempin, C.; Fretes, R.; Cerbán, F.; Gea, S. Cruzipain, a MajorTrypanosoma Cruziantigen, Conditions the Host Immune Response in Favor of Parasite. Eur. J. Immunol. 2002, 32, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Woolsey, A.M.; Sunwoo, L.; Petersen, C.A.; Brachmann, S.M.; Cantley, L.C.; Burleigh, B.A. Novel PI 3-Kinase-Dependent Mechanisms of Trypanosome Invasion and Vacuole Maturation. J. Cell Sci. 2003, 116, 3611–3622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salassa, B.N.; Cueto, J.A.; Gambarte Tudela, J.; Romano, P.S. Endocytic Rabs Are Recruited to the Trypanosoma Cruzi Parasitophorous Vacuole and Contribute to the Process of Infection in Non-Professional Phagocytic Cells. Front. Cell. Infect. Microbiol. 2020, 10, 536985. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, A.R.L.; Hecht, M.M.; Guimaro, M.C.; Sousa, A.O.; Nitz, N. Pathogenesis of Chagas’ Disease: Parasite Persistence and Autoimmunity. Clin. Microbiol. Rev. 2011, 24, 592–630. [Google Scholar] [CrossRef] [Green Version]
- Mauël, J. Intracellular Survival of Protozoan Parasites with Special Reference to Leishmania Spp., Toxoplasma Gondil and Trypanosoma Cruzi. In Advances in Parasitology; Elsevier: Amsterdam, Netherlands, 1996; Volume 38, pp. 1–51. ISBN 978-0-12-031738-7. [Google Scholar]
- Ministerio del Poder Popular para la Salud., PAHO, y World Health Organization. Programa de Control de Leishmaniasis, Normas, Pautas y Procedimientos para el Diagnóstico y Control, 1st ed.; PAHO/WHO: Caracas, Venezuela, 2019; p. 58. Available online: https://iris.paho.org/bitstream/handle/10665.2/51880/9789806678095_spa.pdf?sequence=1&isAllowed=y (accessed on 10 January 2023).
- Desjardins, M.; Descoteaux, A. Inhibition of Phagolysosomal Biogenesis by the Leishmania Lipophosphoglycan. J. Exp. Med. 1997, 185, 2061–2068. [Google Scholar] [CrossRef]
- Maia, C.; Rolão, N.; Nunes, M.; Gonçalves, L.; Campino, L. Infectivity of Five Different Types of Macrophages by Leishmania Infantum. Acta Trop. 2007, 103, 150–155. [Google Scholar] [CrossRef]
- Piacenza, L.; Peluffo, G.; Alvarez, M.N.; Martínez, A.; Radi, R. Trypanosoma Cruzi Antioxidant Enzymes as Virulence Factors in Chagas Disease. Antioxid. Redox Signal. 2013, 19, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.N.; Peluffo, G.; Piacenza, L.; Radi, R. Intraphagosomal Peroxynitrite as a Macrophage-Derived Cytotoxin against Internalized Trypanosoma Cruzi. J. Biol. Chem. 2011, 286, 6627–6640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Diego, J.; Punzón, C.; Duarte, M.; Fresno, M. Alteration of Macrophage Function by a Trypanosoma Cruzi Membrane Mucin. J. Immunol. 1997, 159, 4983–4989. [Google Scholar] [CrossRef] [PubMed]
- De Lima Rivero, A.R.; Farías Tamoy, M.N.; Tortolero Leal, E.; Navarro Aguilera, M.C.; Contreras Alvarez, V.T. [Partial purification and use of Trypanosoma cruzi glycosidic fractions for Chagas disease diagnosis]. Acta Cient. Venez. 2001, 52, 235–247. [Google Scholar] [PubMed]
- Cummings, R.D.; Hokke, C.H.; Haslam, S.M. Parasitic Infections. In Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; ISBN 978-1-62182-421-3. [Google Scholar]
- Nardy, A.F.F.R.; Freire-de-Lima, C.G.; Pérez, A.R.; Morrot, A. Role of Trypanosoma Cruzi Trans-Sialidase on the Escape from Host Immune Surveillance. Front. Microbiol. 2016, 7, 348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cestari, I.; Ramirez, M.I. Inefficient Complement System Clearance of Trypanosoma Cruzi Metacyclic Trypomastigotes Enables Resistant Strains to Invade Eukaryotic Cells. PLoS ONE 2010, 5, e9721. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Valck, C.; Sánchez, G.; Gingras, A.; Tzima, S.; Molina, M.C.; Sim, R.; Schwaeble, W.; Ferreira, A. The Classical Activation Pathway of the Human Complement System Is Specifically Inhibited by Calreticulin from Trypanosoma Cruzi. J. Immunol. 2004, 172, 3042–3050. [Google Scholar] [CrossRef] [Green Version]
- Doyle, P.S.; Zhou, Y.M.; Hsieh, I.; Greenbaum, D.C.; McKerrow, J.H.; Engel, J.C. The Trypanosoma Cruzi Protease Cruzain Mediates Immune Evasion. PLoS Pathog. 2011, 7, e1002139. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, M.M.; Gazzinelli, R.T.; Silva, J.S. Chemokines, Inflammation and Trypanosoma Cruzi Infection. Trends Parasitol. 2002, 18, 262–265. [Google Scholar] [CrossRef]
- De Alba-Alvarado, M.; Bucio-Torres, M.I.; Zenteno, E.; Sampedro-Carrillo, E.; Hernández-Lopez, M.; Reynoso-Ducoing, O.; Torres-Gutiérrez, E.; Guevara-Gomez, Y.; Guerrero-Alquicira, R.; Cabrera-Bravo, M.; et al. Response to Infection by Trypanosoma Cruzi in a Murine Model. Front. Vet. Sci. 2020, 7, 568745. [Google Scholar] [CrossRef]
- Jones, E.M.; Colley, D.G.; Tostes, S.; Lopes, E.R.; Vnencak-Jones, C.L.; McCurley, T.L. A Trypanosoma Cruzi DNA Sequence Amplified from Inflammatory Lesions in Human Chagasic Cardiomyopathy. Trans. Assoc. Am. Physicians 1992, 105, 182–189. [Google Scholar]
- Köberle, F. Chagas’ Disease and Chagas’ Syndromes: The Pathology of American Trypanosomiasis. In Advances in Parasitology; Elsevier: Amsterdam, Netherlands, 1968; Volume 6, pp. 63–116. ISBN 978-0-12-031706-6. [Google Scholar]
- Marin-Neto, J.A.; Cunha-Neto, E.; Maciel, B.C.; Simões, M.V. Pathogenesis of Chronic Chagas Heart Disease. Circulation 2007, 115, 1109–1123. [Google Scholar] [CrossRef]
- Herrera, R.N.; Díaz, E.; Pérez-Aguilar, R.; Bianchi, J.; Berman, S.; Luciardi, H.L. Prothrombotic state in early stages of chronic Chagas’ disease. Its association with thrombotic risk factors. Arch. Cardiol. Méx. 2005, 75, 38–48. [Google Scholar]
- Teixeira, A.R.; Nascimento, R.J.; Sturm, N.R. Evolution and Pathology in Chagas Disease: A Review. Mem. Inst. Oswaldo Cruz 2006, 101, 463–491. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, M. Pathophysiology of the Heart in Chagas’ Disease: Current Status and New Developments. Cardiovasc. Res. 2003, 60, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Rochitte, C.E.; Oliveira, P.F.; Andrade, J.M.; Ianni, B.M.; Parga, J.R.; Ávila, L.F.; Kalil-Filho, R.; Mady, C.; Meneghetti, J.C.; Lima, J.A.C.; et al. Myocardial Delayed Enhancement by Magnetic Resonance Imaging in Patients with Chagas’ Disease. J. Am. Coll. Cardiol. 2005, 46, 1553–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higuchi, M.d.L.; Fukasawa, S.; De Brito, T.; Parzianello, L.C.; Bellotti, G.; Ramires, J.A.F. Different Microcirculatory and Interstitial Matrix Patterns in Idiopathic Dilated Cardiomyopathy and Chagas’ Disease: A Three Dimensional Confocal Microscopy Study. Heart 1999, 82, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rochitte, C.E.; Nacif, M.S.; de Oliveira Júnior, A.C.; Siqueira-Batista, R.; Marchiori, E.; Uellendahl, M.; de Lourdes Higuchi, M. Cardiac Magnetic Resonance in Chagas’ Disease. Artif. Organs 2007, 31, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, F.R.S.; Guedes, P.M.M.; Gazzinelli, R.T.; Silva, J.S. The Role of Parasite Persistence in Pathogenesis of Chagas Heart Disease: Parasite Persistence in Chagas Heart Disease. Parasite Immunol. 2009, 31, 673–685. [Google Scholar] [CrossRef]
- Kierszenbaum, F. Views on the Autoimmunity Hypothesis for Chagas Disease Pathogenesis. FEMS Immunol. Med. Microbiol. 2003, 37, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Neto, E.; Teixeira, P.C.; Nogueira, L.G.; Kalil, J. Autoimmunity. In Advances in Parasitology; Elsevier: Amsterdam, Netherlands, 2011; Volume 76, pp. 129–152. ISBN 978-0-12-385895-5. [Google Scholar]
- De Bona, E.; Lidani, K.C.F.; Bavia, L.; Omidian, Z.; Gremski, L.H.; Sandri, T.L.; Messias Reason, I.J. de Autoimmunity in Chronic Chagas Disease: A Road of Multiple Pathways to Cardiomyopathy? Front. Immunol. 2018, 9, 1842. [Google Scholar] [CrossRef] [Green Version]
- Cunha-Neto, E.; Coelho, V.; Guilherme, L.; Fiorelli, A.; Stolf, N.; Kalil, J. Autoimmunity in Chagas’ Disease. Identification of Cardiac Myosin-B13 Trypanosoma Cruzi Protein Crossreactive T Cell Clones in Heart Lesions of a Chronic Chagas’ Cardiomyopathy Patient. J. Clin. Invest. 1996, 98, 1709–1712. [Google Scholar] [CrossRef] [PubMed]
- Sterin-Borda, L.; Cantore, M.; Pascual, J.; Borda, E.; Cossio, P.; Arana, R.; Passeron, S. Chagasic IgG Binds and Interacts with Cardiac Beta Adrenoceptor-Coupled Adenylate Cyclase System. Int. J. Immunopharmacol. 1986, 8, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, I.; Levin, M.J.; Wallukat, G.; Elies, R.; Lebesgue, D.; Chiale, P.; Elizari, M.; Rosenbaum, M.; Hoebeke, J. Molecular Mimicry between the Immunodominant Ribosomal Protein P0 of Trypanosoma Cruzi and a Functional Epitope on the Human Beta 1-Adrenergic Receptor. J. Exp. Med. 1995, 182, 59–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergami, P.L.; Meckert, P.C.; Kaplan, D.; Levitus, G.; Elias, F.; Quintana, F.; Van Regenmortel, M.; Laguens, R.; Levin, M.J. Immunization with Recombinant Trypanosoma Cruzi Ribosomal P2β Protein Induces Changes in the Electrocardiogram of Immunized Mice. FEMS Immunol. Med. Microbiol. 1997, 18, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Oya Masuda, M.; Levin, M.; Farias De Oliveira, S.; Dos Santos Costa, P.C.; Lopez Bergami, P.; Dos Santos Almeida, N.A.; Pedrosa, R.C.; Ferrari, I.; Hoebeke, J.; Campos De Carvalho, A.C. Functionally Active Cardiac Antibodies in Chronic Chagas’ Disease Are Specifically Blocked by Trypanosoma Cruzi Antigens. FASEB J. 1998, 12, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Mahler, E.; Sepulveda, P.; Jeannequin, O.; Liegeard, P.; Gounon, P.; Wallukat, G.; Eftekhari, P.; Levin, M.J.; Hoebeke, J.; Hontebeyrie, M. A Monoclonal Antibody against the Immunodominant Epitope of the Ribosomal P2β Protein OfTrypanosoma Cruzi Interacts with the Human β 1-Adrenergic Receptor. Eur. J. Immunol. 2001, 31, 2210–2216. [Google Scholar] [CrossRef]
- Zwirner, N.W.; Malchiodi, E.L.; Chiaramonte, M.G.; Fossati, C.A. A Lytic Monoclonal Antibody to Trypanosoma Cruzi Bloodstream Trypomastigotes Which Recognizes an Epitope Expressed in Tissues Affected in Chagas’ Disease. Infect. Immun. 1994, 62, 2483–2489. [Google Scholar] [CrossRef] [Green Version]
- Motrán, C.C.; Cerbán, F.M.; Rivarola, W.; Iosa, D.; de Cima, E.V. Trypanosoma Cruzi: Immune Response and Functional Heart Damage Induced in Mice by the Main Linear B-Cell Epitope of Parasite Ribosomal P Proteins. Exp. Parasitol. 1998, 88, 223–230. [Google Scholar] [CrossRef]
- Al-Sabbagh, A.; Garcia, C.A.A.C.; Diaz-Bardales, B.M.; Zaccarias, C.; Sakurada, J.K.; Santos, L.M.B. Evidence for Cross-Reactivity between Antigen Derived FromTrypanosoma Cruziand Myelin Basic Protein in Experimental Chagas Disease. Exp. Parasitol. 1998, 89, 304–311. [Google Scholar] [CrossRef]
- Oliveira, M.F.; Bijovsky, A.T.; Carvalho, T.U.; Souza, W.; Alves, M.M.; Colli, W. A Monoclonal Antibody to Trypanosoma Cruzi Trypomastigotes Recognizes a Myosin Tail Epitope. Parasitol. Res. 2001, 87, 1043–1049. [Google Scholar] [CrossRef]
- Gironès, N.; Rodríguez, C.I.; Basso, B.; Bellon, J.M.; Resino, S.; Muñoz-Fernández, M.A.; Gea, S.; Moretti, E.; Fresno, M. Antibodies to an Epitope from the Cha Human Autoantigen Are Markers of Chagas’ Disease. Clin. Diagn. Lab. Immunol. 2001, 8, 1039–1043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, C.; Barcellos, L.; Gimenez, L.; Cabarcas, R.; Garcia, S.; Pedrosa, R.; Nascimento, J.; Kurtenbach, E.; Masuda, M.; Camposdecarvalho, A. Human Chagasic IgGs Bind to Cardiac Muscarinic Receptors and Impair L-Type Ca Currents. Cardiovasc. Res. 2003, 58, 55–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, C.H.; López, N.C.; Ramírez, G.A.; Valck, C.E.; Molina, M.C.; Aguilar, L.; Rodríguez, M.; Maldonado, I.; Martínez, R.; González, C.; et al. Trypanosoma Cruzi Calreticulin: A Possible Role in Chagas’ Disease Autoimmunity. Mol. Immunol. 2009, 46, 1092–1099. [Google Scholar] [CrossRef] [PubMed]
- Gironès, N.; Rodríguez, C.I.; Carrasco-Marín, E.; Hernáez, R.F.; de Rego, J.L.; Fresno, M. Dominant T- and B-Cell Epitopes in an Autoantigen Linked to Chagas’ Disease. J. Clin. Invest. 2001, 107, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-dos-Santos, R.; Pirmez, C.; Savino, W. Role of Autoreactive Immunological Mechanisms in Chagasic Carditis. Res. Immunol. 1991, 142, 134–137. [Google Scholar] [CrossRef]
- Hontebeyrie-Joskowicz, M.; Said, G.; Milon, G.; Marchal, G.; Eisen, H. L3T4+ T Cells Able to Mediate Parasite-Specific Delayed-Type Hypersensitivity Play a Role in the Pathology of Experimental Chagas’ Disease. Eur. J. Immunol. 1987, 17, 1027–1033. [Google Scholar] [CrossRef]
- Laguens, R.P.; Meckert, P.C.; Chambo, G.; Gelpi, R.J. Chronic Chagas Disease in the Mouse. II. Transfer of the Heart Disease by Means of Immunocompetent Cells. Medicina 1981, 41, 40–43. [Google Scholar]
- dos Santos, R.R.; Rossi, M.A.; Laus, J.L.; Silva, J.S.; Savino, W.; Mengel, J. Anti-CD4 Abrogates Rejection and Reestablishes Long-Term Tolerance to Syngeneic Newborn Hearts Grafted in Mice Chronically Infected with Trypanosoma Cruzi. J. Exp. Med. 1992, 175, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Silva-Barbosa, S.D.; Cotta-de-Almeida, V.; Riederer, I.; De Meis, J.; Dardenne, M.; Bonomo, A.; Savino, W. Involvement of Laminin and Its Receptor in Abrogation of Heart Graft Rejection by Autoreactive T Cells from Trypanosoma Cruzi-Infected Mice. J. Immunol. 1997, 159, 997–1003. [Google Scholar] [CrossRef]
- Leon, J.S.; Godsel, L.M.; Wang, K.; Engman, D.M. Cardiac Myosin Autoimmunity in Acute Chagas’ Heart Disease. Infect. Immun. 2001, 69, 5643–5649. [Google Scholar] [CrossRef] [Green Version]
- Leon, J.S.; Wang, K.; Engman, D.M. Myosin Autoimmunity Is Not Essential for Cardiac Inflammation in Acute Chagas’ Disease. J. Immunol. 2003, 171, 4271–4277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontes-De-Carvalho, L.; Santana, C.C.; Soares, M.B.P.; Oliveira, G.G.S.; Cunha-Neto, E.; Ribeiro-Dos-Santos, R. Experimental Chronic Chagas’ Disease Myocarditis Is an Autoimmune Disease Preventable by Induction of Immunological Tolerance to Myocardial Antigens. J. Autoimmun. 2002, 18, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Morrot, A. The Development of Unconventional Extrathymic Activated CD4 + CD8 + T Cells in Chagas Disease. ISRN Infect. Dis. 2013, 2013, 801975. [Google Scholar] [CrossRef] [Green Version]
- Camargo, M.M.; Andrade, A.C.; Almeida, I.C.; Travassos, L.R.; Gazzinelli, R.T. Glycoconjugates Isolated from Trypanosoma Cruzi but Not from Leishmania Species Membranes Trigger Nitric Oxide Synthesis as Well as Microbicidal Activity in IFN-Gamma-Primed Macrophages. J. Immunol. 1997, 159, 6131–6139. [Google Scholar] [CrossRef]
- Verdot, L.; Lalmanach, G.; Vercruysse, V.; Hartmann, S.; Lucius, R.; Hoebeke, J.; Gauthier, F.; Vray, B. Cystatins Up-Regulate Nitric Oxide Release from Interferon-γ- Activated Mouse Peritoneal Macrophages. J. Biol. Chem. 1996, 271, 28077–28081. [Google Scholar] [CrossRef] [Green Version]
- Cardoni, R.L.; Antúnez, M.I.; Abrami, A.A. TH1 response in the experimental infection with Trypanosoma cruzi. Medicina 1999, 59, 84–90. [Google Scholar]
- Guiñazú, N.; Pellegrini, A.; Carrera-Silva, E.A.; Aoki, M.P.; Cabanillas, A.M.; Gìronés, N.; Fresno, M.; Cano, R.; Gea, S. Immunisation with a Major Trypanosoma Cruzi Antigen Promotes Pro-Inflammatory Cytokines, Nitric Oxide Production and Increases TLR2 Expression. Int. J. Parasitol. 2007, 37, 1243–1254. [Google Scholar] [CrossRef]
- de Oliveira, T.B.; Pedrosa, R.C.; Filho, D.W. Oxidative Stress in Chronic Cardiopathy Associated with Chagas Disease. Int. J. Cardiol. 2007, 116, 357–363. [Google Scholar] [CrossRef]
- Gupta, S.; Wen, J.-J.; Garg, N.J. Oxidative Stress in Chagas Disease. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 190354. [Google Scholar] [CrossRef] [Green Version]
- Marchant, D.J.; Boyd, J.H.; Lin, D.C.; Granville, D.J.; Garmaroudi, F.S.; McManus, B.M. Inflammation in Myocardial Diseases. Circ. Res. 2012, 110, 126–144. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.M.E.; Silverio, J.C.; da Silva, A.A.; Pereira, I.R.; Coelho, J.M.C.; Britto, C.C.; Moreira, O.C.; Marchevsky, R.S.; Xavier, S.S.; Gazzinelli, R.T.; et al. Inducible Nitric Oxide Synthase in Heart Tissue and Nitric Oxide in Serum of Trypanosoma Cruzi-Infected Rhesus Monkeys: Association with Heart Injury. PLoS Negl. Trop. Dis. 2012, 6, e1644. [Google Scholar] [CrossRef] [PubMed]
- Padilla, A.M.; Bustamante, J.M.; Tarleton, R.L. CD8+ T Cells in Trypanosoma Cruzi Infection. Curr. Opin. Immunol. 2009, 21, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dutra, W.O.; Menezes, C.A.S.; Villani, F.N.A.; da Costa, G.C.; da Silveira, A.B.M.; Reis, D. d’Ávila; Gollob, K.J. Cellular and Genetic Mechanisms Involved in the Generation of Protective and Pathogenic Immune Responses in Human Chagas Disease. Mem. Inst. Oswaldo Cruz 2009, 104, 208–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silverio, J.C.; de-Oliveira-Pinto, L.M.; da Silva, A.A.; de Oliveira, G.M.; Lannes-Vieira, J. Perforin-Expressing Cytotoxic Cells Contribute to Chronic Cardiomyopathy in Trypanosoma Cruzi Infection. Int. J. Exp. Pathol. 2010, 91, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A.C. Assessment of Myocardial Fibrosis With Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viotti, R.; Vigliano, C. Enfermedad de Chagas, un Enfoque Práctico Basado en la Investigación Médica; Panamericana: Buenos Aires, Argentina, 2015; pp. 187–208. ISBN 978-950-06-0557-1. [Google Scholar]
- Salazar-Schettino, P.M.; Cabrera-Bravo, M.; Vazquez-Antona, C.; Zenteno, E.; Alba-Alvarado, M.D.; Gutierrez, E.T.; Gomez, Y.G.; Perera-Salazar, M.G.; de la Torre, G.G.; Bucio-Torres, M.I. Chagas Disease in Mexico: Report of 14 Cases of Chagasic Cardiomyopathy in Children. Tohoku J. Exp. Med. 2016, 240, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, D.; Takawale, A.; Lee, J.; Kassiri, Z. Cardiac Fibroblasts, Fibrosis and Extracellular Matrix Remodeling in Heart Disease. Fibrogenesis Tissue Repair 2012, 5, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvet, C.M.; Meuser, M.; Almeida, D.; Meirelles, M.N.L.; Pereira, M.C.S. Trypanosoma Cruzi–Cardiomyocyte Interaction: Role of Fibronectin in the Recognition Process and Extracellular Matrix Expression in Vitro and in Vivo. Exp. Parasitol. 2004, 107, 20–30. [Google Scholar] [CrossRef]
- Higuchi, M.D.L.; Morais, C.F.D.; Sambiase, N.V.; Pereira-Barretto, A.C.; Bellotti, G.; Pileggi, F. Histopathological Criteria of Myocarditis. A Study Based on Normal Heart, Chagasic Heart and Dilated Cardiomyopathy. Jpn. Circ. J. 1990, 54, 391–400. [Google Scholar] [CrossRef] [Green Version]
- Marino, A.P.M.P.; Silva, A.A.; Pinho, R.T.; Lannes-Vieira, J. Trypanosoma Cruzi Infection: A Continuous Invader-Host Cell Cross Talk with Participation of Extracellular Matrix and Adhesion and Chemoattractant Molecules. Braz. J. Med. Biol. Res. 2003, 36, 1121–1133. [Google Scholar] [CrossRef] [Green Version]
- Talvani, A.; Ribeiro, C.S.; Aliberti, J.C.S.; Michailowsky, V.; Santos, P.V.A.; Murta, S.M.F.; Romanha, A.J.; Almeida, I.C.; Farber, J.; Lannes-Vieira, J.; et al. Kinetics of Cytokine Gene Expression in Experimental Chagasic Cardiomyopathy: Tissue Parasitism and Endogenous IFN-γ as Important Determinants of Chemokine MRNA Expression during Infection with Trypanosoma Cruzi. Microbes Infect. 2000, 2, 851–866. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.S.; Martins, G.A.; Aliberti, J.C.S.; Mestriner, F.L.A.C.; Cunha, F.Q.; Silva, J.S. Trypanosoma Cruzi—Infected Cardiomyocytes Produce Chemokines and Cytokines That Trigger Potent Nitric Oxide–Dependent Trypanocidal Activity. Circulation 2000, 102, 3003–3008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araújo-Jorge, T.C.; Waghabi, M.C.; Soeiro, M.; Keramidas, M.; Bailly, S.; Feige, J.-J. Pivotal Role for TGF-β in Infectious Heart Disease: The Case of Trypanosoma Cruzi Infection and Consequent Chagasic Myocardiopathy. Cytokine Growth Factor Rev. 2008, 19, 405–413. [Google Scholar] [CrossRef] [PubMed]
- Abel, L.C.J.; Rizzo, L.V.; Ianni, B.; Albuquerque, F.; Bacal, F.; Carrara, D.; Bocchi, E.A.; Teixeira, H.C.; Mady, C.; Kalil, J.; et al. Chronic Chagas’ Disease Cardiomyopathy Patients Display an Increased IFN-γ Response to Trypanosoma Cruzi Infection. J. Autoimmun. 2001, 17, 99–107. [Google Scholar] [CrossRef]
Mammal Component | T. cruzi Antigens | Host | Ref. |
---|---|---|---|
β1-adrenergic receptors | P0 and P2β ribosomal proteins | Human | [52,53,54,55,56] |
Smooth and striated muscle | 150-kDa protein | Human, mouse | [57] |
M2 cholinergic receptor | Not identified | Human | [58] |
Myelin basic protein | T. cruzi soluble extract | Mouse | [59] |
95-kDa myosin tail | T. cruzi cytoskeleton | Mouse | [60] |
Cha antigen | SAPA, 36-kDa TENU2845 | Mouse | [61] |
Human cardiac myosin heavy chain | Cruzipain | Mouse | [19] |
38-kDa heart antigen | R13 peptide of ribosomal protein P1, P2 | Mouse | [62] |
Calreticulin | Calreticulin | Human, mouse | [63] |
Effects of Immunization with T. cruzi Antigens | |||
---|---|---|---|
T. cruzi Antigen | Host | Effect | Ref. |
Recombinant ribosomal protein P2β | Mouse | Alteration in ECG | [54] |
R13 peptide of ribosomal protein P0 | Mouse | Alteration in ECG | [58] |
Effects of passive transfer of antibodies or T cells from chronically infected T. cruzi hosts | |||
Immune effectors | Host | Effect | Ref. |
Splenocytes | Mouse | Focal myocarditis | [67] |
T CD4+ cells | Mouse | Demyelination | [66] |
Splenic T CD4+ cells | Mouse | Focal myocarditis | [68,69] |
Effects of immune tolerance induction with heart antigens | |||
Antigen | Host | Effect | Ref. |
Myosin | Mouse | Acute myocarditis, not modulated | [70,71] |
Myosin-enriched heart lysate and homogenate | Mouse | Modulation of chronic myocarditis and fibrosis | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Alba-Alvarado, M.C.; Torres-Gutiérrez, E.; Reynoso-Ducoing, O.A.; Zenteno-Galindo, E.; Cabrera-Bravo, M.; Guevara-Gómez, Y.; Salazar-Schettino, P.M.; Rivera-Fernández, N.; Bucio-Torres, M.I. Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease. Pathogens 2023, 12, 335. https://doi.org/10.3390/pathogens12020335
De Alba-Alvarado MC, Torres-Gutiérrez E, Reynoso-Ducoing OA, Zenteno-Galindo E, Cabrera-Bravo M, Guevara-Gómez Y, Salazar-Schettino PM, Rivera-Fernández N, Bucio-Torres MI. Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease. Pathogens. 2023; 12(2):335. https://doi.org/10.3390/pathogens12020335
Chicago/Turabian StyleDe Alba-Alvarado, Mariana Citlalli, Elia Torres-Gutiérrez, Olivia Alicia Reynoso-Ducoing, Edgar Zenteno-Galindo, Margarita Cabrera-Bravo, Yolanda Guevara-Gómez, Paz María Salazar-Schettino, Norma Rivera-Fernández, and Martha Irene Bucio-Torres. 2023. "Immunopathological Mechanisms Underlying Cardiac Damage in Chagas Disease" Pathogens 12, no. 2: 335. https://doi.org/10.3390/pathogens12020335