Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Ethics
2.2. Fish Samples
2.3. Clinical Examination
2.4. Parasitological Examination
2.5. Heavy Metals Analysis
2.6. Histopathological Examination
3. Results
3.1. Clinical Examination of Infected Fish
3.2. Parasitological Examination
3.2.1. Morphological Description of L. kroyeri Van Beneden, 1851
3.2.2. Prevalence of L. kroyeri in Infected M. labrax
Winter | Spring | Summer | Autumn | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nu Ex | Nu In | % | Nu Ex | Nu In | % | Nu Ex | Nu In | % | Nu Ex | Nu In | % | Nu Ex | Nu In | % |
50 | 31 | 62 | 50 | 47 | 94 | 50 | 45 | 90 | 50 | 39 | 78 | 200 | 162 | 81 |
3.2.3. Heavy Metal Accumulation by L. kroyeri and Fish Host
Element | Organ | Non-Infected | Infected | p Value | |
---|---|---|---|---|---|
Zn | Fish | Gills | 374.0 ± 2.51 | 275.0 ± 3.11 | <0.0001 |
Muscle | 270.5 ± 3.03 | 124.8 ± 2.15 | <0.0001 | ||
Parasite | 237.5 ± 2.86 | ||||
Co | Fish | Gills | UDL | UDL | - |
Muscle | UDL | UDL | - | ||
Parasite | UDL | ||||
Cd | Fish | Gills | UDL | UDL | - |
Muscle | UDL | UDL | - | ||
Parasite | UDL | ||||
Cu | Fish | Gills | UDL | UDL | - |
Muscle | UDL | UDL | - | ||
Parasite | UDL |
3.3. Histopathological Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement:
Acknowledgments
Conflicts of Interest
References
- Mahboub, H.H.; Shaheen, A. Prevalence, diagnosis and experimental challenge of Dermocystidium sp. infection in Nile tilapia (Oreochromis niloticus) in Egypt. Aquaculture 2020, 516, 734556. [Google Scholar] [CrossRef]
- Mahboub, H.H. Mycological and histopathological identification of potential fish pathogens in Nile tilapia. Aquaculture 2021, 530, 735849. [Google Scholar] [CrossRef]
- Rameshkumar, G.; Ravichandran, S. Lernaeenicus sprattae (Crustacea: Copepoda) on Hemiramphus far. Middle-East J. Sci. Res. 2012, 11, 1212–1215. [Google Scholar]
- KORUN, J.; TEPECİK, R. Gill lesions caused by infection of Lernanthropus spp. Blainville, 1822 on cultured sea bass, Dicentrarchus labrax (L.). İstanbul Üniversitesi Vet. Fakültesi Derg. 2005, 31, 1–8. [Google Scholar]
- Toksen, E. Lernanthropus kroyeri van Beneden, 1851 (Crustacea: Copepoda) infections of cultured sea bass (Dicentrarchus labrax L.). Bull. Eur. Assoc. Fish Pathol. 2007, 27, 49. [Google Scholar]
- Manera, M.; Dezfuli, B.S. Lernanthropus kroyeri infections in farmed sea bass Dicentrarchus labrax: Pathological features. Dis. Aquat. Org. 2003, 57, 177–180. [Google Scholar] [CrossRef] [Green Version]
- Eissa, I.; Dessouki, A.; Abdel-Mawla, H.; Qorany, A. Prevalence of Lernanthropus Kroyeri in Seabass (Dicentrarchus Labrax) and spotted seabass (Dicentrarchus Punctatus) from Suez Canal, Egypt. Int. J. Fisher. Aquat. Res 2020, 5, 1–6. [Google Scholar]
- Mbeh, G.M.; Kamga, F.T.; Kengap, A.K.; Atem, W.E.; Mbeng, L.O. Quantification of heavy metals (Cd, Pb, Fe, Mg, Cu, and Zn) in seafood (fishes and crabs) and evaluation of health risks to consumers in Limbe, Cameroon. J. Mater. Environ. Sci. 2019, 10, 948–957. [Google Scholar]
- Abiona, O.O.; Anifowose, A.J.; Awojide, S.H.; Adebisi, O.C.; Adesina, B.T.; Ipinmoroti, M.O. Histopathological biomarking changes in the internal organs of Tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus) exposed to heavy metals contamination from Dandaru pond, Ibadan, Nigeria. J. Taibah Univ. Sci. 2019, 13, 903–911. [Google Scholar] [CrossRef] [Green Version]
- Abdelhiee, E.Y.; Elbialy, Z.I.; Saad, A.H.; Dawood, M.A.O.; Aboubakr, M.; El-Nagar, S.H.; El-Diasty, E.M.; Salah, A.S.; Saad, H.M.; Fadl, S.E. The impact of Moringa oleifera on the health status of Nile tilapia exposed to aflatoxicosis. Aquaculture 2021, 533, 736110. [Google Scholar] [CrossRef]
- Mahmoud, N.E.; Alhindy, M.K.; Fahmy, M. Trypanorhynch cestodes infecting Mediterranean Sea fishes, Egypt: Callitetrarhynchus gracilis larvae (Pintner, 1931) as a bio-indicator of heavy metals pollution. Oceanography 2015, 3, 2. [Google Scholar]
- Ismail, H.T.H.; Mahboub, H.H.H. Effect of acute exposure to nonylphenol on biochemical, hormonal, and hematological parameters and muscle tissues residues of Nile tilapia; Oreochromis niloticus. Vet. World 2016, 9, 616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahboub, H.H.; Beheiry, R.R.; Shahin, S.E.; Behairy, A.; Khedr, M.H.; Ibrahim, S.M.; Elshopakey, G.E.; Daoush, W.M.; Altohamy, D.E.; Ismail, T.A. Adsorptivity of mercury on magnetite nano-particles and their influences on growth, economical, hemato-biochemical, histological parameters and bioaccumulation in Nile tilapia (Oreochromis niloticus). Aquat. Toxicol. 2021, 235, 105828. [Google Scholar] [CrossRef]
- Amini, Z.; Pazooki, J.; Abtahi, B.; Shokri, M.R. Bioaccumulation of Zn and Cu in Chasar bathybius (Gobiidae) tissue and its nematode parasite Dichelyne minutus, southeast of the Caspian Sea, Iran. Indian J. Geo-Mar. Sci. 2013, 42, 196–200. [Google Scholar]
- Sabra, F.S.; Mehana, E.-S.E.-D. Pesticides toxicity in fish with particular reference to insecticides. Asian J. Agric. Food Sci. 2015, 3. Available online: https://www.ajouronline.com/index.php/AJAFS/article/view/2156 (accessed on 25 October 2022).
- El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Bioremediation effect of pomegranate peel on subchronic mercury immunotoxicity on African catfish (Clarias gariepinus). Environ. Sci. Pollut. Res. Int. 2021, 28, 2219–2235. [Google Scholar] [CrossRef]
- El-Bouhy, Z.M.; Reda, R.M.; Mahboub, H.H.; Gomaa, F.N. Chelation of mercury intoxication and testing different protective aspects of Lactococcus lactis probiotic in African catfish. Aquac. Res. 2021, 52, 3815–3828. [Google Scholar] [CrossRef]
- Diamant, A. Ecology of the acanthocephalan Sclerocollum rubrimaris Schmidt and Paperna, 1978 (Rhadinorhynchidae: Gorgorhynchinae) from wild populations of rabbitfish (genus Siganus) in the northern Red Sea. J. Fish Biol. 1989, 34, 387–397. [Google Scholar] [CrossRef]
- Sures, B.; Dezfuli, B.S.; Krug, H.F. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) interferes with the uptake and accumulation of lead (210Pb) in its fish host chub (Leuciscus cephalus). Int. J. Parasitol. 2003, 33, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Luckenbach, T.; Triebskorn, R.; Müller, E.; Oberemm, A. Toxicity of waters from two streams to early life stages of brown trout (Salmo trutta f. fario L.), tested under semi-field conditions. Chemosphere 2001, 45, 571–579. [Google Scholar] [CrossRef]
- Sures, B. How parasitism and pollution affect the physiological homeostasis of aquatic hosts. J. Helminthol. 2006, 80, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Najm, M.; Fakhar, M. Helminthic parasites as heavy metal bioindicators in aquatic ecosystems. Med. Lab. J. 2015, 9, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Khaleghzadeh-Ahangar, H.; Malek, M.; McKenzie, K. The parasitic nematodes Hysterothylacium sp. type MB larvae as bioindicators of lead and cadmium: A comparative study of parasite and host tissues. Parasitology 2011, 138, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Nachev, M.; Schertzinger, G.; Sures, B. Comparison of the metal accumulation capacity between the acanthocephalan Pomphorhynchus laevis and larval nematodes of the genus Eustrongylides sp. infecting barbel (Barbus barbus). Parasites Vectors 2013, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Eissa, A.E. Clinical and Laboratory Manual of Fish Diseases; Lap Lambert Academic Publishing: Saarbrücken, Germany, 2016. [Google Scholar]
- Lucky, Z.; Lucký, Z.k. Methods for the diagnosis of fish diseases. Mar. Life Sci. Technol. 1977, 1, 41–49. [Google Scholar]
- Raef, A.; El-Ashram, A.; El-Sayed, N. Crustacean parasites of some cultured freshwater fish and their control in Sharkia. Egypt. Vet. J. 2000, 28, 180–191. [Google Scholar]
- Suvarna, K.S.; Layton, C.; Bancroft, J.D. Bancroft’s Theory and Practice of Histological Techniques E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Abdel-Mawla, H.I.; El-Lamie, M.M.; Dessouki, A.A. Investigation on ectoparasitic crustacean diseases in some Red sea fishes and their associated pathological lesions. Benha Vet. Med. J. 2015, 28, 301–309. [Google Scholar]
- Toksen, E.; Nemli, E.; Degirmenci, U. The morphology of Lernanthropus kroyeri van Beneden, 1851 (Copepoda: Lernanthropidae) parasitic on sea bass, Dicentrarchus labrax (L., 1758), from the Aegean Sea, Turkey. Turk. Soc. Parasitol. 2008, 32, 386–389. [Google Scholar]
- Henry, M.; Alexis, M.; Fountoulaki, E.; Nengas, I.; Rigos, G. Effects of a natural parasitical infection (Lernanthropus kroyeri) on the immune system of European sea bass, Dicentrarchus labrax L. Parasite Immunol. 2009, 31, 729–740. [Google Scholar] [CrossRef]
- Eissa, I.; El-Lamie, M.; Zakai, M. Studies on Crustacean Diseases of Seabass, Morone Labrax, in Suez Canal, Ismailia Governorate. Life Sci. J. 2012, 9, 512–518. [Google Scholar]
- El-Deen, A.N.; Mahmoud, A.; Hassan, A. Field studies of caligus parasitic infections among cultured seabass (Dicentrarchus labrax) and mullet (Mugil cephalus) in marine fish farms with emphasis on treatment trials. Glob. Vet. 2013, 11, 511–520. [Google Scholar]
- Hassanin, D.A. Studies on prevailing problems affecting cultured marine fishes at port-said governorate. M. Sc. Fac. Vet. Med. (Dept. Fish Dis. Manag.) Suez. Canal. Univ. 2016, 22, 165–183. [Google Scholar] [CrossRef]
- Aneesh, P.-T.; Sudha, K.; Helna, A.K.; Anilkumar, G.; Trilles, J.-P. Multiple parasitic crustacean infestation on belonid fish Strongylura strongylura. ZooKeys 2014, 457, 339–353. [Google Scholar]
- Samak, O.A.A.; Said, A.E. Population Dynamics of the Monogeneans, Diplectanum Aequans and d. Laubieri and the Copepod, Lernanthropus Kroyeri Infesting the Gills of the Sea Bass, Dicentrarchus labrax in Egypt. Res. Gate 2008, 56, 47–50. [Google Scholar]
- Joint FAO/WHO Expert Committee on Food Additives; Agriculture Organization of the United Nations; World Health Organization. In Proceedings of the Evaluation of Certain Food Additives and Contaminants: Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, Switzerland, 21–30 March 1989. Available online: https://apps.who.int/iris/handle/10665/39252 (accessed on 25 October 2022).
- World Health Organization. Lead: Environmental Aspects-Environmental Health Criteria 85; WHO: Geneva, Switzerland, 1989. [Google Scholar]
- Skidmore, J. Toxicity of zinc compounds to aquatic animals, with special reference to fish. Q. Rev. Biol. 1964, 39, 227–248. [Google Scholar] [CrossRef]
- Sures, B. The use of fish parasites as bioindicators of heavy metals in aquatic ecosystems: A review. Aquat. Ecol. 2001, 35, 245–255. [Google Scholar] [CrossRef]
- Sures, B. Accumulation of heavy metals by intestinal helminths in fish: An overview and perspective. Parasitology 2003, 126, S53–S60. [Google Scholar] [CrossRef]
- Schludermann, C.; Konecny, R.; Laimgruber, S.; Lewis, J.; Schiemer, F.; Chovanec, A.; Sures, B. Fish macroparasites as indicators of heavy metal pollution in river sites in Austria. Parasitology 2003, 126, S61–S69. [Google Scholar] [CrossRef]
- Tekin-Özan, S.; Kir, İ. Comparative study on the accumulation of heavy metals in different organs of tench (Tinca tinca L. 1758) and plerocercoids of its endoparasite Ligula intestinalis. Parasitol. Res. 2005, 97, 156–159. [Google Scholar] [CrossRef]
- Thielen, F.; Zimmermann, S.; Baska, F.; Taraschewski, H.; Sures, B. The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest, Hungary. Environ. Pollut. 2004, 129, 421–429. [Google Scholar] [CrossRef]
- Hassanine, R.; Al-Hasawi, Z. Acanthocephalan Worms Mitigate the Harmful Impacts of Heavy Metal Pollution on Their Fish Hosts. Fishes 2021, 6, 49. [Google Scholar] [CrossRef]
- Szefer, P.; Rokicki, J.; Frelek, K.; Skóra, K.; Malinga, M. Bioaccumulation of selected trace elements in lung nematodes, Pseudalius inflexus, of harbor porpoise (Phocoena phocoena) in a Polish zone of the Baltic Sea. Sci. Total Environ. 1998, 220, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Sures, B.; Siddall, R. Pomphorhynchus laevis: The intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Exp. Parasitol. 1999, 93, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Malek, M.; Haseli, M.; Mobedi, I.; Ganjali, M.; MacKenzie, K. Parasites as heavy metal bioindicators in the shark Carcharhinus dussumieri from the Persian Gulf. Parasitology 2007, 134, 1053–1056. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.J.; Hayward, C.J. Phylum arthropoda. In Fish Diseases and Disorders. Volume 1: Protozoan and Metazoan Infections; CABI: Wallingford, UK, 2006; pp. 466–565. [Google Scholar]
- Ragias, V.; Tontis, D.; Athanassopoulou, F. Incidence of an intense Caligus minimus Otto 1821, C. pageti Russel, 1925, C. mugilis Brian, 1935 and C. apodus Brian, 1924 infection in lagoon cultured sea bass (Dicentrarchus labrax L.) in Greece. Aquaculture 2004, 242, 727–733. [Google Scholar] [CrossRef]
- Jithendran, K.; Natarajan, M.; Azad, I. Crustacean parasites and their management in brackishwater fi nfi sh culture. Aquac. Asia 2008, 13, 1–60. [Google Scholar]
- Yardimci, B.; Pekmezci, G.Z. Gill histopathology in cultured sea bass (Dicentrarchus labrax (L.) coinfected by Diplectanum aequans (Wagener, 1857) and Lernanthropus kroyeri (van Beneden, 1851). Ank. Üniv. Vet. Fakültesi Derg. 2012, 59, 61–64. [Google Scholar]
- Vinoth, R.; Kumar, T.A.; Ravichandran, S.; Gopi, M.; Rameshkumar, G. Infestation of Copepod parasites in the food fishes of Vellar estuary, Southeast coast of India. Acta Parasitol. Glob. 2010, 1, 1–5. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaid, A.A.A.; Abd El Maged, R.R.; Rasheed, N.; Mohamed Mansour, D.; Mahboub, H.H.; El-Lateef, H.M.A.; Sabatier, J.-M.; Saad, H.M.; Batiha, G.E.-S.; Waard, M.D. Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax. Pathogens 2023, 12, 52. https://doi.org/10.3390/pathogens12010052
Zaid AAA, Abd El Maged RR, Rasheed N, Mohamed Mansour D, Mahboub HH, El-Lateef HMA, Sabatier J-M, Saad HM, Batiha GE-S, Waard MD. Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax. Pathogens. 2023; 12(1):52. https://doi.org/10.3390/pathogens12010052
Chicago/Turabian StyleZaid, Attia A. Abou, Rehab R. Abd El Maged, Nesma Rasheed, Dina Mohamed Mansour, Heba H. Mahboub, Hany M. Abd El-Lateef, Jean-Marc Sabatier, Hebatallah M. Saad, Gaber El-Saber Batiha, and Michel De Waard. 2023. "Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax" Pathogens 12, no. 1: 52. https://doi.org/10.3390/pathogens12010052
APA StyleZaid, A. A. A., Abd El Maged, R. R., Rasheed, N., Mohamed Mansour, D., Mahboub, H. H., El-Lateef, H. M. A., Sabatier, J.-M., Saad, H. M., Batiha, G. E.-S., & Waard, M. D. (2023). Prevalence, Morpho-Histopathological Identification, Clinical Picture, and the Role of Lernanthropus kroyeri to Alleviate the Zinc Toxicity in Moron labrax. Pathogens, 12(1), 52. https://doi.org/10.3390/pathogens12010052