Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Committee
2.2. Brucella Isolates
2.3. Brucella Isolation, Biotyping, and Molecular Confirmation
2.4. Antibiotic Susceptibility Testing (AST)
2.5. WGS and in Silico Detection of AMR and Virulence-Associated Genes
3. Results
3.1. Brucella Identification and Characterization
3.2. Phenotypic AMR Profiles of Brucella Strains
3.3. Whole-Genome Sequencing and Data Availability
3.4. In Silico Identification of AMR and Virulence-Associated Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghanbari, M.K.; Gorji, H.A.; Behzadifar, M.; Sanee, N.; Mehedi, N.; Bragazzi, N.L. One health approach to tackle brucellosis: A systematic review. Trop. Med. Health 2020, 48, 86. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Fakhri, Y.; Shahali, Y.; Mousavi Khaneghah, A. Contamination of milk and dairy products by Brucella species: A global systematic review and meta-analysis. Food Res. Int. 2020, 128, 108775. [Google Scholar] [CrossRef] [PubMed]
- Memish, Z.A.; Balkhy, H.H. Brucellosis and international travel. J. Travel Med. 2004, 11, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hull, N.C.; Schumaker, B.A. Comparisons of brucellosis between human and veterinary medicine. Infect. Ecol. Epidemiol. 2018, 8, 1500846. [Google Scholar] [CrossRef] [PubMed]
- Richomme, C.; Gauthier, D.; Fromont, E. Contact rates and exposure to inter-species disease transmission in mountain ungulates. Epidemiol. Infect. 2006, 134, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Corbel, M.J. Brucellosis in Humans and Animals; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Biswas, S.; Raoult, D.; Rolain, J.-M. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int. J. Antimicrob. Agents 2008, 32, 207–220. [Google Scholar] [CrossRef]
- Abdel-Maksoud, M.; House, B.; Wasfy, M.; Abdel-Rahman, B.; Pimentel, G.; Roushdy, G.; Dueger, E. In vitro antibiotic susceptibility testing of Brucella isolates from Egypt between 1999 and 2007 and evidence of probable rifampin resistance. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 24. [Google Scholar] [CrossRef] [Green Version]
- Etiz, P.; Kibar, F.; Ekenoglu, Y.; Yaman, A. Characterization of antibiotic susceptibility of Brucella spp isolates with E-Test method. Arch. Clin. Microbiol. 2015, 6, 1–5. [Google Scholar]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 2–4. [Google Scholar] [CrossRef] [Green Version]
- Alamian, S.; Dadar, M.; Wareth, G. Role of Brucella abortus Biovar 3 in the Outbreak of Abortion in a Dairy Cattle Herd Immunized with Brucella abortus Iriba Vaccine. Arch. Razi Inst. 2020, 75, 377–384. [Google Scholar]
- Razzaghi, R.; Rastegar, R.; Momen-Heravi, M.; Erami, M.; Nazeri, M. Antimicrobial susceptibility testing of Brucella melitensis isolated from patients with acute brucellosis in a centre of Iran. Indian J. Med. Microbiol. 2016, 34, 342–345. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Bazrgari, N.; Garosi, G.A.; Hassan, S. Investigation of Mutations in the Rifampin-Resistance-Determining Region of the rpoB Gene of Brucella melitensis by Gene Analysis. Jundishapur J. Microbiol. 2021, 14, e115526. [Google Scholar] [CrossRef]
- Hashim, R.; Ahmad, N.; Zahidi, M.; Tay, B.; Mohd Noor, A.; Zainal, S.; Hamzah, H.; Hamzah, S.; Chow, T.; Wong, P. Identification and in vitro antimicrobial susceptibility of Brucella species isolated from human brucellosis. Int. J. Microbiol. 2014, 2014, 596245. [Google Scholar] [CrossRef] [Green Version]
- Baykam, N.; Esener, H.; Ergönül, Ö.; Eren, Ş.; Çelïkbas, A.K.; Dokuzoǧuz, B. In vitro antimicrobial susceptibility of Brucella species. Int. J. Antimicrob. Agents 2004, 23, 405–407. [Google Scholar] [CrossRef]
- Siengsanan-Lamont, J.; Blacksell, S.D. A review of laboratory-acquired infections in the Asia-Pacific: Understanding risk and the need for improved biosafety for veterinary and zoonotic diseases. Trop. Med. Infect. Dis. 2018, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Dadar, M.; Shahali, Y.; Fakhri, Y. Brucellosis in Iranian livestock: A meta-epidemiological study. Microb. Pathog. 2021, 155, 104921. [Google Scholar] [CrossRef] [PubMed]
- Dadar, M.; Wareth, G.; Neubauer, H. Brucellosis in Iranian buffalo: Prevalence and diagnostic methods. Ger. J. Vet. Res 2021, 1, 13–16. [Google Scholar] [CrossRef]
- Dadar, M.; Alamian, S.; Behrozikhah, A.M.; Yazdani, F.; Kalantari, A.; Etemadi, A.; Whatmore, A.M. Molecular identification of Brucella species and biovars associated with animal and human infection in Iran. Vet. Res. Forum. 2019, 10, 315–321. [Google Scholar] [PubMed]
- Alavi, S.M.; Alavi, S.M.R.; Alavi, L. Relapsed human brucellosis and related risk factors. Pak. J. Med. Sci. 2009, 25, 46–50. [Google Scholar]
- Hadadi, A.; Rasoulinejad, M.; HajiAbdolbaghi, M.; Mohraz, M.; Khashayar, P. Clinical profile and management of brucellosis in Tehran–Iran. Acta Clin. Belg. 2009, 64, 11–15. [Google Scholar] [CrossRef]
- Sasan, M.-S.; Nateghi, M.; Bonyadi, B.; Aelami, M.-H. Clinical features and long term prognosis of childhood brucellosis in northeast Iran. Iran. J. Pediatr. 2012, 22, 319. [Google Scholar] [PubMed]
- Alamian, S.; Dadar, M.; Etemadi, A.; Afshar, D.; Alamian, M.M. Antimicrobial susceptibility of Brucella spp. isolated from Iranian patients during 2016 to 2018. Iran. J. Microbiol. 2019, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-T.; Wang, C.-L.; Liu, L.-N.; Wang, D.; Li, D.; Li, Z.-J.; Liu, Z.-G. Epidemiologically characteristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in Hinggan League of the Inner Mongolia Autonomous Region, China. Infect. Dis. Poverty 2020, 9, 79. [Google Scholar] [CrossRef]
- Skalsky, K.; Skalsky, K.; Yahav, D.; Bishara, J.; Pitlik, S.; Leibovici, L.; Paul, M. Treatment of human brucellosis: Systematic review and meta-analysis of randomised controlled trials. BMJ 2008, 336, 701–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Awwad, E.; Adwan, K.; Farraj, M.; Essawi, T.; Rumi, I.; Manasra, A.; Baraitareanu, S.; Gurau, M.R.; Danes, D. Cell envelope virulence genes among field strains of Brucella melitensis isolated in West Bank part of Palestine. Agric. Agric. Sci. Procedia 2015, 6, 281–286. [Google Scholar]
- Wareth, G.; El-Diasty, M.; Abdel-Hamid, N.H.; Holzer, K.; Hamdy, M.E.; Moustafa, S.; Shahein, M.A.; Melzer, F.; Beyer, W.; Pletz, M.W. Molecular characterization and antimicrobial susceptibility testing of clinical and non-clinical Brucella melitensis and Brucella abortus isolates from Egypt. One Health 2021, 13, 100255. [Google Scholar] [CrossRef]
- Johansen, T.B.; Scheffer, L.; Jensen, V.K.; Bohlin, J.; Feruglio, S.L. Whole-genome sequencing and antimicrobial resistance in Brucella melitensis from a Norwegian perspective. Sci. Rep. 2018, 8, 8538. [Google Scholar] [CrossRef]
- Alton, G.; Jones, L.; Angus, R.; Verger, J. Techniques for the Brucellosis laboratory Paris Institute National de la Recherdie Agrononique. J. Clin. Microbiol. 1988, 33, 3198–3200. [Google Scholar]
- Ewalt, D.R.; Bricker, B.J. Validation of the Abbreviated BrucellaAMOS PCR as a Rapid Screening Method for Differentiation ofBrucella abortus Field Strain Isolates and the Vaccine Strains, 19 and RB51. J. Clin. Microbiol. 2000, 38, 3085–3086. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Goñi, I.; Garcia-Yoldi, D.; Marin, C.; De Miguel, M.; Munoz, P.; Blasco, J.; Jacques, I.; Grayon, M.; Cloeckaert, A.; Ferreira, A. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J. Clin. Microbiol. 2008, 46, 3484–3487. [Google Scholar] [CrossRef] [Green Version]
- Asadi, F.T.; Hashemi, S.H.; Alikhani, M.Y.; Moghimbeigi, A.; Naseri, Z. Clinical and diagnostic aspects of brucellosis and antimicrobial susceptibility of Brucella isolates in Hamedan, Iran. Jpn. J. Infect. Dis. 2017, 70, 235–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooke, R.; Perrett, L. Antimicrobial susceptibility data for Brucella melitensis isolates cultured from UK patients. J. Infect. 2014, 68, 401. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, M.P.; Lewis, J.S. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: Background, organization, functions, and processes. J. Clin. Microbiol. 2020, 58, e01864-19. [Google Scholar] [CrossRef] [PubMed]
- Pauletti, R.B.; Stynen, A.P.R.; da Silva Mol, J.P.; Dorneles, E.M.S.; Alves, T.M.; Souto, M.d.S.M.; Minharro, S.; Heinemann, M.B.; Lage, A.P. Reduced susceptibility to Rifampicin and resistance to multiple antimicrobial agents among Brucella abortus isolates from cattle in Brazil. PLoS ONE 2015, 10, e0132532. [Google Scholar]
- Wayne, P. Clinical and laboratory standards institute. Perform. Stand. Antimicrob. Susceptibility Test. 2007, 17, 100–121. [Google Scholar]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2016, 45, gkw1004. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Haft, D.H.; Prasad, A.B.; Slotta, D.J.; Tolstoy, I.; Tyson, G.H.; Zhao, S.; Hsu, C.-H.; McDermott, P.F. Validating the AMRFinder tool and resistance gene database by using antimicrobial resistance genotype-phenotype correlations in a collection of isolates. Antimicrob. Agents Chemother. 2019, 63, e00483-19. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Bagheri Nejad, R.; Krecek, R.C.; Khalaf, O.H.; Hailat, N.; Arenas-Gamboa, A.M. Brucellosis in the Middle East: Current situation and a pathway forward. PLoS Negl. Trop. Dis. 2020, 14, e0008071. [Google Scholar] [CrossRef] [PubMed]
- Wareth, G.; El-Diasty, M.; Melzer, F.; Schmoock, G.; Moustafa, S.A.; El-Beskawy, M.; Khater, D.F.; Hamdy, M.E.R.; Zaki, H.M.; Ferreira, A.C.; et al. MLVA-16 Genotyping of Brucella abortus and Brucella melitensis Isolates from Different Animal Species in Egypt: Geographical Relatedness and the Mediterranean Lineage. Pathogens 2020, 9, 498. [Google Scholar] [CrossRef]
- El-Diasty, M.; Salah, K.; El-Hofy, F.I.; Abd El Tawab, A.A.; Soliman, E.A. Investigation of an outbreak of brucellosis in a mixed dairy farm and evaluation of a test and slaughter strategy to release the herd out of the quarantine. Ger. J. Vet. Res. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Georgi, E.; Walter, M.C.; Pfalzgraf, M.-T.; Northoff, B.H.; Holdt, L.M.; Scholz, H.C.; Zoeller, L.; Zange, S.; Antwerpen, M.H. Whole genome sequencing of Brucella melitensis isolated from 57 patients in Germany reveals high diversity in strains from Middle East. PLoS ONE 2017, 12, e0175425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, J.T.; Beckstrom-Sternberg, S.M.; Pearson, T.; Beckstrom-Sternberg, J.S.; Chain, P.S.; Roberto, F.F.; Hnath, J.; Brettin, T.; Keim, P. Whole-genome-based phylogeny and divergence of the genus Brucella. J. Bacteriol. 2009, 191, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- El-Diasty, M.; Wareth, G.; Melzer, F.; Mustafa, S.; Sprague, L.D.; Neubauer, H. Isolation of Brucella abortus and Brucella melitensis from Seronegative Cows is a Serious Impediment in Brucellosis Control. Vet. Sci. 2018, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Musallam, I.; Abo-Shehada, M.; Hegazy, Y.; Holt, H.; Guitian, F. Systematic review of brucellosis in the Middle East: Disease frequency in ruminants and humans and risk factors for human infection. Epidemiol. Infect. 2016, 144, 671–685. [Google Scholar] [CrossRef] [PubMed]
- El-Hady, A.M.; Sayed-Ahmed, M.; Saleh, M.E.; Younis, E.E. Seroprevalence and molecular epidemiology of brucellosis in cattle in Egypt. Adv. Dairy Res. 2016, 4, 1–4. [Google Scholar]
- Kolo, F.B.; Fasina, F.O.; Ledwaba, B.; Glover, B.; Dogonyaro, B.B.; van Heerden, H.; Adesiyun, A.A.; Katsande, T.C.; Matle, I.; Gelaw, A.K. Isolation of Brucella melitensis from cattle in South Africa. Vet. Rec. 2018, 182, 668. [Google Scholar] [CrossRef]
- Zowghi, E.; Ebadi, A.; Yarahmadi, M. Isolation and identification of Brucella organisms in Iran. Iran. J. Clin. Infect. Dis. 2008, 3, 185–188. [Google Scholar]
- Jiang, H.; Fan, M.; Chen, J.; Mi, J.; Yu, R.; Zhao, H.; Piao, D.; Ke, C.; Deng, X.; Tian, G. MLVA genotyping of Chinese human Brucella melitensis biovar 1, 2 and 3 isolates. BMC Microbiol. 2011, 11, 256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, P.; Yang, H.; Di, D.; Piao, D.; Zhang, Q.; Hao, R.; Yao, S.; Zhao, R.; Zhang, F.; Tian, G. Genotyping of human Brucella melitensis biovar 3 isolated from Shanxi Province in China by MLVA16 and HOOF. PLoS ONE 2015, 10, e0115932. [Google Scholar] [CrossRef]
- Zhong, Z.; Yu, S.; Wang, X.; Dong, S.; Xu, J.; Wang, Y.; Chen, Z.; Ren, Z.; Peng, G. Human brucellosis in the People’s Republic of China during 2005–2010. Int. J. Infect. Dis. 2013, 17, e289–e292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanjani, R.M.; ESMAEILNEZHAD, G.S.; Janmohammadi, N. Update on the treatment of adult cases of human brucellosis. Iran. J. Clin. Infect. Dis. 2008, 3, 167–173. [Google Scholar]
- Alavi, S.M.; Alavi, L. Treatment of brucellosis: A systematic review of studies in recent twenty years. Casp. J. Intern. Med. 2013, 4, 636. [Google Scholar]
- Roushan, M.R.H.; Baiani, M.; Asnafi, N.; Saedi, F. Outcomes of 19 pregnant women with brucellosis in Babol, northern Iran. Trans. R. Soc. Trop. Med. Hyg. 2011, 105, 540–542. [Google Scholar] [CrossRef]
- Bosilkovski, M.; Arapović, J.; Keramat, F. Human brucellosis in pregnancy-an overview. Bosn. J. Basic Med. Sci. 2020, 20, 415–422. [Google Scholar] [CrossRef]
- Dal, T.; Durmaz, R.; Ceylan, A.; Bacalan, F.; Karagoz, A.; Celebi, B.; Yasar, E.; Kilic, S.; Acikgoz, C. Molecular investigation of the transmission dynamics of brucellosis observed among children in the province of South-East Anatolia, Turkey. Jundishapur J. Microbiol. 2018, 11, e58857. [Google Scholar] [CrossRef] [Green Version]
- Qadri, H.; Ueno, Y. Susceptibility of Brucella melitensis to the new fluoroquinolone PD 131628: Comparison with other drugs. Chemotherapy 1993, 39, 128–131. [Google Scholar] [CrossRef]
- Liu, Z.G.; Di, D.D.; Wang, M.; Liu, R.H.; Zhao, H.Y.; Piao, D.R.; Zhao, Z.Z.; Hao, Y.Q.; Du, Y.N.; Jiang, H.; et al. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Ulanqab of Inner Mongolia, China. BMC Infect. Dis. 2018, 18, 43. [Google Scholar] [CrossRef] [Green Version]
- Wareth, G.; Dadar, M.; Ali, H.; Hamdy, M.E.R.; Al-Talhy, A.M.; Elkharsawi, A.R.; Tawab, A.; Neubauer, H. The perspective of antibiotic therapeutic challenges of brucellosis in the Middle East and North African countries: Current situation and therapeutic management. Transbound. Emerg. Dis. 2022, 69, e1253–e1268. [Google Scholar] [CrossRef]
- Farazi, A.; Hoseini, S.; Ghaznavirad, E.; Sadekhoo, S. Antibiotic Susceptibility of Brucella Melitensis in Markazi Province of Iran. Int. J. Infect. Dis. 2018, 73, 124. [Google Scholar] [CrossRef]
- Al Shaalan, M.; Memish, Z.A.; Al Mahmoud, S.; Alomari, A.; Khan, M.Y.; Almuneef, M.; Alalola, S. Brucellosis in children: Clinical observations in 115 cases. Int. J. Infect. Dis. 2002, 6, 182–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deshmukh, A.; Hagen, F.; Al Sharabasi, O.; Abraham, M.; Wilson, G.; Doiphode, S.; Al Maslamani, M.; Meis, J.F. In vitro antimicrobial susceptibility testing of human Brucella melitensis isolates from Qatar between 2014–2015. BMC Microbiol. 2015, 15, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parlak, M.; Güdücüoğlu, H.; Bayram, Y.; Çıkman, A.; Aypak, C.; Kılıç, S.; Berktaş, M. Identification and determination of antibiotic susceptibilities of Brucella strains isolated from patients in van, Turkey by conventional and molecular methods. Int. J. Med. Sci. 2013, 10, 1406. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.; Alikhani, M.-Y.; Asadi, F.T.; Naseri, Z. Antibiotic susceptibility pattern of Brucella melitensis clinical isolates in Hamedan, West of Iran. Int. J. Infect. Dis. 2016, 45, 91–92. [Google Scholar] [CrossRef] [Green Version]
- Irajian, G.R.; Jazi, F.M.; Mirnejad, R.; Piranfar, V. Species-specific PCR for the diagnosis and determination of antibiotic susceptibilities of brucella strains isolated from Tehran, Iran. Iran. J. Pathol. 2016, 11, 238. [Google Scholar]
- Nishi, H.; Komatsuzawa, H.; Fujiwara, T.; McCallum, N.; Sugai, M. Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob. Agents Chemother. 2004, 48, 4800–4807. [Google Scholar] [CrossRef] [Green Version]
- Martin, F.A.; Posadas, D.M.; Carrica, M.C.; Cravero, S.L.; O’Callaghan, D.; Zorreguieta, A. Interplay between two RND systems mediating antimicrobial resistance in Brucella suis. J. Bacteriol. 2009, 191, 2530–2540. [Google Scholar] [CrossRef] [Green Version]
- Wareth, G.; Neubauer, H.; Sprague, L.D. A silent network’s resounding success: How mutations of core metabolic genes confer antibiotic resistance. Signal Transduct. Target. Ther. 2021, 6, 301. [Google Scholar] [CrossRef]
- Liu, Z.G.; Cao, X.A.; Wang, M.; Piao, D.R.; Zhao, H.Y.; Cui, B.Y.; Jiang, H.; Li, Z.J. Whole-genome sequencing of a Brucella melitensis strain (BMWS93) isolated from a bank clerk and exhibiting complete resistance to rifampin. Microbiol. Resour. Announc. 2019, 8, e01645-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, B.; Singh, K.; Singh, S.; Agrawal, R.; Agri, H. Antimicrobial susceptibility pattern of Brucella Isolates from abortion cases in animals in Northern India. Austin J. Vet. Sci. Anim. Husb. 2019, 6, 1062. [Google Scholar]
- Głowacka, P.; Żakowska, D.; Naylor, K.; Niemcewicz, M.; Bielawska-Drózd, A. Brucella-virulence factors, pathogenesis and treatment. Pol. J. Microbiol. 2018, 67, 151–161. [Google Scholar] [CrossRef]
- Hashemifar, I.; Yadegar, A.; Jazi, F.M.; Amirmozafari, N. Molecular prevalence of putative virulence-associated genes in Brucella melitensis and Brucella abortus isolates from human and livestock specimens in Iran. Microb. Pathog. 2017, 105, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Naseri, Z.; Alikhani, M.Y.; Hashemi, S.H.; Kamarehei, F.; Arabestani, M.R. Prevalence of the most common virulence-associated genes among Brucella Melitensis isolates from human blood cultures in Hamadan Province, West of Iran. Iran. J. Med. Sci. 2016, 41, 422. [Google Scholar]
- Mirnejad, R.; Jazi, F.M.; Mostafaei, S.; Sedighi, M. Molecular investigation of virulence factors of Brucella melitensis and Brucella abortus strains isolated from clinical and non-clinical samples. Microb. Pathog. 2017, 109, 8–14. [Google Scholar] [CrossRef] [PubMed]
ID | Host | Source | Year | Location | Description | Biotyping | PCR | WGS |
---|---|---|---|---|---|---|---|---|
RAZI20Y0140 | human | blood | 2015 | Alborz | ♂, farmer | B. abortus | B. abortus | B. abortus |
RAZI20Y0141 | human | blood | 2015 | Tehran | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0142 | human | blood | 2016 | Alborz | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0143 | human | blood | 2017 | Tehran | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0144 | human | blood | 2018 | Kermanshah | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0145 | human | CNS | 2015 | Alborz | ♀, retired | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0146 | human | blood | 2020 | Tehran | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0147 | human | blood | 2015 | Kerman | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0148 | human | blood | 2020 | Alborz | ♂, teacher | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0149 | cow | milk | 2015 | Qom | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0150 | cow | milk | 2017 | Tehran | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0151 | cow | milk | 2016 | Qom | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0152 | camel | milk | 2017 | Tehran | seropositive | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0153 | cow | milk | 2018 | Yazd | abortion | B. abortus | B. abortus | B. abortus |
RAZI20Y0154 | cow | milk | 2019 | Fars | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0155 | sheep | milk | 2018 | Mazandaran | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0156 | cow | milk | 2019 | Fars | abortion | B. abortus | B. abortus | B. abortus |
RAZI20Y0157 | human | blood | 2018 | Kermanshah | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0158 | human | blood | 2018 | Kermanshah | ♀, house- keeper | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0159 | human | blood | 2019 | Alborz | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0160 | human | blood | 2019 | Kermanshah | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0161 | human | blood | 2019 | Alborz | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0162 | human | blood | 2019 | Tehran | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0163 | human | blood | 2019 | Hamedan | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0164 | human | blood | 2019 | Hamedan | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0165 | human | blood | 2019 | Hamedan | ♀, house- keeper | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0166 | human | blood | 2019 | Kermanshah | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0167 | human | blood | 2019 | Alborz | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0168 | human | blood | 2019 | Alborz | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0169 | human | blood | 2019 | Kermanshah | ♂, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0170 | human | blood | 2019 | Tehran | ♀, farmer | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0171 | sheep | aborted fetus | 2020 | Fars | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0172 | sheep | aborted fetus | 2020 | Yazd | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0173 | cow | L.N | 2020 | Fars | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0174 | cow | L.N | 2019 | Semnan | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0175 | cow | L.N | 2019 | Isfahan | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0176 | sheep | aborted fetus | 2019 | Zanjan | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0177 | goat | aborted fetus | 2019 | Alborz | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0178 | sheep | aborted fetus | 2020 | Fars | abortion | B. melitensis | B. melitensis | B. melitensis |
RAZI20Y0179 | camel | L.N | 2020 | Hormozgan | seropositive | B. melitensis | B. melitensis | B. melitensis |
Antibiotics | MIC Range (μg/mL) | MIC Range 50 (μg/mL) | MIC Range 90 (μg/mL) | MIC Interpretive Criteria (μg/mL) | ||
---|---|---|---|---|---|---|
S | R | I | ||||
Ceftriaxone | 0.032–1 | 0.25 | 0.75 | ≤2 | - | - |
Imipenem | 1.5–8 | 2 | 4 | ≤4 | - | - |
Doxycycline | 0.032–0.125 | 0.064 | 0.094 | ≤4 | 8 | ≥16 |
Rifampicin | 0.047–0.75 | 0.38 | 0.5 | ≤1 | 2 | ≥4 |
Streptomycin | 0.094–0.75 | 0.38 | 0.5 | ≤8 | - | - |
Colistin | R | R | R | ND | - | - |
Trimethoprim-Sulfamethoxazole | 0.023–0.064 | 0.047 | 0.064 | ≤0.5 | 1–2 | ≥4 |
Gentamycin | 0.094–1 | 0.38 | 0.75 | ≤4 | - | - |
Ampicillin-sulbactam | 0.25–3 | 1.5 | 2 | ≤1 | 2 | ≥4 |
Antibiotics | Concentration μg/disk | Range (mm) | Sensitive no (%) | Intermediate no (%) | Resistant no (%) | Resistance Pattern | ||
---|---|---|---|---|---|---|---|---|
S | I | R | ||||||
Ceftriaxone | 30 μg | 25–62 | 40 (100) | 0 | 0 | ≥26 | ND | ND |
Imipenem | 10 μg | 21–39 | 40 (100) | 0 | 0 | ≥16 | ND | ND |
Doxycycline | 30 μg | 29–48 | 40 (100) | 0 | 0 | 10≥ | ND | ND |
Rifampicin | 5 μg | 15–33 | 20 (50) | 12 (30%) | 8 (20%) | ≥20 | 17–19 | ≤16 |
Streptomycin | 10 μg | 18–41 | 40 (100) | 0 | 0 | 80≥ | ND | ND |
Colistin | 10 μg | 0 | 0 | 0 | 40 (100%) | ND | ND | ND |
Trimethoprim-Sulfamethoxazole | 1.25/23.75 μg | 15–35 | 39 (97.5) | 1 (2.5%) | 0 | ≥16 | 11–15 | ≤10 |
Gentamicin | 10 μg | 22–45 | 40 (100) | 0 | 0 | ≥16 | ND | ND |
Ampicillin-sulbactam | 20 μg | 13–45 | 26 (65) | 1 (2.5%) | 13 (32.5%) | ≥20 | ND | ≤19 |
Virulence and Pathogenicity Factors | Related Genes |
---|---|
LPS (lipopolysaccharide) pathogenicity factors, entry, intracellular survival and immunomodulatory | acpXL, fabZ, gmd, htrB, kdsA, kdsB, lpsA, lpsB. lpcC, lpxA, lpxB, lpxC, lpxD, lpxE, manAoAg, manCoAg, per, pgm, pmm, wbdA, wbkA, wbkB, wbkC, wboA, wbpL, wbpZ, wzm, wzt. |
Type IV secretion system effector secretion | virB1, virB2, virB3, virB4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virB12. |
TIR domain-containing protein immune evasion | btpA, btpB |
Rab2 interacting conserved protein A intracellular survival | RicA |
CβG (cyclic β-1,2 glucan) intracellular survival | Cgs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dadar, M.; Alamian, S.; Brangsch, H.; Elbadawy, M.; Elkharsawi, A.R.; Neubauer, H.; Wareth, G. Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology. Pathogens 2023, 12, 82. https://doi.org/10.3390/pathogens12010082
Dadar M, Alamian S, Brangsch H, Elbadawy M, Elkharsawi AR, Neubauer H, Wareth G. Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology. Pathogens. 2023; 12(1):82. https://doi.org/10.3390/pathogens12010082
Chicago/Turabian StyleDadar, Maryam, Saeed Alamian, Hanka Brangsch, Mohamed Elbadawy, Ahmed R. Elkharsawi, Heinrich Neubauer, and Gamal Wareth. 2023. "Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology" Pathogens 12, no. 1: 82. https://doi.org/10.3390/pathogens12010082
APA StyleDadar, M., Alamian, S., Brangsch, H., Elbadawy, M., Elkharsawi, A. R., Neubauer, H., & Wareth, G. (2023). Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology. Pathogens, 12(1), 82. https://doi.org/10.3390/pathogens12010082