Utility of Feathers for Avian Influenza Virus Detection in Commercial Poultry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation for Testing
2.3. RNA Extraction
2.4. Real-Time Reverse Transcription-Polymerase Chain Reaction
2.5. Data Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, I.H. Summary of avian influenza activity in Europe, Asia, and Africa, 2006–2009. Avian Dis. 2010, 54, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Fouchier, R.A.M.; Munster, V.J. Epidemiology of low pathogenic avian influenza viruses in wild birds. Rev. Sci. Tech. Off. Int. Epiz. 2009, 28, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Marchenko, V.Y.; Alekseev, A.Y.; Sharshov, K.A.; Petrov, V.N.; Silko, N.Y.; Susloparov, I.M.; Tserennorov, D.; Otgonbaatar, D.; Savchenko, I.A.; Shestopalov, A.M. Ecology of influenza virus in wild bird populations in Central Asia. Avian Dis. 2012, 56, 234–237. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.B.; Kawaoka, Y.; Jones, D.J.; Bean, W.J.; Pryor, S.P.; Hinshaw, V.; Webster, R.G. Coinfection of wild ducks by influenza A viruses: Distribution patterns and biological significance. J. Virol. 1997, 71, 6128–6135. [Google Scholar] [CrossRef] [PubMed]
- Sharp, G.B.; Kawaoka, Y.; Wright, S.M.; Turner, B.; Hinshaw, V.; Webster, R.G. Wild ducks are the reservoir for only a limited number of influenza A subtypes. Epidemiol. Infect. 1993, 110, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E. Understanding the complex pathobiology of high pathogenicity avian influenza viruses in birds. Avian Dis. 2007, 51, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Ip, H.S.; Torchetti, M.K.; Crespo, R.; Kohrs, P.; DeBruyn, P.; Mansfield, K.G.; Baszler, T.; Badcoe, L.; Bodenstein, B.; Shearn-Bochsler, V.; et al. Novel Eurasian highly pathogenic avian influenza A H5 viruses in wild birds, Washington, USA, 2014. Emerg. Infect. Dis. 2015, 21, 886–890. [Google Scholar] [CrossRef]
- Taubenberger, J.K.; Morens, D.M. H5Nx panzootic bird flu—Influenza’s newest worldwide evolutionary tour. Emerg. Infect. Dis. 2017, 23, 340–342. [Google Scholar] [CrossRef]
- [IDALS] Iowa Department of Agriculture and Land Stewardship. Highly pathogenic avian influenza H4N2 2015. In Animal Industry News; IDALS: Des Moines, IA, USA, 2016. Available online: https://iowaagriculture.gov/sites/default/files/animal-industry/pdf/Newsletter/2016FinalNewsletter.pdf (accessed on 29 June 2017).
- [CIDRP] Centre for Infectious Disease Research and Policy. Report Finds $1.2 Billion in Iowa Avian Flu Damage; CIDRP: Minneapolis, MN, USA, 2015; Available online: http://www.cidrap.umn.edu/news-perspective/2015/08/report-finds-12-billion-iowa-avian-flu-damage (accessed on 1 October 2017).
- Youk, S.; Lee, D.H.; Killian, M.L.; Pantin-Jackwood, M.J.; Swayne, D.E.; Torchetti, M.K. Highly Pathogenic Avian Influenza A(H7N3) Virus in Poultry, United States, 2020. Emerg Infect Dis. 2020, 26, 2966–2969. [Google Scholar] [CrossRef]
- Puryear, W.; Sawatzki, K.; Hill, N.; Foss, A.; Stone, J.J.; Doughty, L.; Walk, D.; Gilbert, K.; Murray, M.; Cox, E.; et al. Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States. Emerg Infect Dis. 2023, 29, 786–791. [Google Scholar] [CrossRef]
- [USDA APHIS]. United Stated Department of Agriculture Animal and Plant Health Inspection Agency. National Poultry Improvement Plan and Auxiliary Provisions. In Federal Register; National Archives and Records Administration: Washington, DC, USA, 2020. Available online: https://www.federalregister.gov/documents/2020/10/05/2020-21798/national-poultry-improvement-plan-and-auxilliary-provisions (accessed on 3 December 2020).
- [NPIP] National Poultry Improvement Plan. National Poultry Improvement Plan and Auxiliary Provisions 2018; U.S. Poultry & Egg Association: Conyers, GA, USA; Available online: https://www.poultryimprovement.org/documents/AuxiliaryProvisions07252018.pdf (accessed on 29 November 2020).
- [USDA-APHIS-VS] United Stated Department of Agriculture-Animal and Plant Health Inspection Agency-Veterinary Services. Highly Pathogenic Avian Influenza Response Plan, the Red Book, Foreign Animal Disease Preparedness & Resposne Plan; USDA-APHIS-VS: Washington, DC, USA, 2017. Available online: https://www.aphis.usda.gov/animal_health/emergency_management/downloads/hpai_response_plan.pdf (accessed on 29 November 2020).
- Alexander, D.J. A review of avian influenza in different bird species. Vet. Microbiol. 2000, 74, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Sims, L.D.; Domenech, J.; Benigno, C.; Kahn, S.; Kamata, A.; Lubroth, J.; Martin, V.; Roeder, P. Origin and evolution of highly pathogenic H5N1 avian influenza in Asia. Vet. Rec. 2005, 157, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.S.; Kelly, A.; Runstadler, J.A. Prevalence and diversity of avian influenza viruses in environmental reservoirs. J. Gen. Virol. 2008, 89, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Leung, Y.C.; Zhang, L.J.; Chow, C.K.; Tsang, C.L.; Ng, C.F.; Wong, C.K.; Guan, Y.; Peiris, J.M. Poultry drinking water used for avian influenza surveillance. Emerg. Infect. Dis. 2007, 13, 1380–1382. [Google Scholar] [CrossRef] [PubMed]
- Hood, G.; Roche, X.; Brioudes, A.; von Dobschuetz, S.; Fasina, F.O.; Kalpravidh, W.; Makonnen, Y.; Lubroth, J.; Sims, L. A literature review of the use of environmental sampling in the surveillance of avian influenza viruses. Transound. Emerg. Dis. 2020, 68, 110–126. [Google Scholar] [CrossRef]
- Brugh, M.; Johnson, D.C. Epidemiology of Avian Influenza in Domestic Poultry. Avian Dis. 2003, 47, 177–186. [Google Scholar]
- Muñoz-Aguayo, J.; Flores-Figueroa, C.; VanBeusekom, E.; McComb, B.; Wileman, B.; Anderson, J.; Halvorson, D.A.; Kromm, M.; Lauer, D.; Marusak, R.; et al. Environmental Sampling for influenza A viruses in turkey barns. Avian Dis. 2018, 63, 17–23. [Google Scholar] [CrossRef]
- Scoizec, A.; Niqueux, E.; Thomas, R.; Daniel, P.; Schmitz, A.; Le Bouquin, S. Airborne detection of H5N8 highly pathogenic avian influenza virus genome in poultry farms, France. Front. Vet. Sci. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Azeem, S.; Gauger, P.; Sato, Y.; Baoqing, G.; Wolc, A.; Carlson, J.; Harmon, K.; Zhang, J.; Hoang, H.; Yuan, J.; et al. Environmental Sampling for Avian Influenza Virus Detection in Commercial Layer Facilities. Avian Dis. 2022, 65, 391–400. [Google Scholar] [CrossRef]
- Nazir, J.; Haumacher, R.; Ike, A.C.; Marschang, R.E. Persistence of avian influenza viruses in lake sediment, duck feces, and duck meat. Appl. Environ. Microbiol. 2011, 77, 4981–4985. [Google Scholar] [CrossRef]
- Busquets, N.; Abad, F.X.; Alba, A.; Dolz, R.; Allepuz, A.; Rivas, R.; Ramis, A.; Darji, A.; Majo, N. Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: Feather as a suitable sample for diagnosis. J. Gen. Virol. 2010, 91, 2307–2313. [Google Scholar] [CrossRef] [PubMed]
- Lebarbenchon, C.; Poulson, R.; Shannon, K.; Slagter, J.; Slusher, M.J.; Wilcox, B.R.; Berdeen, J.; Knutsen, G.A.; Cardona, C.J.; Stallknecht, D.E. Isolation of influenza A viruses from wild ducks and feathers in Minnesota (2010–2011). Avian Dis. 2013, 57, 677–680. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.; BMishra, Y.S.; Kim, R.J. Practices and issues of moulting programs for laying hens: A review. Br. Poult. Sci. 2022, 63, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Delius, J.D. Preening and associated comfort behavior in birds. Ann. N. Y. Acad. Sci. 1988, 525, 40–55. [Google Scholar] [CrossRef] [PubMed]
- Blokhuis, H.J.; Wiepkema, P.R. Studies of feather pecking in poultry. Vet. Q. 1998, 20, 6–9. [Google Scholar] [CrossRef] [PubMed]
- Swayne, D.E.; Halvorson, D.A. Influenza in Diseases of Poultry, 12th ed.; Saif, Y.M., Ed.; Blackwell Publishing: Oxford, UK, 2008; p. 165. [Google Scholar]
- Delogu, M.; De Marco, M.A.; Di Trani, L.; Raffini, E.; Cotti, C.; Puzelli, S.; Ostanello, F.; Webster, R.G.; Cassone, A.; Donatelli, I. Can Preening Contribute to Influenza A Virus Infection in Wild Waterbirds? PLoS ONE 2010, 5, e11315. [Google Scholar] [CrossRef] [PubMed]
- Karunakaran, A.C.; Murugkar, H.V.; Kumar, M.; Nagarajan, S.; Tosh, C.; Pathak, A.; Mekhemadhom Rajendrakumar, A.; Agarwal, R.K. Survivability of highly pathogenic avian influenza virus (H5N1) in naturally preened duck feathers at different temperatures. Transbound. Emerg. Dis. 2019, 66, 1306–1313. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.A. Avian Bill-Wiping. Wilson Bull. 1970, 82, 279–288. [Google Scholar]
- Nuradji, H.; Bingham, J.; Payne, J.; Harper, J.; Lowther, S.; Wibawa, H.; Long, N.T.; Meers, J. Highly pathogenic avian influenza (H5N1) virus in feathers: Tropism and pathology of virus-infected feathers of infected ducks and chickens. Vet. Pathol. 2017, 54, 226–233. [Google Scholar] [CrossRef]
- Nuradji, H.; Bingham, J.; Lowther, S.; Wibawa, H.; Colling, A.; Long, N.T.; Meers, J. A comparative evaluation of feathers, oropharyngeal swabs, and cloacal swabs for the detection of H5N1 highly pathogenic avian influenza virus infection in experimentally infected chickens and ducks. J. Vet. Diagn. Investig. 2015, 27, 704–715. [Google Scholar] [CrossRef]
- Ma, M.J.; Yang, X.X.; Xia, X.; Anderson, B.D.; Heil, G.L.; Qian, Y.H.; Lu, B.; Cao, W.C.; Gray, G.C. Comparison of commercial influenza A virus assays in detecting avian influenza H7N9 among poultry cloacal swabs, China. J. Clin. Virol. 2014, 59, 242–245. [Google Scholar] [CrossRef] [PubMed]
- [WOAH] World Organisation for Animal Health. Validation of Diagnostic Assays for Infectious Diseases of Terrestrial Animals in WOAH Terrestrial Manual; World Organisation for Animal Health: Paris, France, 2023; Available online: https://www.woah.org/fileadmin/Home/fr/Health_standards/tahm/1.01.06_VALIDATION.pdf (accessed on 25 August 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.r-project.org/ (accessed on 6 March 2017).
- Bryan, M.; Zimmerman, J.J.; Berry, W.J. The use of half-lives and associated confidence intervals in biological research. Vet. Res. Commun. 1990, 14, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, G.J.; Leclerc, G.M.; Barredo, J.C. Real-time RT-PCR analysis of mRNA decay: Half-life of Beta-actin mRNA in human leukemia CCRF-CEM and Nalm-6 cell lines. Cancer Cell Int. 2002, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Nakamura, K.; Yamada, M.; Mase, M. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks. Appl. Environ. Microbiol. 2010, 76, 5496–5499. [Google Scholar] [CrossRef] [PubMed]
- Germeraad, E.A.; Sanders, P.; Hagenaars, T.J.; Jong, M.C.M.; Beerens, N.; Gonzales, J.L. Virus Shedding of Avian Influenza in Poultry: A Systematic Review and Meta-Analysis. Viruses 2019, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Aiello, R.; Beato, M.S.; Mancin, M.; Rigoni, M.; Tejeda, A.R.; Maniero, S.; Capua, I.; Terregino, C. Differences in the detection of highly pathogenic avian influenza H5N1 virus in feather samples from 4-week-old and 24-week-old infected Pekin ducks (Anas platyrhynchos var. domestica). Vet. Microbiol. 2013, 165, 443–447. [Google Scholar] [CrossRef]
- Gaide, N.; Foret-Lucas, C.; Figueroa, T.; Vergne, T.; Lucas, M.N.; Robertet, L.; Souvestre, M.; Croville, G.; Le Loc’h, G.; Delverdier, M.; et al. Viral tropism and detection of clade 2.3.4.4b H5N8 highly pathogenic avian influenza viruses in feathers of ducks and geese. Sci. Rep. 2021, 11, 5928. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakamura, K.; Okamatsu, M.; Miyazaki, A.; Yamada, M.; Mase, M. Detecting Avian Influenza Virus (H5N1) in Domestic Duck Feathers. Emerg. Infect. Dis. 2008, 14, 1671–1672. [Google Scholar] [CrossRef]
- Spickler, A.R.; Trampel, D.W.; Roth, J.A. The onset of virus shedding and clinical signs in chickens infected with high-pathogenicity and low-pathogenicity avian influenza viruses. Avian Pathol. 2008, 37, 555–577. [Google Scholar] [CrossRef]
Sample | Expected AIV Titer (EID50/mL) in Virus-Spiked Sample | |||||
---|---|---|---|---|---|---|
106 | 105 | 104 | 103 | 102 | 101 | |
Feather eluate A | 4.51 B | 3.29 | 2.46 | 1.05 | 0 | 0 |
Dulbecco’s modified Eagle’s media | 6.21 | 4.96 | 3.76 | 2.72 | 1.65 | 0.48 |
Temperature (°C) | Matrix | AIV Titer (EID50/mL or EID50/g) Expected in Each of the Virus-Spiked Samples | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 h | 24 h | ||||||||||||||
106 | 105 | 104 | 103 | 102 | 101 | 100 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | ||
−20 | DMEM | 3/3 A | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 |
4 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 1/3 | ||||||||
22 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 | ||||||||
37 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 | ||||||||
−20 | Feather eluates B | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 1/3 | 0/3 |
4 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 0/3 | 0/3 | ||||||||
22 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 0/3 | 0/3 | ||||||||
37 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 1/3 | 0/3 | ||||||||
48 h | 72 h | ||||||||||||||
106 | 105 | 104 | 103 | 102 | 101 | 100 | 106 | 105 | 104 | 103 | 102 | 101 | 100 | ||
−20 | DMEM | 3/3 | 3/3 | 2/3 | 3/3 | 3/3 | 2/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 |
4 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 1/3 | |
22 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 0/3 | |
37 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 1/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 | |
−20 | Feather eluates | 3/3 | 2/3 | 2/3 | 3/3 | 0/3 | 0/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 1/3 | 0/3 |
4 | 3/3 | 3/3 | 3/3 | 1/3 | 2/3 | 0/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 0/3 | 0/3 | 0/3 | |
22 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 1/3 | 1/3 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 0/3 | 1/3 | |
37 | 3/3 | 3/3 | 3/3 | 3/3 | 1/3 | 1/3 | 0/3 | 3/3 | 3/3 | 3/3 | 3/3 | 2/3 | 0/3 | 0/3 |
Sample Matrix | Incubation Temperatures (°C) | |||
---|---|---|---|---|
37 | 22 | 4 | −20 | |
DMEM | 63.34 A (46.60, 98.83) B | ∞ C | ∞ | ∞ |
Feather eluate | ∞ | ∞ | ∞ | ∞ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azeem, S.; Guo, B.; Sato, Y.; Gauger, P.C.; Wolc, A.; Yoon, K.-J. Utility of Feathers for Avian Influenza Virus Detection in Commercial Poultry. Pathogens 2023, 12, 1425. https://doi.org/10.3390/pathogens12121425
Azeem S, Guo B, Sato Y, Gauger PC, Wolc A, Yoon K-J. Utility of Feathers for Avian Influenza Virus Detection in Commercial Poultry. Pathogens. 2023; 12(12):1425. https://doi.org/10.3390/pathogens12121425
Chicago/Turabian StyleAzeem, Shahan, Baoqing Guo, Yuko Sato, Phillip C. Gauger, Anna Wolc, and Kyoung-Jin Yoon. 2023. "Utility of Feathers for Avian Influenza Virus Detection in Commercial Poultry" Pathogens 12, no. 12: 1425. https://doi.org/10.3390/pathogens12121425