Current Limitations of Staph Infection Diagnostics, and the Role for VOCs in Achieving Culture-Independent Detection
Abstract
:1. The Impacts of Staph on Humans and Non-Human Animals
2. Standard Diagnostic Methods for Staph Infections
2.1. Culture-Based Diagnostics
2.2. Molecular Detection
3. Volatile Metabolites and Breath Analysis as Emerging Diagnostics for Staph Infections
3.1. Principles and Advantages of VOC-Based Diagnostics
3.2. Tools of the Trade for VOC Analysis and Clinical Detection
3.2.1. Gas Chromatography
3.2.2. Direct Injection Mass Spectrometry
3.2.3. Sensor Arrays
3.3. Diagnosing Staph Infections with VOC Biomarkers
3.3.1. In Vitro and Animal Model Feasibility Studies
3.3.2. Diagnosing Human Infections
3.3.3. Diagnosing Animal Infections
4. Concluding Remarks on the Present and Future of VOC-Based Diagnostics
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Becker, K.; Bierbaum, G.; von Eiff, C.; Engelmann, S.; Götz, F.; Hacker, J.; Hecker, M.; Peters, G.; Rosenstein, R.; Ziebuhr, W. Understanding the physiology and adaptation of staphylococci: A post-genomic approach. Int. J. Med. Microbiol. 2007, 297, 483–501. [Google Scholar] [CrossRef]
- Bergeron, M.; Dauwalder, O.; Gouy, M.; Freydiere, A.-M.; Bes, M.; Meugnier, H.; Benito, Y.; Etienne, J.; Lina, G.; Vandenesch, F. Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 343–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, C.C.; Pereira, M.F.; Giambiagi-deMarval, M. Underrated Staphylococcus species and their role in antimicrobial resistance spreading. Genet. Mol. Biol. 2020, 43 (Suppl. 2), e20190065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. 2020, 70, 5607–5612. [Google Scholar] [CrossRef] [PubMed]
- Kloos, W.E. Natural populations of the genus Staphylococcus. Annu. Rev. Microbiol. 1980, 34, 559–592. [Google Scholar] [CrossRef]
- Becker, K. Pathogenesis of Staphylococcus aureus. In Staphylococcus aureus, 2017th ed.; Fetsch, A., Ed.; Academic Press: Cambridge, MA, USA, 2018; p. 315. [Google Scholar] [CrossRef]
- Rupp, M.E.; Fey, P.D. Staphylococcus epidermidis and other coagulase-negative staphylococci. In Mandell, Dougla, and Bennett’s Principles and Practice fof Infectious Diseases (Eighth Edition); Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2015; Volume 2, pp. 2272–2282.e2275. [Google Scholar] [CrossRef]
- Hakuta, C.; Okada, A.; Sogabe, K.; Kakuta, E.; Endo, K. Opportunistic bacteria in tonsil and dental plaque are indicator for oral care. Int. J. Oral Craniofac. Sci. 2016, 2, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Cogen, A.; Nizet, V.; Gallo, R. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008, 158, 442–455. [Google Scholar] [CrossRef] [Green Version]
- O′Sullivan, J.N.; Rea, M.C.; O’Connor, P.M.; Hill, C.; Ross, R.P. Human skin microbiota is a rich source of bacteriocin-producing staphylococci that kill human pathogens. FEMS Microbiol. Ecol. 2019, 95, fiy241. [Google Scholar] [CrossRef] [Green Version]
- Kloos, W.E.; Musselwhite, M.S. Distribution and persistence of Staphylococcus and Micrococcus species and other aerobic bacteria on human skin. J. Appl. Microbiol. 1975, 30, 381–395. [Google Scholar] [CrossRef]
- Price, L.B.; Hungate, B.A.; Koch, B.J.; Davis, G.S.; Liu, C.M. Colonizing opportunistic pathogens (COPs): The beasts in all of us. PLoS Pathog. 2017, 13, e1006369. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.E.; Kim, H.S. Microbiome of the skin and gut in atopic dermatitis (AD): Understanding the pathophysiology and finding novel management strategies. J. Clin. Med. 2019, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Klein, E.Y.; Jiang, W.; Mojica, N.; Tseng, K.K.; McNeill, R.; Cosgrove, S.E.; Perl, T.M. National costs associated with methicillin-susceptible and methicillin-resistant Staphylococcus aureus hospitalizations in the United States, 2010–2014. Clin. Infect. Dis. 2019, 68, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Gillaspy, A.; Iandolo, J.; Tang, Y.-W.; Stratton, C. Staphylococcus. In Encyclopedia of Microbiology, 4th ed.; Schmidt, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 309–320. [Google Scholar] [CrossRef]
- Tong, S.Y.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015, 28, 603–661. [Google Scholar] [CrossRef] [Green Version]
- Van Hal, S.J.; Jensen, S.O.; Vaska, V.L.; Espedido, B.A.; Paterson, D.L.; Gosbell, I.B. Predictors of mortality in Staphylococcus aureus bacteremia. Clin. Microbiol. Rev. 2012, 25, 362–386. [Google Scholar] [CrossRef] [Green Version]
- Naber, C.K. Staphylococcus aureus bacteremia: Epidemiology, pathophysiology, and management strategies. Clin. Infect. Dis. 2009, 48, S231–S237. [Google Scholar] [CrossRef] [Green Version]
- Limoli, D.H.; Hoffman, L.R. Help, hinder, hide and harm: What can we learn from the interactions between Pseudomonas aeruginosa and Staphylococcus aureus during respiratory infections? Thorax 2019, 74, 684–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flume, P.A.; Chalmers, J.D.; Olivier, K.N. Advances in bronchiectasis: Endotyping, genetics, microbiome, and disease heterogeneity. Lancet 2018, 392, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Nambiar, S.; Bong How, S.; Gummer, J.; Trengove, R.; Moodley, Y. Metabolomics in chronic lung diseases. Respirology 2020, 25, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Cystic Fibrosis Foundation. Patient Registry Annual Data Report; Bethesda, MD, USA, 2020. [Google Scholar]
- Pal, M.; Kerorsa, G.B.; Marami, L.M.; Kandi, V. Epidemiology, pathogenicity, animal infections, antibiotic resistance, public health significance, and economic impact of Staphylococcus aureus: A comprehensive review. Am. J. Public Health Res. 2020, 8, 14–21. [Google Scholar] [CrossRef]
- Bolte, J.; Zhang, Y.; Wente, N.; Mahmmod, Y.S.; Svennesen, L.; Krömker, V. Comparison of phenotypic and genotypic antimicrobial resistance patterns associated with Staphylococcus aureus mastitis in German and Danish dairy cows. J. Dairy Sci. 2020, 103, 3554–3564. [Google Scholar] [CrossRef]
- Hogeveen, H.; Steeneveld, W.; Wolf, C.A. Production diseases reduce the efficiency of dairy production: A review of the results, methods, and approaches regarding the economics of mastitis. Annu. Rev. Resour. Econ. 2019, 11, 289–312. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A.; Chothe, S.; Byukusenge, M.; Mathews, T.; Pierre, T.; Kariyawasam, S.; Luley, E.; Kuchipudi, S.; Jayarao, B. Prevalence and distribution of multilocus sequence types of Staphylococcus aureus isolated from bulk tank milk and cows with mastitis in Pennsylvania. PLoS ONE 2021, 16, e0248528. [Google Scholar] [CrossRef] [PubMed]
- Cvetnić, L.; Samardžija, M.; Duvnjak, S.; Habrun, B.; Cvetnić, M.; Jaki Tkalec, V.; Đuričić, D.; Benić, M. Multi locus sequence typing and spa typing of Staphylococcus aureus isolated from the milk of cows with subclinical mastitis in Croatia. Microorganisms 2021, 9, 725. [Google Scholar] [CrossRef]
- Peralta, O.; Carrasco, C.; Vieytes, C.; Tamayo, M.; Muñoz, I.; Sepulveda, S.; Tadich, T.; Duchens, M.; Melendez, P.; Mella, A. Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Sci. Rep. 2020, 10, 2843. [Google Scholar] [CrossRef] [Green Version]
- Abdelmegid, S.; Kelton, D.; Caswell, J.; Kirby, G. Proteomic 2D-DIGE analysis of milk whey from dairy cows with Staphylococcus aureus mastitis reveals overexpression of host defense proteins. Microorganisms 2020, 8, 1883. [Google Scholar] [CrossRef]
- Freu, G.; Tomazi, T.; Filho, A.F.; Heinemann, M.B.; Dos Santos, M.V. Antimicrobial resistance and molecular characterization of Staphylococcus aureus recovered from cows with clinical mastitis in dairy herds from southeastern Brazil. Antibiotics 2022, 11, 424. [Google Scholar] [CrossRef]
- Campos, B.; Pickering, A.C.; Rocha, L.S.; Aguilar, A.P.; Fabres-Klein, M.H.; de Oliveira Mendes, T.A.; Fitzgerald, J.R.; de Oliveira Barros Ribon, A. Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: Current understanding and future perspectives. BMC Vet. Res. 2022, 18, 115. [Google Scholar] [CrossRef]
- Mee, J.; Barrett, D.; Boloña, P.S.; Conneely, M.; Earley, B.; Fagan, S.; Keane, O.; Lane, E. Ruminant health research–progress to date and future prospects, with an emphasis on Irish research. Ir. J. Agric. Food Res. 2022, 61, 55–86. [Google Scholar] [CrossRef]
- Xu, P. Research progress on the dairy cow mastitis. Anim. Biol. 2021, 23, 45. [Google Scholar] [CrossRef]
- Liebe, D.; Steele, N.; Petersson-Wolfe, C.; De Vries, A.; White, R. Practical challenges and potential approaches to predicting low-incidence diseases on farm using individual cow data: A clinical mastitis example. J. Dairy Sci. 2022, 105, 2369–2379. [Google Scholar] [CrossRef]
- Cheng, W.N.; Han, S.G. Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments-a review. Asian-Australas J. Anim. Sci. 2020, 33, 1699–1713. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lacasse, P. Mammary tissue damage during bovine mastitis: Causes and control. Sci. J. Anim. Sci. 2008, 86, 57–65. [Google Scholar] [CrossRef]
- Haag, A.F.; Fitzgerald, J.R.; Penadés, J.R. Staphylococcus aureus in animals. Microbiol. Spectr. 2019, 7, 3–7. [Google Scholar] [CrossRef]
- Lowder, B.V.; Guinane, C.M.; Zakour, N.L.B.; Weinert, L.A.; Conway-Morris, A.; Cartwright, R.A.; Simpson, A.J.; Rambaut, A.; Nübel, U.; Fitzgerald, J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. USA 2009, 106, 19545–19550. [Google Scholar] [CrossRef] [Green Version]
- Van Loo, I.; Huijsdens, X.; Tiemersma, E.; De Neeling, A.; van de Sande-Bruinsma, N.; Beaujean, D.; Voss, A.; Kluytmans, J. Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg. Infect. Dis. 2007, 13, 1834. [Google Scholar] [CrossRef]
- Pirolo, M.; Visaggio, D.; Gioffrè, A.; Artuso, I.; Gherardi, M.; Pavia, G.; Samele, P.; Ciambrone, L.; Di Natale, R.; Spatari, G. Unidirectional animal-to-human transmission of methicillin-resistant Staphylococcus aureus ST398 in pig farming; evidence from a surveillance study in southern Italy. Antimicrob. Resist. Infect. Control 2019, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Sakwinska, O.; Giddey, M.; Moreillon, M.; Morisset, D.; Waldvogel, A.; Moreillon, P. Host range and human-bovine host shift in Staphylococcus aureus. Appl. Environ. Microbiol. 2011, 77, 5908–5915. [Google Scholar] [CrossRef] [Green Version]
- Akkou, M.; Bouchiat, C.; Antri, K.; Bes, M.; Tristan, A.; Dauwalder, O.; Martins-Simoes, P.; Rasigade, J.-P.; Etienne, J.; Vandenesch, F. New host shift from human to cows within Staphylococcus aureus involved in bovine mastitis and nasal carriage of animal′s caretakers. Vet. Microbiol. 2018, 223, 173–180. [Google Scholar] [CrossRef]
- Viana, D.; Comos, M.; McAdam, P.R.; Ward, M.J.; Selva, L.; Guinane, C.M.; González-Muñoz, B.M.; Tristan, A.; Foster, S.J.; Fitzgerald, J.R. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 2015, 47, 361–366. [Google Scholar] [CrossRef]
- Heilmann, C.; Ziebuhr, W.; Becker, K. Are coagulase-negative staphylococci virulent? Clin. Microbiol. Infect. 2019, 25, 1071–1080. [Google Scholar] [CrossRef]
- Rosenstein, R.; Götz, F. What distinguishes highly pathogenic staphylococci from medium-and non-pathogenic. In Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology; Dobrindt, U., Hacker, J., Svanborg, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 358, pp. 33–89. [Google Scholar] [CrossRef]
- Von Eiff, C.; Peters, G.; Heilmann, C. Pathogenesis of infections due to coagulase negative staphylococci. Lancet. Infect. Dis. 2002, 2, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Fey, P.D.; Olson, M.E. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010, 5, 917–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blumenthal, H.J.; Huettner, C.F.; Montiel, F.A. Comparative aspects of glucose catabolism in Staphylococcus aureus and S. epidermidis. Ann. N. Y. Acad. Sci. 1974, 236, 105–114. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis: A major player in bacterial sepsis? Future Microbiol. 2017, 12, 1031–1033. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Sahu, K.; Lal, A.; Menon, V. Aortic valve abscess: Staphylococcus epidermidis and infective endocarditis. QJM-Int. J. Med. 2020, 113, 211–212. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.S.; Fowler, V.G., Jr.; Shukla, S.K.; Rose, W.E.; Proctor, R.A. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol. Rev. 2020, 44, 123–153. [Google Scholar] [CrossRef] [Green Version]
- Rainard, P.; Gilbert, F.B.; Germon, P.; Foucras, G. Invited review: A critical appraisal of mastitis vaccines for dairy cows. J. Dairy Sci. 2021, 104, 10427–10448. [Google Scholar] [CrossRef]
- Blair, J.E. Laboratory diagnosis of staphylococcal infections. Bull. World Health Organ. 1958, 18, 291. [Google Scholar]
- Carson, J.A. Wound cultures. In Clinical Microbiology Procedures Handbook, 4th ed.; ASM Press: Washington, DC, USA, 2016; pp. 3.13.1.1–3.13.2.4. [Google Scholar] [CrossRef]
- Davenport, M.; Mach, K.E.; Shortliffe, L.M.D.; Banaei, N.; Wang, T.-H.; Liao, J.C. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 2017, 14, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Dospinescu, V.-M.; Tiele, A.; Covington, J.A. Sniffing out urinary tract infection—Diagnosis based on volatile organic compounds and smell profile. Biosensors 2020, 10, 83. [Google Scholar] [CrossRef]
- D’Souza, H.A.; Baron, E.J. BBL chromagar Staph aureus is superior to mannitol salt for detection of Staphylococcus aureus in complex mixed infections. Am. J. Clin. Pathol. 2005, 123, 806–808. [Google Scholar] [CrossRef]
- Hsiao, P.-K.; Chen, W.-T.; Chang, K.-C.; Ke, Y.-J.; Kuo, C.-L.; Tseng, C.-C. Performance of chromagar Staph aureus and chromagar MRSA for detection of airborne methicillin-resistant and methicillin-sensitive Staphylococcus aureus. Aerosol Sci. Technol. 2012, 46, 297–308. [Google Scholar] [CrossRef]
- bioMérieux_SA. API® Staph. 07468L—en ed.; Biomerieux: Marcy-l′Etoile, France, 2013. [Google Scholar]
- Bouza, E.; Onori, R.; Semiglia-Chong, M.A.; Álvarez-Uría, A.; Alcalá, L.; Burillo, A. Fast track SSTI management program based on a rapid molecular test (GeneXpert® MRSA/SA SSTI) and antimicrobial stewardship. J. Microbiol. Immunol. Infect. 2020, 53, 328–335. [Google Scholar] [CrossRef]
- Coppens, J.; Van Heirstraeten, L.; Ruzin, A.; Yu, L.; Timbermont, L.; Lammens, C.; Matheeussen, V.; McCarthy, M.; Jorens, P.; Ieven, M. Comparison of GeneXpert MRSA/SA ETA assay with semi-quantitative and quantitative cultures and nuc gene-based qPCR for detection of Staphylococcus aureus in endotracheal aspirate samples. Antimicrob. Resist. Infect. Control 2019, 8, 4. [Google Scholar] [CrossRef] [Green Version]
- Dubouix-Bourandy, A.; de Ladoucette, A.; Pietri, V.; Mehdi, N.; Benzaquen, D.; Guinand, R.; Gandois, J.-M. Direct detection of Staphylococcus osteoarticular infections by use of Xpert MRSA/SA SSTI real-time PCR. J. Clin. Microbiol. 2011, 49, 4225–4230. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, F.P.; Suaya, J.A.; Ray, G.T.; Baxter, R.; Brown, M.L.; Mera, R.M.; Close, N.M.; Thomas, E.; Amrine-Madsen, H. Spa typing and multilocus sequence typing show comparable performance in a macroepidemiologic study of Staphylococcus aureus in the United States. Microb. Drug Resist. 2016, 22, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Krawczyk, B.; Kur, J. Molecular identification and genotyping of staphylococci: Genus, species, strains, clones, lineages, and interspecies exchanges. In Pet-to-Man Travelling Staphylococci; Elsevier: Amsterdam, The Netherlands, 2018; pp. 199–223. [Google Scholar] [CrossRef]
- Rumpf, C.; Lange, J.; Schwartbeck, B.; Kahl, B.C. Staphylococcus aureus and cystic fibrosis—A close relationship. What can we learn from sequencing studies? Pathogens 2021, 10, 1177. [Google Scholar] [CrossRef]
- Drancourt, M.; Raoult, D. rpoB gene sequence-based identification of Staphylococcus species. J. Clin. Microbiol. 2002, 40, 1333–1338. [Google Scholar] [CrossRef] [Green Version]
- Adékambi, T.; Drancourt, M.; Raoult, D. The rpoB gene as a tool for clinical microbiologists. Trends Microbiol. 2009, 17, 37–45. [Google Scholar] [CrossRef]
- Poyart, C.; Quesne, G.; Boumaila, C.; Trieu-Cuot, P. Rapid and accurate species-level identification of coagulase-negative staphylococci by using the sodA gene as a target. J. Clin. Microbiol. 2001, 39, 4296–4301. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.M.; Iihara, H.; Noda, M.; Song, S.X.; Nhung, P.H.; Ohkusu, K.; Kawamura, Y.; Ezaki, T. dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int. J. Syst. Evol. 2007, 57, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Heikens, E.; Fleer, A.; Paauw, A.; Florijn, A.; Fluit, A. Comparison of genotypic and phenotypic methods for species-level identification of clinical isolates of coagulase-negative staphylococci. J. Clin. Microbiol. 2005, 43, 2286–2290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martineau, F.; Picard, F.J.; Ke, D.; Paradis, S.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Development of a PCR assay for identification of staphylococci at genus and species levels. J. Clin. Microbiol. 2001, 39, 2541–2547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirotaki, S.; Sasaki, T.; Kuwahara-Arai, K.; Hiramatsu, K. Rapid and accurate identification of human-associated staphylococci by use of multiplex PCR. J. Clin. Microbiol. 2011, 49, 3627–3631. [Google Scholar] [CrossRef] [Green Version]
- Rychert, J. Benefits and limitations of MALDI-TOF mass spectrometry for the identification of microorganisms. J. Infect. Epidemiol. 2019, 2, 1–5. [Google Scholar] [CrossRef]
- Tan, K.; Ellis, B.; Lee, R.; Stamper, P.; Zhang, S.X.; Carroll, K.C. Prospective evaluation of a matrix-assisted laser desorption ionization–time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: A bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J. Clin. Microbiol. 2012, 50, 3301–3308. [Google Scholar] [CrossRef] [Green Version]
- Manji, R.; Bythrow, M.; Branda, J.A.; Burnham, C.-A.; Ferraro, M.J.; Garner, O.B.; Jennemann, R.; Lewinski, M.A.; Mochon, A.B.; Procop, G.W. Multi-center evaluation of the VITEK® MS system for mass spectrometric identification of non-Enterobacteriaceae Gram-negative bacilli. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 337–346. [Google Scholar] [CrossRef]
- Ge, M.-C.; Kuo, A.-J.; Liu, K.-L.; Wen, Y.-H.; Chia, J.-H.; Chang, P.-Y.; Lee, M.-H.; Wu, T.-L.; Chang, S.-C.; Lu, J.-J. Routine identification of microorganisms by matrix-assisted laser desorption ionization time-of-flight mass spectrometry: Success rate, economic analysis, and clinical outcome. J. Microbiol. Immunol. Infect. 2017, 50, 662–668. [Google Scholar] [CrossRef] [Green Version]
- Hou, T.-Y.; Chiang-Ni, C.; Teng, S.-H. Current status of MALDI-TOF mass spectrometry in clinical microbiology. J. Food Drug Anal. 2019, 27, 404–414. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion; Milstone, A.; Elward, A.; Brady, M. Recommendations for Prevention and Control of Infections in Neonatal Intensive Care Unit Patients: Staphylococcus aureus (2020): Guideline: NICU–S. aureus; CDC: Atlanta, GA, USA, 2020. Available online: https://www.cdc.gov/infectioncontrol/guidelines/nicu-saureus (accessed on 13 October 2020).
- Rosenfeld, M.; Emerson, J.; Accurso, F.; Armstrong, D.; Castile, R.; Grimwood, K.; Hiatt, P.; McCoy, K.; McNamara, S.; Ramsey, B. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr. Pulmonol. 1999, 28, 321–328. [Google Scholar] [CrossRef]
- Equi, A.; Pike, S.; Davies, J.; Bush, A. Use of cough swabs in a cystic fibrosis clinic. Arch. Dis. Child. 2001, 85, 438–439. [Google Scholar] [CrossRef] [Green Version]
- Seidler, D.; Griffin, M.; Nymon, A.; Koeppen, K.; Ashare, A. Throat swabs and sputum culture as predictors of P. aeruginosa or S. aureus lung colonization in adult cystic fibrosis patients. PLoS ONE 2016, 11, e0164232. [Google Scholar] [CrossRef] [Green Version]
- Zampoli, M.; Pillay, K.; Carrara, H.; Zar, H.J.; Morrow, B. Microbiological yield from induced sputum compared to oropharyngeal swab in young children with cystic fibrosis. J. Cyst. Fibros. 2016, 15, 605–610. [Google Scholar] [CrossRef]
- D’Alessandro, M.; Carleo, A.; Cameli, P.; Bergantini, L.; Perrone, A.; Vietri, L.; Lanzarone, N.; Vagaggini, C.; Sestini, P.; Bargagli, E. BAL biomarkers’ panel for differential diagnosis of interstitial lung diseases. Clin. Exp. Med. 2020, 20, 207–216. [Google Scholar] [CrossRef]
- Tuchscherr, L.; Kreis, C.; Hoerr, V.; Flint, L.; Hachmeister, M.; Geraci, J.; Bremer-Streck, S.; Kiehntopf, M.; Medina, E.; Kribus, M. Staphylococcus aureus develops increased resistance to antibiotics by forming dynamic small colony variants during chronic osteomyelitis. J. Antimicrob. Chemother. 2016, 71, 438–448. [Google Scholar] [CrossRef] [Green Version]
- Cobb, L.H.; Park, J.; Swanson, E.A.; Beard, M.C.; McCabe, E.M.; Rourke, A.S.; Seo, K.S.; Olivier, A.K.; Priddy, L.B. CRISPR-Cas9 modified bacteriophage for treatment of Staphylococcus aureus induced osteomyelitis and soft tissue infection. PLoS ONE 2019, 14, e0220421. [Google Scholar] [CrossRef] [Green Version]
- Acton, D.; Plat-Sinnige, M.T.; van Wamel, W.; de Groot, N.; van Belkum, A. Intestinal carriage of Staphylococcus aureus: How does its frequency compare with that of nasal carriage and what is its clinical impact? Eur. J. Clin. Microbiol. Infect. Dis. 2009, 28, 115. [Google Scholar] [CrossRef] [Green Version]
- Eckerle, M.; Ambroggio, L.; Puskarich, M.A.; Winston, B.; Jones, A.E.; Standiford, T.J.; Stringer, K.A. Metabolomics as a driver in advancing precision medicine in sepsis. Pharmacotherapy 2017, 37, 1023–1032. [Google Scholar] [CrossRef]
- Azad, R.K.; Shulaev, V. Metabolomics technology and bioinformatics for precision medicine. Brief. Bioinform. 2019, 20, 1957–1971. [Google Scholar] [CrossRef]
- Baidoo, E.E.K.; Benke, P.I.; Keasling, J.D. Mass spectrometry-based microbial metabolomics. In Microbial Systems Biology. Methods in Molecular Biology; Navid, A., Ed.; Humana Press: Totowa, NJ, USA, 2012; Volume 881, pp. 215–278. [Google Scholar] [CrossRef]
- Anand, S.; Philip, B.; Mehendale, H. Volatile organic compounds. In Encyclopedia of Toxicology (Third Edition); Wexler, P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 967–970. [Google Scholar] [CrossRef] [Green Version]
- Elmassry, M.M.; Piechulla, B. Volatilomes of bacterial infections in humans. Front. Neurosci. 2020, 14, 257. [Google Scholar] [CrossRef]
- Tang, J. Microbial metabolomics. Curr. Genom. 2011, 12, 391–403. [Google Scholar] [CrossRef] [PubMed]
- Priego Capote, F. Potential of metabolomics to breath tests. In Microbiome and Metabolome in Diagnosis, Therapy, and Other Strategic Applications; Faintuch, J., Faintuch, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 69–81. [Google Scholar] [CrossRef]
- Das, S.; Pal, M. Non-invasive monitoring of human health by exhaled breath analysis: A comprehensive review. J. Electrochem. Soc. 2020, 167, 037562. [Google Scholar] [CrossRef]
- Oakley-Girvan, I.; Davis, S.W. Breath based volatile organic compounds in the detection of breast, lung, and colorectal cancers: A systematic review. Cancer Biomark. 2018, 21, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Welearegay, T.G.; Diouani, M.F.; Österlund, L.; Borys, S.; Khaled, S.; Smadhi, H.; Ionescu, F.; Bouchekoua, M.; Aloui, D.; Laouini, D. Diagnosis of human echinococcosis via exhaled breath analysis: A promise for rapid diagnosis of infectious diseases caused by helminths. J. Infect. Dis. 2019, 219, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, B.K.; Rybicki, L.A.; Grove, D.; Ferraro, C.; Starn, J.; Hodgeman, B.; Elberson, J.; Winslow, V.; Corrigan, D.; Gerds, A.T. Breath analysis in gastrointestinal graft-versus-host disease after allogeneic hematopoietic cell transplantation. Blood Adv. 2019, 3, 2732–2737. [Google Scholar] [CrossRef]
- Beauchamp, J.D.; Miekisch, W. Breath sampling and standardization. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 23–41. [Google Scholar] [CrossRef]
- Nasir, M.; Bean, H.D.; Smolinska, A.; Rees, C.A.; Zemanick, E.T.; Hill, J.E. Volatile molecules from bronchoalveolar lavage fluid can ‘rule-in’ Pseudomonas aeruginosa and ‘rule-out’ Staphylococcus aureus infections in cystic fibrosis patients. Sci. Rep. 2018, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Bean, H.D.; Wargo, M.J.; Leclair, L.W.; Hill, J.E. Detecting bacterial lung infections: In vivo evaluation of in vitro volatile fingerprints. J. Breath. Res. 2013, 7, 016003. [Google Scholar] [CrossRef]
- Kuil, S.D.; Hidad, S.; Schneeberger, C.; Singh, P.; Rhodes, P.; de Jong, M.D.; Visser, C.E. Susceptibility testing by volatile organic compound detection direct from positive blood cultures: A proof-of-principle laboratory study. Antibiotics 2022, 11, 705. [Google Scholar] [CrossRef]
- Catino, A.; de Gennaro, G.; Di Gilio, A.; Facchini, L.; Galetta, D.; Palmisani, J.; Porcelli, F.; Varesano, N. Breath analysis: A systematic review of volatile organic compounds (VOCs) in diagnostic and therapeutic management of pleural mesothelioma. Cancers 2019, 11, 831. [Google Scholar] [CrossRef] [Green Version]
- Davis, M.D. Exhaled breath condensate and aerosol. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 109–119. [Google Scholar] [CrossRef]
- Trefz, P.; Schmidt, M.; Oertel, P.; Obermeier, J.; Brock, B.; Kamysek, S.; Dunkl, J.; Zimmermann, R.; Schubert, J.K.; Miekisch, W. Continuous real time breath gas monitoring in the clinical environment by proton-transfer-reaction-time-of-flight-mass spectrometry. Anal. Chem. 2013, 85, 10321–10329. [Google Scholar] [CrossRef]
- Del Río, R.F.; O’Hara, M.; Holt, A.; Pemberton, P.; Shah, T.; Whitehouse, T.; Mayhew, C. Volatile biomarkers in breath associated with liver cirrhosis—Comparisons of pre-and post-liver transplant breath samples. EBioMedicine 2015, 2, 1243–1250. [Google Scholar] [CrossRef] [Green Version]
- Hahn, A.; Whiteson, K.; Davis, T.J.; Phan, J.; Sami, I.; Koumbourlis, A.C.; Freishtat, R.J.; Crandall, K.A.; Bean, H.D. Longitudinal associations of the cystic fibrosis airway microbiome and volatile metabolites: A case study. Front. Cell. Infect. Microbiol. 2020, 10. [Google Scholar] [CrossRef]
- Phillips, M.; Boehmer, J.P.; Cataneo, R.N.; Cheema, T.; Eisen, H.J.; Fallon, J.T.; Fisher, P.E.; Gass, A.; Greenberg, J.; Kobashigawa, J. Prediction of heart transplant rejection with a breath test for markers of oxidative stress. Am. J. Cardiol. 2004, 94, 1593–1594. [Google Scholar] [CrossRef]
- Pham, Y.L.; Beauchamp, J. Breath biomarkers in diagnostic applications. Molecules 2021, 26, 5514. [Google Scholar] [CrossRef]
- Phillips, M. Breath tests in medicine. Sci. Am. 1992, 267, 74–79. [Google Scholar] [CrossRef]
- Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 2459–2467. [Google Scholar] [CrossRef]
- Robroeks, C.M.; Rosias, P.P.; Van Vliet, D.; Jöbsis, Q.; Yntema, J.B.L.; Brackel, H.J.; Damoiseaux, J.G.; Den Hartog, G.M.; Wodzig, W.K.; Dompeling, E. Biomarkers in exhaled breath condensate indicate presence and severity of cystic fibrosis in children. Pediatr. Allergy Immunol. 2008, 19, 652–659. [Google Scholar] [CrossRef]
- Mourão, M.P.; Kolk, A.H.; Janssen, H.-G. General principles and history. In Hyphenations of Capillary Chromatography with Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–74. [Google Scholar] [CrossRef]
- Majchrzak, T.; Wojnowski, W.; Lubinska-Szczygeł, M.; Różańska, A.; Namieśnik, J.; Dymerski, T. PTR-MS and GC-MS as complementary techniques for analysis of volatiles: A tutorial review. Anal. Chim. Acta 2018, 1035, 1–13. [Google Scholar] [CrossRef]
- Baidoo, E.E.K.; Teixeira Benites, V. Mass spectrometry-based microbial metabolomics: Techniques, analysis, and applications. In Microbial Metabolomics. Methods in Molecular Biology; Baidoo, E.E.K., Ed.; Humana Press: New York, NY, USA, 2019; Volume 1859, pp. 11–69. [Google Scholar] [CrossRef]
- Keppler, E.A.H.; Jenkins, C.L.; Davis, T.J.; Bean, H.D. Advances in the application of comprehensive two-dimensional gas chromatography in metabolomics. Trends. Analyt. Chem. 2018, 109, 275–286. [Google Scholar] [CrossRef]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [Green Version]
- David, F. Classical two-dimensional GC combined with mass spectrometry. In Hyphenations of Capillary Chromatography with Mass Spectrometry; Elsevier: Amsterdam, The Netherlands, 2020; pp. 135–182. [Google Scholar] [CrossRef]
- Herbig, J.; Beauchamp, J. Towards standardization in the analysis of breath gas volatiles. J. Breath. Res. 2014, 8, 037101. [Google Scholar] [CrossRef] [PubMed]
- Ramos, L.; Udo, A.T. Multidimensionality in gas chromatography: General concepts. Compr. Anal. Chem. 2009, 55, 3–14. [Google Scholar] [CrossRef]
- Zhang, Z.; Pawliszyn, J. Headspace solid-phase microextraction. Anal. Chem. 1993, 65, 1843–1852. [Google Scholar] [CrossRef]
- Grote, C.; Pawliszyn, J. Solid-phase microextraction for the analysis of human breath. Anal. Chem. 1997, 69, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.; Szidon, J.; Krotoszynski, B.; Gibbons, R.; O’Neill, H. Volatile organic compounds in exhaled air from patients with lung cancer. Clin. Chem. 1985, 31, 1278–1282. [Google Scholar] [CrossRef]
- Ghosh, C.; Singh, V.; Grandy, J.; Pawliszyn, J. Recent advances in breath analysis to track human health by new enrichment technologies. J. Sep. Sci. 2020, 43, 226–240. [Google Scholar] [CrossRef]
- Pleil, J.D.; Hansel, A.; Beauchamp, J. Advances in proton transfer reaction mass spectrometry (PTR-MS): Applications in exhaled breath analysis, food science, and atmospheric chemistry. J. Breath. Res. 2019, 13, 039002. [Google Scholar] [CrossRef]
- Jordan, A.; Haidacher, S.; Hanel, G.; Hartungen, E.; Herbig, J.; Märk, L.; Schottkowsky, R.; Seehauser, H.; Sulzer, P.; Märk, T. An online ultra-high sensitivity proton-transfer-reaction mass-spectrometer combined with switchable reagent ion capability (PTR+SRI−MS). Int. J. Mass Spectrom. 2009, 286, 32–38. [Google Scholar] [CrossRef]
- Lechner, M.; Fille, M.; Hausdorfer, J.; Dierich, M.P.; Rieder, J. Diagnosis of bacteria in vitro by mass spectrometric fingerprinting:A pilot study. Curr. Microbiol. 2005, 51, 267–269. [Google Scholar] [CrossRef]
- Gierschner, P.; Küntzel, A.; Reinhold, P.; Köhler, H.; Schubert, J.K.; Miekisch, W. Crowd monitoring in dairy cattle—Real-time VOC profiling by direct mass spectrometry. J. Breath. Res. 2019, 13, 046006. [Google Scholar] [CrossRef]
- Adams, N.; Smith, D. The selected ion flow tube (SIFT); a technique for studying ion-neutral reactions. Int. J. Mass Spectrom. Ion Phys. 1976, 21, 349–359. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef]
- Van Oort, P.M.; Brinkman, P.; Slingers, G.; Koppen, G.; Maas, A.; Roelofs, J.J.; Schnabel, R.; Bergmans, D.C.; Raes, M.; Goodacre, R. Exhaled breath metabolomics reveals a pathogen-specific response in a rat pneumonia model for two human pathogenic bacteria: A proof-of-concept study. Am. J. Physiol. Lung Cell Mol. Physiol. 2019, 316, L751–L756. [Google Scholar] [CrossRef]
- Lan, J.; Parte, F.B.; Vidal-de-Miguel, G.; Zenobi, R. Secondary electrospray ionization. In Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020; pp. 185–199. [Google Scholar] [CrossRef]
- Sinues, P.M.-L.; Criado, E.; Vidal, G. Mechanistic study on the ionization of trace gases by an electrospray plume. Int. J. Mass Spectrom. 2012, 313, 21–29. [Google Scholar] [CrossRef]
- Law, W.S.; Wang, R.; Hu, B.; Berchtold, C.; Meier, L.; Chen, H.; Zenobi, R. On the mechanism of extractive electrospray ionization. Anal. Chem. 2010, 82, 4494–4500. [Google Scholar] [CrossRef] [PubMed]
- Bean, H.D.; Zhu, J.; Sengle, J.C.; Hill, J.E. Identifying methicillin-resistant Staphylococcus aureus (MRSA) lung infections in mice via breath analysis using secondary electrospray ionization-mass spectrometry (SESI-MS). J. Breath. Res. 2014, 8, 041001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Jimenez-Diaz, J.; Bean, H.D.; Daphtary, N.A.; Aliyeva, M.I.; Lundblad, L.K.; Hill, J.E. Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: From initial infection to clearance. J. Breath. Res. 2013, 7, 037106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Bean, H.D.; Jiménez-Díaz, J.; Hill, J.E. Secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting of multiple bacterial lung pathogens, a mouse model study. J. Appl. Physiol. 2013, 114, 1544–1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bean, H.D.; Jimenez-Diaz, J.; Zhu, J.; Hill, J.E. Breathprints of model murine bacterial lung infections are linked with immune response. Eur. Respir. J. 2015, 45, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.D.; Del Miguel, G.V.; Gaugg, M.T.; Ibañez, A.J.; Zenobi, R.; Kohler, M.; Frey, U.; Sinues, P.M. Translating secondary electrospray ionization–high-resolution mass spectrometry to the clinical environment. J. Breath. Res. 2018, 12, 027113. [Google Scholar] [CrossRef]
- Shurmer, H.V.; Gardner, J.W. Odour discrimination with an electronic nose. Sens. Actuators B Chem. 1992, 8, 1–11. [Google Scholar] [CrossRef]
- Farraia, M.V.; Rufo, J.C.; Paciência, I.; Mendes, F.; Delgado, L.; Moreira, A. The electronic nose technology in clinical diagnosis: A systematic review. Porto Biomed. J. 2019, 4, e42. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Dymerski, T.; Gębicki, J.; Namieśnik, J. Electronic noses in medical diagnostics. Curr. Med. Chem. 2019, 26, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Lin, W.-C.; Yang, H.-Y. Diagnosis of ventilator-associated pneumonia using electronic nose sensor array signals: Solutions to improve the application of machine learning in respiratory research. Respir. Res. 2020, 21, 45. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, W.; Sponring, A.; Baur, M.M.; Filipiak, A.; Ager, C.; Wiesenhofer, H.; Nagl, M.; Troppmair, J.; Amann, A. Molecular analysis of volatile metabolites released specifically by Staphylococcus aureus and Pseudomonas aeruginosa. BMC Microbiol. 2012, 12, 113. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, C.L.; Bean, H.D. Influence of media on the differentiation of Staphylococcus spp. by volatile compounds. J. Breath. Res. 2020, 14, 016007. [Google Scholar] [CrossRef]
- Jenkins, C.L.; Bean, H.D. Dependence of the staphylococcal volatilome composition on microbial nutrition. Metabolites 2020, 10, 347. [Google Scholar] [CrossRef]
- Zechman, J.M.; Aldinger, S.; Labows, J.N., Jr. Characterization of pathogenic bacteria by automated headspace concentration-gas chromatography. J. Chromatogr. 1986, 377, 49–57. [Google Scholar] [CrossRef]
- Dörries, K.; Lalk, M. Metabolic footprint analysis uncovers strain specific overflow metabolism and d-isoleucine production of Staphylococcus aureus COL and HG001. PLoS ONE 2013, 8, e81500. [Google Scholar] [CrossRef] [Green Version]
- Jia, B.; Sohnlein, B.; Mortelmans, K.; Coggiola, M.; Oser, H. Distinguishing methicillin-resistant and sensitive Staphylococcus aureus using volatile headspace metabolites. IEEE Sens. J. 2010, 10, 71–75. [Google Scholar] [CrossRef]
- Allardyce, R.A.; Langford, V.S.; Hill, A.L.; Murdoch, D.R. Detection of volatile metabolites produced by bacterial growth in blood culture media by selected ion flow tube mass spectrometry (SIFT-MS). J. Microbiol. Methods 2006, 65, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Liebeke, M.; Dörries, K.; Zühlke, D.; Bernhardt, J.; Fuchs, S.; Pane-Farre, J.; Engelmann, S.; Völker, U.; Bode, R.; Dandekar, T. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. Mol. Biosyst. 2011, 7, 1241–1253. [Google Scholar] [CrossRef]
- Fitzgerald, S.; Duffy, E.; Holland, L.; Morrin, A. Multi-strain volatile profiling of pathogenic and commensal cutaneous bacteria. Sci. Rep. 2020, 10, 17971. [Google Scholar] [CrossRef] [PubMed]
- Baptista, I.; Santos, M.; Rudnitskaya, A.; Saraiva, J.A.; Almeida, A.; Rocha, S.M. A comprehensive look into the volatile exometabolome of enteroxic and non-enterotoxic Staphylococcus aureus strains. Int. J. Biochem. Cell Biol. 2019, 108, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, S.; Holland, L.; Morrin, A. An investigation of stability and species and strain-level specificity in bacterial volatilomes. Front. Microbiol. 2021, 12, 693075. [Google Scholar] [CrossRef]
- Lu, Y.; Zeng, L.; Li, M.; Yan, B.; Gao, D.; Zhou, B.; Lu, W.; He, Q. Use of GC-IMS for detection of volatile organic compounds to identify mixed bacterial culture medium. AMB Express 2022, 12, 31. [Google Scholar] [CrossRef]
- Muchowska, K.B.; Varma, S.J.; Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 2019, 569, 104–107. [Google Scholar] [CrossRef]
- Allardyce, R.A.; Hill, A.L.; Murdoch, D.R. The rapid evaluation of bacterial growth and antibiotic susceptibility in blood cultures by selected ion flow tube mass spectrometry. Diagn. Microbiol. Infect. Dis. 2006, 55, 255–261. [Google Scholar] [CrossRef]
- Dryahina, K.; Sovova, K.; Nemec, A.; Spanel, P. Differentiation of pulmonary bacterial pathogens in cystic fibrosis by volatile metabolites emitted by their in vitro cultures: Pseudomonas aeruginosa, Staphylococcus aureus, Stenotrophomonas maltophilia and the Burkholderia cepacia complex. J. Breath. Res. 2016, 10, 037102. [Google Scholar] [CrossRef]
- Rees, C.A.; Burklund, A.; Stefanuto, P.H.; Schwartzman, J.D.; Hill, J.E. Comprehensive volatile metabolic fingerprinting of bacterial and fungal pathogen groups. J. Breath. Res. 2018, 12, 026001. [Google Scholar] [CrossRef]
- Dutta, R.; Hines, E.L.; Gardner, J.W.; Boilot, P. Bacteria classification using Cyranose 320 electronic nose. Biomed. Eng. Online 2002, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Saviauk, T.; Kiiski, J.P.; Nieminen, M.K.; Tamminen, N.N.; Roine, A.N.; Kumpulainen, P.S.; Hokkinen, L.J.; Karjalainen, M.T.; Vuento, R.E.; Aittoniemi, J.J. Electronic nose in the detection of wound infection bacteria from bacterial cultures: A proof-of-principle study. European Surgical Research 2018, 59, 1–11. [Google Scholar] [CrossRef]
- Kaeslin, J.; Micic, S.; Weber, R.; Müller, S.; Perkins, N.; Berger, C.; Zenobi, R.; Bruderer, T.; Moeller, A. Differentiation of cystic fibrosis-related pathogens by volatile organic compound analysis with secondary electrospray ionization mass spectrometry. Metabolites 2021, 11, 773. [Google Scholar] [CrossRef]
- Lawal, O.; Muhamadali, H.; Ahmed, W.M.; White, I.R.; Nijsen, T.M.E.; Goodacre, R.; Fowler, S.J. Headspace volatile organic compounds from bacteria implicated in ventilator-associated pneumonia analysed by TD-GC/MS. J. Breath. Res. 2018, 12, 026002. [Google Scholar] [CrossRef] [Green Version]
- Karami, N.; Mirzajani, F.; Rezadoost, H.; Karimi, A.; Fallah, F.; Ghassempour, A.; Aliahmadi, A. Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry. F1000research 2017, 6, 1415. [Google Scholar]
- Ashrafi, M.; Novak-Frazer, L.; Morris, J.; Baguneid, M.; Rautemaa-Richardson, R.; Bayat, A. Electrical stimulation disrupts biofilms in a human wound model and reveals the potential for monitoring treatment response with volatile biomarkers. Wound Repair Regen. 2019, 27, 5–18. [Google Scholar] [CrossRef]
- Ashrafi, M.; Novak-Frazer, L.; Bates, M.; Baguneid, M.; Alonso-Rasgado, T.; Xia, G.; Rautemaa-Richardson, R.; Bayat, A. Validation of biofilm formation on human skin wound models and demonstration of clinically translatable bacteria-specific volatile signatures. Sci. Rep. 2018, 8, 9431. [Google Scholar] [CrossRef] [Green Version]
- Slade, E.A.; Thorn, R.M.; Young, A.E.; Reynolds, D.M. Real-time detection of volatile metabolites enabling species-level discrimination of bacterial biofilms associated with wound infection. J. Appl. Microbiol. 2022, 132, 1558–1572. [Google Scholar] [CrossRef]
- Dolch, M.E.; Hornuss, C.; Klocke, C.; Praun, S.; Villinger, J.; Denzer, W.; Schelling, G.; Schubert, S. Volatile organic compound analysis by ion molecule reaction mass spectrometry for Gram-positive bacteria differentiation. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 3007–3013. [Google Scholar] [CrossRef]
- Lim, S.H.; Mix, S.; Xu, Z.; Taba, B.; Budvytiene, I.; Berliner, A.N.; Queralto, N.; Churi, Y.S.; Huang, R.S.; Eiden, M. Colorimetric sensor array allows fast detection and simultaneous identification of sepsis-causing bacteria in spiked blood culture. J. Clin. Microbiol. 2014, 52, 592–598. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, E.; Wu, X.; Hu, Y.; Ge, H.; Xu, P.; Zou, Y.; Jin, J.; Wang, P.; Ying, K. Rational lung tissue and animal models for rapid breath tests to determine pneumonia and pathogens. Am. J. Transl. Res. 2017, 9, 5116. [Google Scholar] [PubMed]
- Li, H.; Zhu, J. Differentiating antibiotic-resistant Staphylococcus aureus using secondary electrospray ionization tandem mass spectrometry. Anal. Chem. 2018, 90, 12108–12115. [Google Scholar] [CrossRef]
- Schnabel, R.; Fijten, R.; Smolinska, A.; Dallinga, J.; Boumans, M.-L.; Stobberingh, E.; Boots, A.; Roekaerts, P.; Bergmans, D.; van Schooten, F.J. Analysis of volatile organic compounds in exhaled breath to diagnose ventilator-associated pneumonia. Sci. Rep. 2015, 5, 17179. [Google Scholar] [CrossRef] [Green Version]
- Van Oort, P.M.; Nijsen, T.M.; White, I.R.; Knobel, H.H.; Felton, T.; Rattray, N.; Lawal, O.; Bulut, M.; Ahmed, W.; Artigas, A. Untargeted molecular analysis of exhaled breath as a diagnostic test for ventilator-associated lower respiratory tract infections (BreathDx). Thorax 2022, 77, 79–81. [Google Scholar] [CrossRef] [PubMed]
- Filipiak, W.; Beer, R.; Sponring, A.; Filipiak, A.; Ager, C.; Schiefecker, A.; Lanthaler, S.; Helbok, R.; Nagl, M.; Troppmair, J.; et al. Breath analysis for in vivo detection of pathogens related to ventilator-associated pneumonia in intensive care patients: A prospective pilot study. J. Breath. Res. 2015, 9, 016004. [Google Scholar] [CrossRef] [PubMed]
- Preti, G.; Thaler, E.; Hanson, C.W.; Troy, M.; Eades, J.; Gelperin, A. Volatile compounds characteristic of sinus-related bacteria and infected sinus mucus: Analysis by solid-phase microextraction and gas chromatography-mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 2011–2018. [Google Scholar] [CrossRef]
- Neerincx, A.H.; Geurts, B.P.; van Loon, J.; Tiemes, V.; Jansen, J.J.; Harren, F.J.; Kluijtmans, L.A.; Merkus, P.J.; Cristescu, S.M.; Buydens, L.M.; et al. Detection of Staphylococcus aureus in cystic fibrosis patients using breath VOC profiles. J. Breath. Res. 2016, 10, 046014. [Google Scholar] [CrossRef]
- Rogosch, T.; Herrmann, N.; Maier, R.F.; Domann, E.; Hattesohl, A.; Koczulla, A.R.; Zemlin, M. Detection of bloodstream infections and prediction of bronchopulmonary dysplasia in preterm neonates with an electronic nose. J. Pediatr. 2014, 165, 622–624. [Google Scholar] [CrossRef]
- Berkhout, D.J.; Van Keulen, B.J.; Niemarkt, H.J.; Bessem, J.R.; De Boode, W.P.; Cossey, V.; Hoogenes, N.; Hulzebos, C.V.; Klaver, E.; Andriessen, P. Late-onset sepsis in preterm infants can be detected preclinically by fecal volatile organic compound analysis: A prospective, multicenter cohort study. Clin. Infect. Dis. 2019, 68, 70–77. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Lim, S.H.; Wilson, D.A.; SalasVargas, A.V.; Churi, Y.S.; Rhodes, P.A.; Mazzone, P.J.; Procop, G.W. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array. PLoS ONE 2017, 12, e0173130. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.O.; Andriessen, R.; Groenhagen, U.; Bukovinszkine Kiss, G.; Schulz, S.; Takken, W.; van Loon, J.J.; Schraa, G.; Smallegange, R.C. Differential attraction of malaria mosquitoes to volatile blends produced by human skin bacteria. PLoS ONE 2010, 5, e15829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettinga, K.A.; van Valenberg, H.J.; Lam, T.J.; van Hooijdonk, A.C. Detection of mastitis pathogens by analysis of volatile bacterial metabolites. J. Dairy Sci. 2008, 91, 3834–3839. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, K.A.; van Valenberg, H.J.; Lam, T.J.; van Hooijdonk, A.C. The influence of incubation on the formation of volatile bacterial metabolites in mastitis milk. J. Dairy Sci. 2009, 92, 4901–4905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettinga, K.A.; van Valenberg, H.J.; Lam, T.J.; van Hooijdonk, A.C. The origin of the volatile metabolites found in mastitis milk. Vet. Microbiol. 2009, 137, 384–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shinga, M.H. Investigating Alternative Methods to Detect Bovine Mastitis in Milk. Ph.D. Thesis, University of KwaZulu-Natal, Durban, South Africa, 2018. Available online: https://ukzn-dspace.ukzn.ac.za/handle/10413/16792.
- Yuan, B.; Nørstebø, H.; Whist, A.C.; Belbachir, N. Detection of Lameness and Mastitis Pathogens in Milk Using Visual and Olfactory Sensing. 2020. Available online: https://hdl.handle.net/11250/2680881 (accessed on 26 May 2022).
- Wilson, A.D. Applications of electronic-nose technologies for noninvasive early detection of plant, animal and human diseases. Chemosensors 2018, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.; Pleil, J.; Beauchamp, J. Breathborne Biomarkers and the Human Volatilome; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Van Belkum, A.; Burnham, C.-A.D.; Rossen, J.W.; Mallard, F.; Rochas, O.; Dunne, W.M. Innovative and rapid antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2020, 18, 299–311. [Google Scholar] [CrossRef]
- Tibbetts, R.; George, S.; Burwell, R.; Rajeev, L.; Rhodes, P.A.; Singh, P.; Samuel, L. Performance of the reveal rapid antibiotic susceptibility testing system on gram-negative blood cultures at a large urban hospital. J. Clin. Microbiol. 2022, 60, e00098-00022. [Google Scholar] [CrossRef]
- Arnold, C. Diagnostics to take your breath away. Nat. Biotechnol. 2022, 40, 990. [Google Scholar] [CrossRef]
- Rubin, R. First breathalyzer test to diagnose covid-19. JAMA 2022, 327, 1860. [Google Scholar] [CrossRef]
- Kos, R.; Brinkman, P.; Neerincx, A.H.; Paff, T.; Gerritsen, M.G.; Lammers, A.; Kraneveld, A.D.; Heijerman, H.G.; Janssens, H.M.; Davies, J.C. Targeted exhaled breath analysis for detection of Pseudomonas aeruginosa in cystic fibrosis patients. J. Cyst. Fibros. 2022, 21, e28–e34. [Google Scholar] [CrossRef]
IUPAC Name | Common Name | Molecular Formula | MW * | CAS * | KEGG * | References |
---|---|---|---|---|---|---|
acetaldehyde | ethanal | CH3CHO | 44 | 75-07-0 | C00084 | [143,145,148] |
ethanol | ethyl alcohol | C2H6O | 46 | 64-17-5 | C00469 | [143,145,148,150,154] |
methanethiol | methyl mercaptan | CH4S | 48 | 74-93-1 | C00409 | [143,152] |
propan-2-one | acetone | C3H6O | 58 | 67-64-1 | C00207 | [143,145] |
acetic acid | acetic acid | C2H4O2 | 60 | 64-19-7 | C00033 | [143,145,151,153] |
3-methylbutanal | isovaleraldehyde | C5H10O | 86 | 590-86-3 | C07329 | [143,145,148] |
3-hydroxybutan-2-one | acetoin | C4H8O2 | 88 | 513-86-0 | C00466 | [146,147,150,151,153] |
3-methylbutan-1-ol | isoamyl alcohol | C5H12O | 88 | 123-51-3 | C07328 | [143,145,146,150,151,152,153,154] |
(methyldisulfanyl)methane | dimethyl disulfide | C2H6S2 | 94 | 624-92-0 | C08371 | [143,145,146,152] |
3-methylbutanoic acid | isovaleric acid | C5H10O2 | 102 | 503-74-2 | C08262 | [143,145,151,152,153] |
Ref. | VOC Detection Method | Acinetobacter spp. | Acinetobacter baumannii | Burkholderia cepacia complex | Candida spp. | Candida albicans | Citrobacter spp. | Clostridium perfringens | Enterobacter spp. | Enterobacter cloacae | Enterococcus spp. | Escherichia coli | Haemophilus influenzae | Helicobacter pylori | Klebsiella spp. | Klebsiella pneumoniae | Moraxella catarrhalis | Neisseria meningitidis | Proteus mirabilis | Pseudomonas aeruginosa | Staphylococcus epidermidis | Stenotrophomonas maltophilia | Streptococcus spp. | Streptococcus pyogenes |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[126] | PRT-MS | x | x | x | x | x | ||||||||||||||||||
[142] | E-Nose | x | x | x | x | x | x | x | x | |||||||||||||||
[143] | GC-MS | x | ||||||||||||||||||||||
[144] | GC×GC-MS | x | ||||||||||||||||||||||
[145] | GC×GC-MS | x | ||||||||||||||||||||||
[146] | GC-MS | x | x | x | ||||||||||||||||||||
[151] | GC-MS | x | x | x | ||||||||||||||||||||
[153] | GC-MS | x | x | x | ||||||||||||||||||||
[154] | GC-IMS | x | x | |||||||||||||||||||||
[156] | SIFT-MS | x | x | x | x | |||||||||||||||||||
[157] | SIFT-MS | x | x | x | ||||||||||||||||||||
[158] | GC×GC-MS | x | x | x | x | x | x | x | x | |||||||||||||||
[159] | E-Nose | x | x | x | x | x | ||||||||||||||||||
[160] | E-Nose | x | x | x | x | |||||||||||||||||||
[161] | SESI-HRMS | x | x | x | x | x | ||||||||||||||||||
[162] | GC-MS | x | x | x | ||||||||||||||||||||
[163] | GC-MS | x | x | |||||||||||||||||||||
[164] | GC-MS | x | ||||||||||||||||||||||
[165] | GC-MS | x | x | |||||||||||||||||||||
[166] | SIFT-MS | x | x | |||||||||||||||||||||
[167] | IMR-MS * | x | x | |||||||||||||||||||||
[168] | CSA ** | x | x | x | x | x | x | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jenkins, C.L.; Bean, H.D. Current Limitations of Staph Infection Diagnostics, and the Role for VOCs in Achieving Culture-Independent Detection. Pathogens 2023, 12, 181. https://doi.org/10.3390/pathogens12020181
Jenkins CL, Bean HD. Current Limitations of Staph Infection Diagnostics, and the Role for VOCs in Achieving Culture-Independent Detection. Pathogens. 2023; 12(2):181. https://doi.org/10.3390/pathogens12020181
Chicago/Turabian StyleJenkins, Carrie L., and Heather D. Bean. 2023. "Current Limitations of Staph Infection Diagnostics, and the Role for VOCs in Achieving Culture-Independent Detection" Pathogens 12, no. 2: 181. https://doi.org/10.3390/pathogens12020181