Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Collections and Pooling
2.2. Total RNA Extraction
2.3. cDNA Synthesis
2.4. EHDV RNA Detection by RT-qPCR
2.5. EHDV Serotyping RT-qPCR
2.6. Field Infection Rate Calculations
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petersen, L.R.; Beard, C.B.; Visser, S.N. Combatting the Increasing Threat of Vector-Borne Disease in the United States with a National Vector-Borne Disease Prevention and Control System. Am. J. Trop. Med. Hyg. 2019, 100, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, R.; Lindsey, N.P.; Fischer, M.; Gregory, C.J.; Hinckley, A.F.; Mead, P.S.; Paz-Bailey, G.; Waterman, S.H.; Drexler, N.A.; Kersh, G.J.; et al. Vital Signs: Trends in reported vector-borne disease cases-United States and Territories, 2004–2016. MMWR-Morb. Mortal W 2018, 67, 496–501. [Google Scholar] [CrossRef] [PubMed]
- Hadler, J.L.; Patel, D.; Bradley, K.; Hughes, J.M.; Blackmore, C.; Etkind, P.; Kan, L.; Getchell, J.; Blumenstock, J.; Engel, J. National capacity for surveillance, prevention, and control of West Nile virus and other arbovirus infections-United States, 2004 and 2012. MMWR-Morb. Mortal W 2014, 63, 281–284. [Google Scholar]
- LaBeaud, A.D.; Aksoy, S. Neglected funding for vector-borne diseases: A near miss this time, a possible disaster the next time. PLoS Negl. Trop. Dis. 2010, 4, e847. [Google Scholar] [CrossRef] [PubMed]
- Werner, D.; Kampen, H. Zoos and wildlife parks: A laboratory for the study of mosquito-borne wildlife diseases. In Ecology of Diseases Transmitted by Mosquitoes to Wildlife; Gutiérrez-López, R., Logan, J.G., Martinez-de la Puente, J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; Volume 7, pp. 81–93. [Google Scholar]
- Davidson, W.R.; Fischer, J.; Little, S.E.; Lockhart, J.M.; Luttrell, M.P.; Mead, D.G.; Nettles, V.F.; Quist, C.F.; Smith, K.E.; Stallknecht, D.E.; et al. Field Manual of Wildlife Diseases in the Southeastern United States, 3rd ed.; Davidson, W.R., Ed.; (Southeastern Cooperative Wildlife Disease Study); University of Georgia: Athens, GA, USA, 2006. [Google Scholar]
- Kedmi, M.; Van Straten, M.; Ezra, E.; Galon, N.; Klement, E. Assessment of the productivity effects associated with epizootic hemorrhagic disease in dairy herds. J. Dairy Sci. 2010, 93, 2486–2495. [Google Scholar] [CrossRef] [PubMed]
- Hoff, G.L.; Trainer, D.O. Experimental infection in North American elk with epizootic hemorrhagic disease virus. J. Wildl. Dis. 1973, 9, 129–132. [Google Scholar] [CrossRef]
- Corn, J.L.; Kavanaugh, D.M.; Osborn, D.A.; Demarais, S.; Miller, D.M.; Nettles, W.F. Survey for diseases and parasites in exotic ruminants in Texas. Proc. Annu. Meet. US Anim. Health Assoc. 1990, 94, 530–540. [Google Scholar]
- Orange, J.P.; Dinh, E.T.N.; Goodfriend, O.; Citino, S.B.; Wisely, S.M.; Blackburn, J.K. Evidence of Epizootic Hemorrhagic Disease Virus and Bluetongue Virus Exposure in Nonnative Ruminant Species in Northern Florida. J. Zoo Wildl. Med. 2021, 51, 745–751. [Google Scholar] [CrossRef]
- Foster, N.M.; Breckon, R.D.; Luedke, A.J.; Jones, R.H. Transmission of two strains of epizootic hemorrhagic disease virus in deer by Culicoides variipennis. J. Wildl. Dis. 1977, 13, 9–16. [Google Scholar] [CrossRef]
- Borkent, A.; Grogan, W.L., Jr. Catalog of the New World biting midges north of Mexico (Diptera: Ceratopogonidae). Zootaxa 2009, 2273, 1–48. [Google Scholar] [CrossRef]
- Holbrook, F.R.; Tabachnick, W.J.; Schmidtmann, E.T.; McKinnon, C.N.; Bobian, J.R.; Grogan, W.L. Sympatry in the Culicoides variipennis complex (Diptera: Ceratopogonidae): A taxonomic reassessment. J. Med. Entomol. 2000, 37, 65–76. [Google Scholar] [CrossRef]
- Wong, N.D.; McDermott, E.G.; Murillo, A.C.; Mullens, B.A. Field Distribution and Density of Culicoides sonorensis (Diptera: Ceratopogonidae) Eggs in Dairy Wastewater Habitats. J. Med. Entomol. 2018, 55, 392–397. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Sloyer, K.E.; Sayler, K.A.; Goodfriend, O.; Krauer, J.M.C.; Acevedo, C.; Zhang, X.; Mathias, D.; Wisely, S.M.; Burkett-Cadena, N.D. Field data implicating Culicoides stellifer and Culicoides venustus (Diptera: Ceratopogonidae) as vectors of epizootic hemorrhagic disease virus. Parasite Vector 2019, 12, 258. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.E.; Stallknecht, D.E.; Sewell, C.T.; Rollor, E.A.; Mullen, G.R.; Anderson, R.R. Monitoring of Culicoides spp. At a site enzootic for hemorrhagic disease in white-tailed deer in Georgia, USA. J. Wildl. Dis. 1996, 32, 627–642. [Google Scholar] [CrossRef]
- Smith, K.E.; Stallknecht, D.E. Culicoides (Diptera: Ceratopogonidae) collected during epizootics of hemorrhagic disease among captive white-tailed deer. J. Med. Entomol. 1996, 33, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Rivera, N.A.; Varga, C.; Ruder, M.G.; Dorak, S.J.; Roca, A.L.; Novakofski, J.E.; Mateus-Pinilla, N.E. Bluetongue and epizootic hemorrhagic disease in the United States of America at the wildlife-livestock interface. Pathogens 2021, 10, 915. [Google Scholar] [CrossRef] [PubMed]
- Ruder, M.G.; Lysyk, T.J.; Stallknecht, D.E.; Foil, L.D.; Johnson, D.J.; Chase, C.C.; Dargatz, D.A.; Gibbs, E.P.J. Transmission and epidemiology of bluetongue and epizootic hemorrhagic disease in North America: Current perspectives, research gaps, and future directions. Vector-Borne Zoonot. 2015, 15, 348–363. [Google Scholar] [CrossRef]
- Blanton, F.S.; Wirth, W.W. The Sand Flies (Culicoides) of Florida (Diptera: Ceratopogonidae); Florida Department of Agriculture and Consumer Services: Gainesville, FL, USA, 1979; Volume 10, p. 204.
- Mills, M.K.; Ruder, M.G.; Nayduch, D.; Michel, K.; Drolet, B.S. Dynamics of epizootic hemorrhagic disease virus infection within the vector, Culicoides sonorensis (Diptera: Ceratopogonidae). PloS ONE 2017, 12, e0188865. [Google Scholar] [CrossRef] [PubMed]
- Nayduch, D.; Lee, M.B.; Saski, C.A. Gene discovery and differential expression analysis of humoral immune response elements in female Culicoides sonorensis (Diptera: Ceratopogonidae). Parasite Vector 2014, 7, 1–17. [Google Scholar] [CrossRef]
- Mills, M.K.; Nayduch, D.; Michel, K. Inducing RNA interference in the arbovirus vector, Culicoides sonorensis. Insect Mol. Biol. 2015, 24, 105–114. [Google Scholar] [CrossRef]
- Maan, N.S.; Maan, S.; Potgieter, A.C.; Wright, I.M.; Belaganahalli, M.; Mertens, P.P.C. Development of real-time RT-PCR assays for detection and typing of epizootic haemorrhagic disease virus. Transbound Emerg. Dis. 2017, 64, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.W.; Jones, R.H. The North American Subspecies of Culicoides variipennis (Diptera, Heleidae); U.S. Government Printing Office: Washington, DC, USA, 1957.
- McGregor, B.L.; Shults, P.T.; McDermott, E.G. A review of the vector status of North American Culicoides (Diptera: Ceratopogonidae) for bluetongue virus, epizootic hemorrhagic disease virus, and other arboviruses of concern. Curr. Trop. Med. Rep. 2022, 9, 130–139. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Rozo-Lopez, P.; Davis, T.M.; Drolet, B.S. Detection of Vesicular Stomatitis Virus Indiana from Insects Collected during the 2020 Outbreak in Kansas, USA. Pathogens 2021, 10, 1126. [Google Scholar] [CrossRef]
- Kramer, L.D.; Ciota, A.T. Dissecting vectorial capacity for mosquito-borne viruses. Curr. Opin. Virol. 2015, 15, 112–118. [Google Scholar] [CrossRef]
- Zarnke, R.L. Alaska Department of Fish and Game. In Serologic Survey of Alaska Wildlife for Microbial Pathogens; Alaska Department of Fish and Game Report; Alaska Department of Fish and Game: Juneau, AK, USA, 1991. [Google Scholar]
- Mullen, G.R.; Hayes, M.E.; Nusbaum, K.E. Potential vectors of bluetongue and epizootic hemorrhagic disease viruses of cattle and white-tailed deer in Alabama. Prog. Clin. Biol. Res. 1985, 178, 201–206. [Google Scholar]
- Ye, Y.H.; Ng, T.S.; Frentiu, F.D.; Walker, T.; van den Hurk, A.F.; O’Neill, S.L.; Beebe, N.W.; McGraw, E.A. Comparative susceptibility of mosquito populations in North Queensland, Australia to oral infection with dengue virus. Am. J. Trop. Med. Hyg. 2014, 90, 422–430. [Google Scholar] [CrossRef]
- Honorio, N.A.; Wiggins, K.; Camara, D.C.P.; Eastmond, B.; Alto, B.W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 2018, 12, e0006521. [Google Scholar] [CrossRef] [PubMed]
- Nelder, M.P.; Swanson, D.A.; Adler, P.H.; Grogan, W.L., Jr. Biting midges of the genus Culicoides in South Carolina zoos. J. Insect. Sci. 2010, 10, 55. [Google Scholar] [CrossRef] [PubMed]
- Swanson, D.A.; Kapaldo, N.O.; Maki, E.; Carpenter, J.W.; Cohnstaedt, L.W. Diversity and abundance of nonculicid biting flies (Diptera) in a zoo environment. J. Am Mosq. Contr. 2018, 34, 265–271. [Google Scholar] [CrossRef] [PubMed]
- McGregor, B.L.; Blackburn, J.K.; Wisely, S.M.; Burkett-Cadena, N.D. Culicoides (Diptera: Ceratopogonidae) Communities Differ Between a Game Preserve and Nearby Natural Areas in Northern Florida. J. Med. Entomol. 2021, 58, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.J.; Harrup, L.E.; Tugwell, L.A.; Brugman, V.A.; England, M.; Carpenter, S. Quantification of within- and between-farm dispersal of Culicoides biting midges using an immunomarking technique. J. Appl. Ecol. 2017, 54, 1429–1439. [Google Scholar] [CrossRef] [PubMed]
- Lillie, T.H.; Kline, D.L.; Hall, D.W. The dispersal of Culicoides missisippiensis (Diptera: Ceratopogonidae) in a salt marsh near Yankeetown, Florida. J. Am. Mosq. Contr. 1985, 1, 463–467. [Google Scholar]
- Blackmore, C.G.M.; Stark, L.M.; Jeter, W.C.; Oliveri, R.L.; Brookes, R.G.; Conti, L.A.; Wiersma, S.T. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am. J. Trop. Med. Hyg. 2001, 69, 141–150. [Google Scholar] [CrossRef]
- Shults, P.; Hopken, M.; Eyer, P.A.; Blumenfeld, A.; Mateos, M.; Cohnstaedt, L.W.; Vargo, E.L. Species delimitation and mitonuclear discordance within a species complex of biting midges. Sci. Rep. 2022, 12, 1730. [Google Scholar] [CrossRef] [PubMed]
Trap Location | 18 September 2020 | 19 September 2020 | 25 September 2020 | 26 September 2020 | 1 October 2020 | 8 October 2020 | 15 October 2020 | 4 November 2020 | Total |
---|---|---|---|---|---|---|---|---|---|
(1) Caribou Exhibit | 11 | 191 | 251 | 1226 | 72 | 68 | 3 | 0 | 1822 |
(2) Caribou Holding | - | - | 77 | 49 | 1 | 4 | 0 | 0 | 131 |
(3) Moose Exhibit | 0 | 0 | 1 | 38 | 0 | 0 | 0 | 0 | 39 |
(4) Takin/Pronghorn Exhibit | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(5) Bactrian Camel Exhibit | - | 0 | 1 | 1 | 0 | 0 | 0 | - | 2 |
(6) Asian Wild Horse Holding | 0 | 0 | 0 | - | 0 | 0 | - | - | 0 |
(7) Bison Holding | - | 0 | 1 | 0 | 1 | 1 | - | 0 | 3 |
(8) Exterior Location * | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 |
(9) West Compost Pad | - | 0 | 0 | - | 0 | 0 | 0 | - | 0 |
(10) East Compost Pad | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(11) Quarantine Holding Area | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(12) Lebanon Hills Trap 1 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(13) Lebanon Hills Trap 2 * | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
(14) Lebanon Hills Trap 3 * | 0 | 0 | 0 | 0 | 0 | - | - | 0 | 0 |
Species | N | # Pools | Positive Pools | MIR |
---|---|---|---|---|
C. crepuscularis | 1 | 1 | 0 | 0 |
C. sonorensis | 150 | 16 | 3 | 20 |
C. stellifer | 16 | 2 | 0 | 0 |
C. variipennis | 715 | 75 | 2 | 2.8 |
C. variipennis complex | 82 | 9 | 1 | NC * |
Positive # | Species | Pool Size | EHDV-1 | EHDV-2 | EHDV-6 |
---|---|---|---|---|---|
1 | C. sonorensis | 10 | N | N | Y |
2 | C. sonorensis | 10 | Y | N | Y |
3 | C. sonorensis | 10 | Y | N | N |
4 | C. variipennis | 10 | Y | N | Y |
5 | C. variipennis | 10 | N | Y | N |
6 | Degraded C. variipennis Complex | 10 | N | N | Y |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McGregor, B.L.; Reister-Hendricks, L.M.; Nordmeyer, C.; Stapleton, S.; Davis, T.M.; Drolet, B.S. Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens 2023, 12, 140. https://doi.org/10.3390/pathogens12010140
McGregor BL, Reister-Hendricks LM, Nordmeyer C, Stapleton S, Davis TM, Drolet BS. Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens. 2023; 12(1):140. https://doi.org/10.3390/pathogens12010140
Chicago/Turabian StyleMcGregor, Bethany L., Lindsey M. Reister-Hendricks, Cale Nordmeyer, Seth Stapleton, Travis M. Davis, and Barbara S. Drolet. 2023. "Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo" Pathogens 12, no. 1: 140. https://doi.org/10.3390/pathogens12010140
APA StyleMcGregor, B. L., Reister-Hendricks, L. M., Nordmeyer, C., Stapleton, S., Davis, T. M., & Drolet, B. S. (2023). Using Zoos as Sentinels for Re-Emerging Arboviruses: Vector Surveillance during an Outbreak of Epizootic Hemorrhagic Disease at the Minnesota Zoo. Pathogens, 12(1), 140. https://doi.org/10.3390/pathogens12010140