Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions
Abstract
:1. Introduction
2. Results
2.1. Parasitological Findings
2.2. Feed Consumption and Bodyweight Gain of Calves—Feed Conversion Ratio
2.3. Associations of Climatic Results with Parasitological Findings and Feed Consumption
2.4. Carcass-Related Parameters of Calves
3. Discussion
3.1. Parasitological Findings and Effects on Calf Production
3.2. Associations of Climatic Results with Parasitological Findings and Feed Consumption
3.3. Carcass-Related Parameters of Beef Calves
4. Materials and Methods
4.1. Experimental Design and Study Protocols
4.2. Parasitological Examinations
4.3. Data Management and Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenyon, F.; Jackson, F. Targeted flock/herd and individual ruminant treatment approaches. Vet. Parasitol. 2012, 186, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Chartier, C.; Fanke, J.; Frangipane di Regalbono, A.; Traversa, D.; von Samson-Himmelstjerna, G.; Demeler, J.; Vanimisetti, H.B.; Bartram, D.J.; Denwood, M.J. Anthelmintic resistance to ivermectin and moxidectin in gastrointestinal nematodes of cattle in Europe. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Emery, D.L.; Hunt, P.W.; Le Jambre, L.F. Haemonchus contortus: The then and now, and where to from here? Int. J. Parasitol. 2016, 46, 755–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flores-Perez, I.; Hallal Calleros, C.; Cervantes-Pacheco, B.J.; Alba-Hurtado, F.; Orihuela, A.; Castro-del-Campo, N.; Acevedo-Ramirez, P.; Ortiz-Lopez, B.; Jimenez-Levya, D.; Barajas-Cruz, R. Behavioural and productive response to experimental infection with stage 3 larvae of Haemonchus contortus in feedlot bull-calves. Exp. Parasitol. 2019, 197, 1–8. [Google Scholar] [CrossRef]
- Utley, P.R.; Stewart, T.B.; Ciordia, H.; McCormick, W.C. Effect of anthelmintic treatment on feedlot performance of growing and finishing heifers. J. Anim. Sci. 1974, 38, 984–990. [Google Scholar] [CrossRef]
- Lawrence, J.D.; Ibarburu, M.A. Economic analysis of pharmaceutical technologies in modern beef production. In Proceedings of the NCCC-134 Meeting on Applied Commodity Price Analysis, Forecasting, and Market Risk Management, Chicago, IL, USA, 16–17 April 2007; pp. 1–18. [Google Scholar]
- Clark, C.A.; Busby, W.D.; Gunn, P.J. Effects of internal parasite infection at feedlot arrival on performance and carcass characteristics of beef steers. Prof. Anim. Sci. 2015, 31, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Arsenopoulos, K.; Minoudi, S.; Symeonidou, I.; Triantafyllidis, A.; Katsafadou, A.; Lianou, D.; Fthenakis, G.; Papadopoulos, E. Frequency of resistance to benzimidazoles of Haemonchus contortus helminths from dairy sheep, goats, cattle and buffaloes in Greece. Pathogens 2020, 9, 347. [Google Scholar] [CrossRef]
- Stromberg, B.E.; Vatthauer, R.J.; Schlotthauer, J.C.; Myers, G.H.; Haggard, D.L.; King, V.L.; Hanke, H. Production responses following strategic parasite control in a beef cow/calf herd. Vet. Parasitol. 1997, 68, 315–322. [Google Scholar] [CrossRef]
- Schallig, H.D.F.H. Immunological responses of sheep to Haemonchus contortus. Parasitology 2000, 120, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Abbott, E.M.; Holmes, P.H. Influence of dietary protein on the immune responsiveness of sheep to Haemonchus contortus. Res. Vet. Sci. 1990, 48, 103–107. [Google Scholar] [CrossRef]
- Kambara, T.; McFarlane, R.G.; Abell, T.J.; McAnulty, R.W.; Sykes, A.R. The effect of age and dietary protein on immunity and resistance in lambs vaccinated with Trichostrongylus colubriformis. Int. J. Parasitol. 1993, 23, 471–476. [Google Scholar] [CrossRef]
- Urquhart, G.M.; Armour, J.; Duncan, J.L.; Dunn, A.M.; Jennings, F.W. Veterinary Parasitology, 2nd ed.; Longman Scientific and Technical: Essex, UK, 1995; p. 21. [Google Scholar]
- George, M.; George, M.; Kotze, A. Production Impacts and Resistance of Gastrointestinal Parasites in Feedlot Cattle; Meat and Livestock Australia Limited: North Sydney, Australia, 2020; pp. 1–45. [Google Scholar]
- Coop, R.L.; Kyriazakis, I. Nutrition-parasite interaction. Vet. Parasitol. 1999, 84, 187–204. [Google Scholar] [CrossRef]
- Roberts, J.L.; Swan, R.A. Quantitative studies of ovine haemonchosis. I. Relationship between faecal egg counts and total worm counts. Vet. Parasitol. 1981, 8, 165–171. [Google Scholar] [CrossRef]
- Coadwell, W.J.; Ward, P.F.V. The use of faecal egg counts for estimating worm burdens in sheep infected with Haemonchus contortus. Parasitology 1982, 85, 251–256. [Google Scholar] [CrossRef]
- Rinaldi, L.; Veneziano, V.; Morgoglione, M.E.; Pennacchio, S.; Santaniello, M.; Schioppi, M.; Musellla, V.; Fedele, V.; Cringoli, G. Is gastrointestinal strongyle faecal egg count influenced by hour of sample collection and worm burden in goats? Vet. Parasitol. 2009, 163, 81–86. [Google Scholar] [CrossRef]
- Porco, T.C.; Lloyd-Smith, J.O.; Gross, K.L.; Galvani, A.P. The effect of treatment on pathogen virulence. J. Theoret. Biol. 2005, 233, 91–102. [Google Scholar] [CrossRef]
- Kunkle, B.N.; Williams, J.C.; Johnson, E.G.; Stromberg, B.E.; Yazwinski, T.A.; Smith, L.L.; Yoon, S.; Cramer, L.G. Persistent efficacy and production benefits following use of extended-release injectable eprinomectin in grazing beef cattle under field conditions. Vet. Parasitol. 2013, 192, 332–337. [Google Scholar] [CrossRef] [Green Version]
- Navarre, C.B. Epidemiology and control of gastrointestinal nematodes of cattle in southern climates. Vet. Clin. N. Am. Food Anim. 2020, 36, 45–57. [Google Scholar] [CrossRef]
- Yazwinski, T.A.; Tucker, C.A. A sampling of factors relative to the epidemiology of gastrointestinal nematode parasites of cattle in the United States. Vet. Clin. N. Am. Food Anim. 2006, 22, 501–527. [Google Scholar] [CrossRef]
- Stuedemann, J.A.; Kaplan, R.M.; Miller, J.E.; Seman, D.H. Importance of Nematode Parasites in Cattle Grazing Research. Available online: https://agrilife.org/spfcic/files/2013/02/stuedemann.pdf (accessed on 1 February 2013).
- Amarante, A.F.T.; Bagnola, J.; Amarante, M.R.V.; Barbosa, M.A. Host specificity of sheep and cattle nematodes in Sao Paulo state, Brazil. Vet. Parasitol. 1997, 73, 89–104. [Google Scholar] [CrossRef]
- Craig, T.M. Impact of internal parasites on beef cattle. J. Anim. Sci. 1988, 66, 1565–1569. [Google Scholar] [CrossRef]
- DeRouen, S.M.; Miller, J.E.; Foil, L.D. Control of horn flies (Haematobia irritans) and gastrointestinal nematodes and its relation with growth performance in stocker cattle. Prof. Anim. Sci. 2010, 26, 109–114. [Google Scholar] [CrossRef]
- Borges, F.A.; Almeida, G.D.; Heckler, R.P.; Lemes, R.L.; Onizuka, M.K.V.; Borges, D.G. Anthelmintic resistance impact on tropical beef cattle productivity: Effect on weight gain of weaned calves. Trop. Anim. Health Prod. 2013, 45, 723–727. [Google Scholar] [CrossRef]
- Ames, E.R.; Rubin, R.; Matsushima, J.K. Effects of gastrointestinal nematode parasites on performance in feedlot cattle. J. Anim. Sci. 1969, 28, 698–704. [Google Scholar] [CrossRef]
- Stromberg, B.E.; Gasbarre, L.S.; Waite, A.; Bechtol, D.T.; Brown, M.S.; Robinson, N.A.; Olson, E.J.; Newcomb, H. Cooperia punctata: Effect on cattle productivity? Vet. Parasitol. 2012, 183, 284–291. [Google Scholar] [CrossRef]
- Coop, R.L.; Holmes, P.H. Nutrition and parasite interaction. Int. J. Parasitol. 1996, 26, 951–962. [Google Scholar] [CrossRef]
- Kyriazakis, I.; Oldham, J.D.; Coop, R.L.; Jackson, F. The effect of subclinical intestinal nematode infection on the diet selection of growing sheep. Brit. J. Nutr. 1994, 72, 665–677. [Google Scholar] [CrossRef]
- Stear, M.J.; Bishop, S.C.; Henderson, N.G.; Scott, I. A key mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Anim. Health Res. Rev. 2003, 4, 45–52. [Google Scholar] [CrossRef]
- Gressler, L.T.; Da Silva, A.S.; Oliveira, C.B.; Schafer, A.S.; Aires, A.R.; Rocha, J.F.; Tonin, A.A.; Schirmbeck, G.H.; Casali, E.A.; Lopes, S.T.; et al. Experimental infection by Haemonchus contortus in lambs: Influence of disease on purine levels in serum. Parasitology 2014, 141, 898–903. [Google Scholar] [CrossRef]
- Abbott, E.M.; Parkins, J.J.; Holmes, P.H. Influence of dietary protein on the pathoghysiology of haemonchosis in lambs given continuous infections. Res. Vet. Sci. 1988, 45, 41–49. [Google Scholar] [CrossRef]
- Brody, S. Bioenergetics and Growth; Reinhold Publishing Corporation: New York, NY, USA, 1945; p. 1033. [Google Scholar]
- Sauvant, D.; Noziere, P.; Ortigues-Marty, I. Energy expenditure, efficiencies and requirements. In INRA Feeding System for Ruminants; Noziere, P., Sauvant, D., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; pp. 91–118. [Google Scholar]
- Bateman, H.G.; Hill, T.M.; Aldrich, J.M.; Schlotterbeck, R.L.; Firkins, J.L. Meta-analysis of the impact of initial serum protein concentration and empirical prediction model for growth of neonatal Holstein calves through eight weeks of age. J. Dairy Sci. 2012, 95, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roland, L.; Drillich, M.; Klein-Jobstl, D.; Iwersen, M. Influence of climatic conditions on the development, performance and health of calves. J. Dairy Sci. 2016, 99, 2438–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.D.; Hall, L.W.; Collier, R.J.; Smith, J.F. Effect of core body temperature, time of day and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. J. Dairy Sci. 2015, 98, 118–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, S.D.; Bradford, B.J.; Harner, J.P.; Tucker, C.B.; Choi, C.Y.; Allen, J.D.; Hall, L.W.; Rungruang, S.; Collier, R.J.; Smith, J.F. Effects of adjustable and stationary fans with misters on core body temperature and lying behavior of lactating dairy cows in a semiarid climate. J. Dairy Sci. 2013, 96, 4738–4750. [Google Scholar] [CrossRef]
- Lachica, M.; Aguillera, J.F. Energy needs of the free-ranging goat. Small Rumin. Res. 2005, 60, 111–125. [Google Scholar] [CrossRef]
- Ministry of Agriculture, Fisheries and Food. Manual of Veterinary Parasitological Laboratory Techniques; HMS: London, UK, 1986. [Google Scholar]
- Van Wyk, J.A.; Mayhew, E. Morphological identification of parasitic nematode infective larvae of small ruminants and cattle: A practical lab guide. Onderstepoort J. Vet. Res. 2013, 80, 539. [Google Scholar] [CrossRef]
- Hillis, D.; Mable, B.K.; Larson, A.; Davis, S.K.; Zimmer, E.A. Nucleic acids IV: Sequencing and cloning. In Molecular Systematics, 2nd ed.; Hills, D., Moritz, C., Mable, B.K., Eds.; Sinauer Associates: Sunderland, MA, USA, 1996; pp. 321–382. [Google Scholar]
- Brasil, B.S.A.F.; Nunes, R.L.; Bastianetto, E.; Drummond, M.G.; Carvalho, D.C.; Leite, R.C.; Molento, M.B.; Oliviera, D.A.A. Genetic diversity patterns of Haemonchus placei and Haemonchus contortus populations isolated from domestic ruminants in Brazil. Int. J. Parasitol. 2012, 42, 469–479. [Google Scholar] [CrossRef]
- Anderson, T.; Hoffman, P. Nutrient composition of straw used in dairy cattle diets. Focus Forage 2006, 1, 1–3. [Google Scholar]
- Berman, A.; Horovitz, T.; Kaim, M.; Gacitua, H. A comparison of THI indices leads to a sensible heat-based heat stress index for shaded cattle that aligns temperature and humidity stress. Int. J. Biometeorol. 2016, 60, 1453–1462. [Google Scholar] [CrossRef]
- De Oliveira Nascimento, F.G.; Pinto Aguiar, H.C.; Rodrigues, G.M.; Guimarães, E.C.; de Mattos Nascimento, M.R.B. What is the best temperature-humidity index equation to indicate heat stress in crossbred dairy calves in a tropical environment? Ciência Rural 2019, 49, e20180132. [Google Scholar]
Group | Average Daily Feed Consumption per Group of Animals (kg) | Mean Bodyweight per Group of Animals (kg) | Average Total Bodyweight Gain per Group of Animals (kg) | ||
---|---|---|---|---|---|
Concentrate feed | Roughage | on D1 | on D201 | ||
AT (n = 12) | 80.4 ± 0.7 | 37.9 ± 0.2 | 214.3 ± 5.4 | 569.8 ± 7.9 1 | 355.5 ± 5.7 1 |
C (n = 12) | 91.0 ± 0.7 | 32.0 ± 0.2 | 212.8 ± 4.2 | 467.3 ± 7.4 1 | 254.5 ± 4.1 1 |
Correlations for Consumption of Concentrate Feed (r) | Correlations for Consumption of Roughage (r) | ||||
---|---|---|---|---|---|
Group AT (r) | Group C (r) | Difference (z) | Group C (r) | Group AT (r) | Difference (z) |
−0.471 | −0.138 | −3.71 | 0.543 | 0.108 | 4.97 |
p < 0.0001 | p = 0.026 | p = 0.0001 | p < 0.0001 | p = 0.06 | p < 0.0001 |
Group | Mean Carcass Weight per Group of Animals (kg) | Mean Carcass Yield per Group of Animals (%) | Median Carcass Conformation Class per Group of Animals | Median Carcass Fat Cover Class per Group of Animals | Mean Coefficient for Carcass Conformation Class and Fat Cover Class per Group of Animals |
---|---|---|---|---|---|
AT (n = 12) | 350.5 ± 4.3 | 61.5% ± 0.2% | U (min: R–max: E) | 2 (min: 4–max: 2) | 0.43 ± 0.05 |
C (n = 12) | 262.1 ± 4.2 | 56.1% ± 0.3% | R (min: O–max: U) | 3 (min: 4–max: 2) | 0.20 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arsenopoulos, K.V.; Katsarou, E.I.; Mendoza Roldan, J.A.; Fthenakis, G.C.; Papadopoulos, E. Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions. Pathogens 2022, 11, 955. https://doi.org/10.3390/pathogens11090955
Arsenopoulos KV, Katsarou EI, Mendoza Roldan JA, Fthenakis GC, Papadopoulos E. Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions. Pathogens. 2022; 11(9):955. https://doi.org/10.3390/pathogens11090955
Chicago/Turabian StyleArsenopoulos, Konstantinos V., Eleni I. Katsarou, Jairo A. Mendoza Roldan, George C. Fthenakis, and Elias Papadopoulos. 2022. "Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions" Pathogens 11, no. 9: 955. https://doi.org/10.3390/pathogens11090955
APA StyleArsenopoulos, K. V., Katsarou, E. I., Mendoza Roldan, J. A., Fthenakis, G. C., & Papadopoulos, E. (2022). Haemonchus contortus Parasitism in Intensively Managed Cross-Limousin Beef Calves: Effects on Feed Conversion and Carcass Characteristics and Potential Associations with Climatic Conditions. Pathogens, 11(9), 955. https://doi.org/10.3390/pathogens11090955