Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Data Collection and Analysis
2.1. Searching Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Meta-Analysis
2.5. Molecular Analysis
3. Eligible Studies on TBPs in Animals in Egypt
4. TBPs in Cattle and Buffaloes in Egypt
5. TBPs in Sheep and Goats in Egypt
6. TBPs in Equines in Egypt
7. TBPs in Dromedary Camels in Egypt
8. TBPs in Dogs in Egypt
9. Tick-Associated Pathogens in Egypt
10. Phylogenetic Analysis of Theileria Annulata
11. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suarez, C.E.; Noh, S. Emerging perspectives in the research of bovine babesiosis and anaplasmosis. Vet. Parasitol. 2011, 180, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Garcia, K.; Weakley, M.; Do, T.; Mir, S. Current and Future Molecular Diagnostics of Tick-Borne Diseases in Cattle. Vet. Sci. 2022, 9, 241. [Google Scholar]
- Schnittger, L.; Rodriguez, A.E.; Florin-Christensen, M.; Morrison, D.A. Babesia: A world emerging. Infect. Genet. Evol. 2012, 12, 1788–1809. [Google Scholar] [CrossRef] [PubMed]
- Schreeg, M.E.; Marr, H.S.; Tarigo, J.L.; Cohn, L.A.; Bird, D.M.; Scholl, E.H.; Levy, M.G.; Wiegmann, B.M.; Birkenheuer, A.J. Mitochondrial genome sequences and structures aid in the resolution of Piroplasmida phylogeny. PLoS ONE 2016, 11, e0165702. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Olano, J.P.; McBride, J.W.; Walker, D.H. Emerging pathogens: Challenges and successes of molecular diagnostics. J. Mol. Diagn. 2008, 10, 185–197. [Google Scholar] [CrossRef]
- Uilenberg, G.; Gray, J.; Kahl, O. Research on Piroplasmorida and other tick-borne agents: Are we going the right way? Ticks Tick Borne Dis. 2018, 9, 860–863. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.; Glass, A.; Probst, J.; Strube, C. Tick-borne zoonoses and commonly used diagnostic methods in human and veterinary medicine. Parasitol. Res. 2021, 120, 4075–4090. [Google Scholar] [CrossRef] [PubMed]
- Mans, B.J. The basis of molecular diagnostics for piroplasmids: Do the sequences lie? Ticks Tick Borne Dis. 2022, 13, 101907. [Google Scholar] [CrossRef] [PubMed]
- Dantas-Torres, F.; Chomel, B.B.; Otranto, D. Ticks and tick-borne diseases: A One Health perspective. Trends Parasitol. 2012, 28, 437–446. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations. The Long-Term Future of Livestock and Fishery in Egypt—Production Targets in the Face of Uncertainty; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 22 May 2022).
- Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2021; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021. [Google Scholar] [CrossRef]
- Pfäffle, M.; Littwin, N.; Muders, S.V.; Petney, T.N. The ecology of tick-borne diseases. Int. J. Parasitol. 2013, 43, 1059–1077. [Google Scholar] [CrossRef]
- De la Fuente, J.; Villar, M.; Cabezas-Cruz, A.; Estrada-Pena, A.; Ayllon, N.; Alberdi, P. Tick–host–pathogen interactions: Conflict and cooperation. PLoS Pathog. 2016, 12, e1005488. [Google Scholar] [CrossRef] [PubMed]
- Perveen, N.; Muzaffar, S.B.; Al-Deeb, M.A. Ticks and Tick-Borne Diseases of Livestock in the Middle East and North Africa: A Review. Insects 2021, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Wallace, B.C.; Dahabreh, I.J.; Trikalinos, T.A.; Lau, J.; Trow, P.; Schmid, C.H. Closing the gap between methodologists and end-users: R as a computational back-end. J. Stat. Softw. 2012, 49, 1–15. [Google Scholar]
- Hunter, J.P.; Saratzis, A.; Sutton, A.J.; Boucher, R.H.; Sayers, R.D.; Bown, M.J. In meta-analyses of proportion studies, funnel plots were found to be an inaccurate method of assessing publication bias. J. Clin. Epidemiol. 2014, 67, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Maddison, D.R.; Swofford, D.L.; Maddison, W.P. NEXUS: An extensible file format for systematic information. Syst. Biol. 1997, 46, 590–621. [Google Scholar] [PubMed]
- Leigh, J.W.; Bryant, D. Popart: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015, 6, 1110–1116. [Google Scholar]
- Ghoneim, A.; El-Fayomy, A. Targeting tams-1 gene results in underestimation of Theileria annulata infection in diseased cattle in Egypt. Acta Parasitol. 2014, 59, 85–90. [Google Scholar] [PubMed]
- AL-Hosary, A.A.T.; Ahmed, L.S.; Seitzer, U. Diagnostic and genetic studies of Theileria annulata with special reference to genetic polymorphism of Theileria annulata merozoite surface (Tams-1) antigen. Assiut Vet. Med. J. 2015, 61, 130–135. [Google Scholar]
- Elsify, A.; Sivakumar, T.; Nayel, M.; Salama, A.; Elkhtam, A.; Rizk, M.; Mosaab, O.; Sultan, K.; Elsayed, S.; Igarashi, I.; et al. An epidemiological survey of bovine Babesia and Theileria parasites in cattle, buffaloes, and sheep in Egypt. Parasitol. Int. 2015, 64, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Rizk, M.; Salama, A.; El-Sayed, S.A.-E.; ElSify, A.; El-Ashker, M.; Ibrahim, H.; Youssef, M.; El-Khodery, S. Animal level risk factors associated with Babesia and Theileria infections in cattle in Egypt. Acta Parasitol. 2017, 62, 796–804. [Google Scholar] [CrossRef]
- Al-Hosary, A.; Ahmed, L.; Ahmed, J.; Nijhof, A.; Clausen, P.-H. Epidemiological study on tropical theileriosis (Theileria annulata infection) in the Egyptian Oases with special reference to the molecular characterization of Theileria spp. Ticks Tick Borne Dis. 2018, 9, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Anter, R.G.; Shawky, M.; Elsohaby, I.; Hassanen, E.A.A. Molecular and microscopical identification of bovine Theileria species isolates in Sharkia Governorate, Egypt. J. Egypt. Vet. Med. Soc. Parasitol. 2019, 15, 52–63. [Google Scholar]
- El-Dakhly, K.M.; Arafa, W.M.; Soliman, S.; Abdel-Fatah, O.R.; Wahba, A.A.; Esteve-Gasent, M.D.; Holman, P.J. Molecular detection, phylogenetic analysis, and genetic diversity of Theileria annulata, Babesia bigemina, and Anaplasma marginale in cattle in three districts of Egypt. Acta Parasitol. 2020, 65, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, H.H.; Amanzougaghene, N.; Dahmana, H.; Louni, M.; Raoult, D.; Mediannikov, O. Multiple vector-borne pathogens of domestic animals in Egypt. PLoS Negl. Trop. Dis. 2021, 15, e0009767. [Google Scholar] [CrossRef] [PubMed]
- AL-Hosary, A.H.; Răileanu, C.; Tauchmann, O.; Fischer, S.; Nijhof, A.M.; Silaghi, C. Tick species identification and molecular detection of tick-borne pathogens in blood and ticks collected from cattle in Egypt. Ticks Tick Borne Dis. 2021, 12, 101676. [Google Scholar] [CrossRef]
- Barghash, S.M. Molecular prevalence and phylogeny of some tick-borne parasites in ruminants in Sinai Peninsula, Egypt. Eur. J. Biomed. Pharm. Sci. 2022, 9, 15–25. [Google Scholar]
- Selim, A.; Weir, W.; Khater, H. Prevalence and risk factors associated with tropical theileriosis in Egyptian dairy cattle. Vet. World 2022, 15, 919–924. [Google Scholar]
- Al-Hosary, A.A.; ElSify, A.; Salama, A.A.; Nayel, M.; Elkhtam, A.; Elmajdoub, L.O.; Rizk, M.A.; Hawash, M.M.; Al-Wabel, M.A.; Almuzaini, A.M.; et al. Phylogenetic study of Theileria ovis and Theileria lestoquardi in sheep from Egypt: Molecular evidence and genetic characterization. Veter. World 2021, 14, 634–639. [Google Scholar] [CrossRef]
- Abdullah, H.H.; Aboelsoued, D.; Farag, T.K.; Abdel-Shafy, S.; Megeed, K.N.A.; Parola, P.; Raoult, D.; Mediannikov, O. Molecular characterization of some equine vector-borne diseases and associated arthropods in Egypt. Acta Trop. 2021, 227, 106274. [Google Scholar] [CrossRef]
- Nashwan, M.S.; Shahid, S.; Abd Rahim, N. Unidirectional trends in annual and seasonal climate and extremes in Egypt. Theor. Appl. Climatol. 2018, 136, 457–473. [Google Scholar] [CrossRef]
- Somparn, P.; Gibb, M.J.; Markvichitr, K.; Chaiyabutr, N.; Thummabood, S.; Vajrabukka, C. Analysis of climatic risk for cattle and buffalo production in northeast Thailand. Int. J. Biometeorol. 2004, 49, 59–64. [Google Scholar] [CrossRef]
- Da Silva, J.B.; André, M.R.; da Fonseca, A.H.; de Albuquerque Lopes, C.T.; da Silva Lima, D.H.; de Andrade, S.J.T.; Oliveira, C.M.C.; Barbosa, J.D. Molecular and serological prevalence of Babesia bovis and Babesia bigemina in water buffaloes in the north region of Brazil. Vet. Parasitol. 2013, 197, 678–681. [Google Scholar] [CrossRef]
- Prado, I.C.B.; Capuno, L.X.B., Jr.; Collera, P.D.; Cabralda, A.P.D.; De Ramos, K.A.S.; Bernardo, J.M.G.; Divina, B.P.; Masatani, T.; Tanaka, T.; Galay, R.L. Molecular Detection and Characterization of Babesia and Theileria in Cattle and Water Buffaloes from Southern Luzon, Philippines. Microorganisms 2022, 10, 678. [Google Scholar] [CrossRef] [PubMed]
- Jabbar, A.; Abbas, T.; Sandhu, Z.-U.; A Saddiqi, H.; Qamar, M.F.; Gasser, R.B. Tick-borne diseases of bovines in Pakistan: Major scope for future research and improved control. Parasites Vectors 2015, 8, 1–13. [Google Scholar] [CrossRef] [PubMed]
- De la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-pathogen interactions and vector competence: Identification of molecular drivers for tick-borne diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [PubMed]
- Gebrekidan, H.; Perera, P.K.; Ghafar, A.; Abbas, T.; Gasser, R.B.; Jabbar, A. An appraisal of oriental theileriosis and the Theileria orientalis complex, with an emphasis on diagnosis and genetic characterisation. Parasitol. Res. 2019, 119, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Kocan, K.M.; de la Fuente, J.; Blouin, E.F.; Coetzee, J.F.; Ewing, S. The natural history of Anaplasma marginale. Veter- Parasitol. 2010, 167, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Stuen, S. Haemoparasites—Challenging and Wasting Infections in Small Ruminants: A Review. Animals 2020, 10, 2179. [Google Scholar] [CrossRef]
- Körner, S.; Makert, G.R.; Ulbert, S.; Pfeffer, M.; Mertens-Scholz, K. The prevalence of Coxiella Burnetii in hard ticks in Europe and their role in Q fever transmission revisited—A systematic review. Front. Vet. Sci. 2021, 8, 655715. [Google Scholar] [CrossRef]
- Yessinou, R.E.; Katja, M.S.; Heinrich, N.; Farougou, S. Prevalence of Coxiella-infections in ticks-review and meta-analysis. Ticks Tick Borne Dis. 2022, 13, 101926. [Google Scholar] [CrossRef] [PubMed]
- Abushahba, M.F.N.; Abdelbaset, A.E.; Rawy, M.S.; Ahmed, S.O. Cross-sectional study for determining the prevalence of Q fever in small ruminants and humans at El Minya Governorate, Egypt. BMC Res. Notes 2017, 10, 538. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Ali, A.-F.; Moustafa, S.M.; Ramadan, E. Molecular and serological data supporting the role of Q fever in abortions of sheep and goats in northern Egypt. Microb. Pathog. 2018, 125, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Klemmer, J.; Njeru, J.; Emam, A.; El-Sayed, A.; Moawad, A.A.; Henning, K.; Elbeskawy, M.A.; Sauter-Louis, C.; Straubinger, R.K.; Neubauer, H.; et al. Q fever in Egypt: Epidemiological survey of Coxiella burnetii specific antibodies in cattle, buffaloes, sheep, goats and camels. PLoS ONE 2018, 13, e0192188. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moein, K.A.; Hamza, D.A. The burden of Coxiella burnetii among aborted dairy animals in Egypt and its public health implications. Acta Trop. 2017, 166, 92–95. [Google Scholar] [CrossRef] [PubMed]
- Selim, A.; Abdelrahman, A.; Thiéry, R.; Sidi-Boumedine, K. Molecular typing of Coxiella burnetii from sheep in Egypt. Comp. Immunol. Microbiol. Infect. Dis. 2019, 67, 101353. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.N.; Kappmeyer, L.S.; Mealey, R.H.; Knowles, D.P. Review of Equine Piroplasmosis. J. Vet. Intern. Med. 2013, 27, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, C.M. Equine piroplasmosis. J. Equine Vet. Sci. 2013, 33, 497–508. [Google Scholar] [CrossRef]
- Onyiche, T.E.; Suganuma, K.; Igarashi, I.; Yokoyama, N.; Xuan, X.; Thekisoe, O. A review on equine piroplasmosis: Epidemiology, vector ecology, risk factors, host immunity, diagnosis and control. Int. J. Environ. Res. Public Health 2019, 16, 1736. [Google Scholar] [CrossRef] [PubMed]
- Khalafalla, A.I.; Hussein, M.F. Infectious Diseases of Dromedary Camels; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Zarrin, M.; Riveros, J.L.; Ahmadpour, A.; de Almeida, A.M.; Konuspayeva, G.; Vargas-Bello-Pérez, E.; Faye, B.; Hernández-Castellano, L.E. Camelids: New players in the international animal production context. Trop. Anim. Health Prod. 2020, 52, 903–913. [Google Scholar] [CrossRef] [PubMed]
- United States Food and Drug Administration (FDA). Fatalities Reported to FDA Following Blood Collection and Transfusion: Annual Summary for Fiscal Year 2014; United States Food and Drug Administration (FDA): Silver Spring, MD, USA, 2015. [Google Scholar]
- Shaw, S.E.; Day, M.J.; Birtles, R.J.; Breitschwerdt, E.B. Tick-borne infectious diseases of dogs. Trends Parasitol. 2001, 17, 74–80. [Google Scholar] [CrossRef]
- Araya-Anchetta, A.; Busch, J.D.; Scoles, G.A.; Wagner, D.M. Thirty years of tick population genetics: A comprehensive review. Infect. Genet. Evol. 2015, 29, 164–179. [Google Scholar] [CrossRef]
- Napp, S.; Chevalier, V.; Busquets, N.; Calistri, P.; Casal, J.; Attia, M.; Elbassal, R.; Hosni, H.; Farrag, H.; Hassan, N.; et al. Understanding the legal trade of cattle and camels and the derived risk of Rift Valley Fever introduction into and transmission within Egypt. PLoS Negl. Trop. Dis. 2018, 12, e0006143. [Google Scholar] [CrossRef]
- Younan, M.; Bornstein, S.; Gluecks, I.V. MERS and the dromedary camel trade between Africa and the Middle East. Trop. Anim. Heal. Prod. 2016, 48, 1277–1282. [Google Scholar] [CrossRef] [PubMed]
- Sikkema, R.S.; Farag, E.A.B.A.; Islam, M.; Atta, M.; Reusken, C.B.E.M.; Al-Hajri, M.M.; Koopmans, M.P.G. Global status of Middle East respiratory syndrome coronavirus in dromedary camels: A systematic review. Epidemiol. Infect. 2019, 147, e84. [Google Scholar] [CrossRef] [PubMed]
- Cacciò, S.M.; Antunovic, B.; Moretti, A.; Mangili, V.; Marinculic, A.; Baric, R.R.; Slemenda, S.B.; Pieniazek, N.J. Molecular characterisation of Babesia canis canis and Babesia canis vogeli from naturally infected European dogs. Veter. Parasitol. 2002, 106, 285–292. [Google Scholar] [CrossRef]
- Irwin, P.J. Canine babesiosis: From molecular taxonomy to control. Parasites Vectors 2009, 2, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bandara, K.J.; Karunaratne, S.P. Mechanisms of acaricide resistance in the cattle tick Rhipicephalus (Boophilus) microplus in Sri Lanka. Pestic. Biochem. Physiol. 2017, 139, 68–72. [Google Scholar] [CrossRef] [PubMed]
- McCoy, K.D.; Léger, E.; Dietrich, M. Host specialization in ticks and transmission of tick-borne diseases: A review. Front. Cell. Infect. Microbiol. 2013, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Nava, S.; Guglielmone, A.A. A meta-analysis of host specificity in Neotropical hard ticks (Acari: Ixodidae). Bull. Entomol. Res. 2013, 103, 216–224. [Google Scholar] [PubMed]
- Samaha, H.; Al-Rowaily, M.; Khoudair, R.M.; Ashour, H.M. Multicenter study of brucellosis in Egypt. Emerg. Infect. Dis. 2008, 14, 1916. [Google Scholar] [PubMed]
- Abdelbaset, A.E.; Abushahba, M.F.; Hamed, M.I.; Rawy, M.S. Sero-diagnosis of brucellosis in sheep and humans in Assiut and El-Minya governorates. Egypt. Int. J. Vet. Sci. Med. 2018, 6, S63–S67. [Google Scholar] [CrossRef]
- Cutler, S.J.; Vayssier-Taussat, M.; Estrada-Peña, A.; Potkonjak, A.; Mihalca, A.D.; Zeller, H. Tick-borne diseases and co-infection: Current considerations. Ticks Tick Borne Dis. 2021, 12, 101607. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Chamorro, A.; Hodžić, A.; King, K.C.; Cabezas-Cruz, A. Ecological and evolutionary perspectives on tick-borne pathogen co-infections. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100049. [Google Scholar] [CrossRef] [PubMed]
- Kundave, V.; Nehra, A.K.; Ram, H.; Kumari, A.; Shahzad, M.; Vinay, T.; Garg, R.; Banerjee, P.S.; Singh, G.; Tiwari, A.K. Genetic diversity in the Tams1 gene of Theileria annulata (Duschunkowsky and Luhs, 1904) infecting cattle. Acta Trop. 2021, 224, 106121. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Bhandari, V.; Barman, M.; Kumar, P.; Bhanot, V.; Arora, J.S.; Singh, S.; Sharma, P. Population Genetic Analysis of the Theileria annulata Parasites Identified Limited Diversity and Multiplicity of Infection in the Vaccine From India. Front. Microbiol. 2021, 11, 579929. [Google Scholar] [CrossRef]
- Nehra, A.K.; Kumari, A.; Kundave, V.; Vohra, S.; Ram, H. Molecular insights into the population structure and haplotype network of Theileria annulata based on the small-subunit ribosomal RNA (18S rRNA) gene. Infect. Genet. Evol. 2022, 99, 105252. [Google Scholar] [CrossRef]
- Sivakumar, T.; Hayashida, K.; Sugimoto, C.; Yokoyama, N. Evolution and genetic diversity of Theileria. Infect. Genet. Evol. 2014, 27, 250–263. [Google Scholar] [CrossRef]
Pathogens and Diseases | Animals | Methods | Country | Databases |
---|---|---|---|---|
tick-borne diseases Babesia babesiosis Theileria theileriosis Anaplasma anaplasmosis Coxiella burnetii Q fever Ehrlichia ehrlichiosis Rickettsia rickettsioses Borrelia borreliosis CCHF Crimean–Congo haemorrhagic fever | cattle buffaloes sheep goats camels equines horses donkeys dogs | Molecular PCR | Egypt | PubMed Scopus ScienceDirec tEgyptian Knowledge Bank Google Scholar |
Host | Species | Marker | GenBank Accession Number | Length (bp) | Reference |
---|---|---|---|---|---|
Cattle | T. annulata | Tams-1 | KF765518 and KF765519 | 276 | [20] |
Cattle | T. annulata | Tams-1 | KJ021626–KJ021629 | 777–789 | [21] |
Cattle | T. annulata | Tams-1 | AB917275–AB917302 | 771–783 | [22] |
Cattle | T. annulata | Tams-1 | AB917275, AB917298, AB917299, AB917300, and AB917302 | 771–783 | [23] |
Cattle | T. annulata | 18S rRNA | KU550947–KU550959 | 414–437 | [24] |
Cattle | T. annulata | Tams1 | MN251047 | 702 | [25] |
Cattle | T. annulata | Tams1 | MH796632–MH796634 | 622 | [26] |
Cattle | T. annulata | 18S rRNA | MN625888 and MN625889 | 910, 912 | [27] |
Cattle | T. annulata | 18S rRNA | MN223728–MN223737 | 535–631 | [28] |
Cattle | T. annulata | Tams-1 | MZ197896 | 636 | [29] |
Cattle | T. annulata | Tams-1 | LC549653 and LC549654 | 620 | [30] |
Buffalo | T. annulata | Tams1 | MN251046 | 702 | [25] |
Buffalo | T. ovis | 18S rRNA | MN625887 | 919 | [27] |
Sheep | T. ovis | 18S rRNA | MN625886 | 919 | [27] |
Sheep | T. ovis T. lestoquardi | 18S rRNA | AB986193 and AB986194 KY494648–KY494650 KY494651 | 434 391–395 416 | [31] |
Sheep | T. annulata | Tams1 | MZ197898 | 636 | [29] |
Goats | T. annulata | Tams1 | MZ197897 | 636 | [29] |
Horses | T. equi | 18S rRNA | MN625897 and MN625898 | 924 | [32] |
Horses | T. sp. Africa | 18S rRNA | MN625899–MN625902 | 920–925 | [32] |
Donkeys | T. ovis | 18S rRNA | MN625903 | 919 | [32] |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 14 | 3203 | 525 | 16.0 (10.9–21.0) | 95.6 |
B. bigemina | 12 | 2855 | 328 | 10.1 (6.3–13.8) | 96.7 |
B. bovis | 9 | 2129 | 177 | 9.5 (6.0–13.0) | 90.6 |
B. ovis | 1 | 164 | 12 | 7.3 (3.3–11.3) | N/A |
B. occultans | 1 | 309 | 1 | 0.3 (−0.3–1.0) | N/A |
Babesia spp. | 1 | 164 | 13 | 7.9 (3.8–12.1) | N/A |
Theileria | 16 | 4620 | 1324 | 36.0 (23.4–48.7) | 99.5 |
T. annulata | 13 | 3865 | 1200 | 30.8 (18.9–42.7) | 98.9 |
T. orientalis | 3 | 1378 | 50 | 3.0 (0.3–5.6) | 94.9 |
Anaplasma | 9 | 1745 | 510 | 43.9 (4.8–83.1) | 99.9 |
A. marginale | 7 | 1601 | 328 | 21.2 (4.6–37.7) | 98.7 |
A. centrale | 2 | 128 | 2 | 1.4 (0.6–3.4) | 0.0 |
A. platys-like | 2 | 180 | 16 | 8.3 (2.1–18.8) | 85.3 |
A. platy | 1 | 309 | 26 | 8.4 (5.3–11.5) | N/A |
A. phagocytophilum | 1 | 40 | 6 | 15.0 (3.9–26.1) | N/A |
A. ovis | 1 | 88 | 3 | 3.4 (0.4–7.2) | N/A |
Anaplasma spp. | 1 | 40 | 10 | 25.0 (11.6–38.4) | N/A |
Bartonella | 2 | 200 | 6 | 2.6 (−2.1–7.2) | 77.6 |
Borrelia | 3 | 225 | 8 | 2.9 (1.1–7.0) | 62.6 |
Borrelia theileri | 2 | 200 | 1 | 0.7 (−0.5–1.9) | 0.0 |
Borrelia burgdorferi | 2 | 96 | 25 | 23.7 (10.5–36.9) | 54.9 |
C. burnetti | 3 | 152 | 12 | 7.2 (1.8–16.2) | 88.1 |
Rickettsia | 3 | 240 | 6 | 1.1 (−1.2–3.3) | 69.6 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 5 | 398 | 21 | 3.6 (0.6–6.6) | 69.2 |
B. bigemina | 4 | 408 | 12 | 1.9 (0.1–3.9) | 65.7 |
B. bovis | 4 | 368 | 9 | 2.1 (0.6–3.5) | 0.0 |
Theileria | 4 | 247 | 4 | 1.0 (0.2–2.2) | 0.0 |
T. annulata | 2 | 107 | 12 | 24.4 (−23.4–72.2) | 95.2 |
T. orientalis | 1 | 50 | 1 | 2.0 (−1.9–5.9) | N/A |
T. ovis | 1 | 26 | 2 | 7.7 (−2.6–17.9) | N/A |
Anaplasma | 4 | 347 | 132 | 26.9 (7.3–61.1) | 99.1 |
A. marginale | 3 | 321 | 141 | 37.5 (10.4–85.8) | 99.4 |
A. platy-like | 1 | 26 | 2 | 7.7 (2.6–17.9) | N/A |
A. platys | 1 | 85 | 4 | 4.7 (0.9–9.2) | N/A |
Bartonella | 2 | 52 | 3 | 5.0 (−3.9–13.9) | 51 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 3 | 279 | 14 | 3.8 (0.4–8.1) | 79.1 |
B. bovis | 3 | 279 | 12 | 2.7 (0.7–6.2) | 79.4 |
B. bigemina | 1 | 105 | 2 | 1.9 (0.7–4.5) | N/A |
B. ovis | 1 | 66 | 6 | 9.1 (2.2–16.0) | N/A |
Theileria | 3 | 281 | 33 | 11 (2.3–19.7) | 83.2 |
T. annulata | 1 | 108 | 22 | 20.4 (12.8–28.0) | N/A |
T. ovis | 2 | 173 | 10 | 5.3 (1.8–8.8) | 5.8 |
T. lestoquardi | 1 | 115 | 1 | 0.9 (−0.8–2.6) | N/A |
Anaplasma | 4 | 599 | 106 | 16.1 (6.6–23.5) | 89.4 |
A. marginale | 2 | 178 | 4 | 2.0 (0.0–4.1) | 0.0 |
A. ovis | 3 | 536 | 61 | 7.1 (1.0–15.1) | 93.6 |
A. phagocytophilum | 1 | 120 | 12 | 10.0 (4.6–15.4) | N/A |
A. platys | 1 | 120 | 2 | 1.7 (0.6–4.0) | N/A |
A. platys-like | 1 | 58 | 1 | 1.7 (−1.6–5.1) | N/A |
Anaplasma spp. | 1 | 120 | 20 | 16.7 (10.0–23.3) | N/A |
Bartonella | 2 | 96 | 3 | 3.1 (−3.3–9.6) | 58.6 |
Borrelia theileri | 1 | 58 | 2 | 3.4 (1.2–8.1) | NA |
Rickettsia | 2 | 168 | 30 | 13.7 (−12.1–39.6) | 97.2 |
C. burnetti | 6 | 369 | 94 | 45.3 (9.5–81.2) | 99.5 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia bovis | 1 | 48 | 8 | 16.7 (6.1–27.2) | N/A |
Theileria Annulata | 1 | 48 | 24 | 50.0 (35.9–64.1) | N/A |
Bartonella | 2 | 61 | 1 | 2.0 (−1.5–5.5) | 0.0 |
C. burnetti | 5 | 187 | 46 | 29.4 (6.2–52.7) | 97.1 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 2 (B. caballi) | 167 | 18 | 9.8 (−7.8–27.5) | 94.1 |
Theileria | 6 | 847 | 229 | 34.1 (12.9–55.3) | 98.7 |
T. equi | 6 | 847 | 181 | 25.4 (7.3–43.5) | 98.5 |
T. haneyi | 1 | 79 | 42 | 53.2 (42.2–64.2) | N/A |
T. sp. Africa | 1 | 320 | 9 | 2.8 (1.0–4.6) | N/A |
Bartonella | 2 | 328 | 1 | 0.8 (−4.6–6.1) | 10.2 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 2 (B. caballi) | 127 | 8 | 7.2 (−7.2–21.5) | 88.1 |
Theileria | 7 | 524 | 158 | 30.6 (14.0–47.2) | 95.2 |
T. equi | 6 | 510 | 145 | 3.6 (13.4–57.7) | 95.9 |
T. haneyi | 1 | 76 | 29 | 38.2 (27.2–49.1) | N/A |
T. ovis | 1 | 15 | 2 | 13.3 (−3.9–30.5) | N/A |
Anaplasma | 1 | 15 | 4 | 26.7 (4.3–49.2) | N/A |
A. marginale | 1 | 15 | 2 | 13.3 (−3.9–30.5) | N/A |
A. ovis | 1 | 15 | 2 | 13.3 (−3.9–30.5) | N/A |
Bartonella | 2 | 37 | 2 | 5.1 (−1.8–12.1) | 0.0 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 3 | 615 | 82 | 11.0 (0.7–21.2) | 95.0 |
B. bovis | 2 | 473 | 40 | 6.8 (1.1–14.7) | 92.5 |
B. bigemina | 1 | 331 | 25 | 7.6 (4.7–10.4) | N/A |
B. microti | 1 | 142 | 17 | 12.0 (6.6–17.3) | N/A |
Theileria | 2 | 361 | 259 | 71.8 (67.1–76.4) | 0.0 |
T. annulata | 1 | 30 | 18 | 60.0 (42.5–77.5) | N/A |
T. camelensis | 1 | 331 | 238 | 71.9 (67.1–76.7) | N/A |
Theileria spp. | 1 | 30 | 3 | 10.0 (0.7–20.7) | N/A |
Anaplasma | 4 | 690 | 327 | 40.5 (6.4–74.6) | 99.2 |
A. marginale | 3 | 590 | 234 | 25.7 (13.8–65.1) | 99.7 |
A. centrale | 2 | 441 | 178 | 28.7 (16.9–74.3) | 99.4 |
A. phagocytophilum | 1 | 110 | 20 | 18.2 (11.0–25.4) | N/A |
A. ovis | 1 | 110 | 6 | 5.5 (1.2–9.7) | N/A |
A. bovis | 1 | 110 | 5 | 4.5 (0.7–8.4) | N/A |
A. platys | 2 | 259 | 6 | 2.2 (−1.5–5.8) | 70.4 |
A. platys-like | 1 | 149 | 8 | 5.4 (1.7–9.0) | N/A |
Ca. An. cameli | 1 | 100 | 29 | 29.0 (20.1–37.9) | N/A |
Anaplasma spp. | 1 | 110 | 13 | 11.8 (5.8–17.9) | N/A |
C. burnetti | 3 | 374 | 71 | 20.8 (3.8–45.3) | 98.3 |
Rickettsia | 3 | 330 | 91 | 31.9 (8.4–72.2) | 98.9 |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Babesia | 6 | 924 | 105 | 22.8 (13.0–32.7) | 98.9 |
B. vogeli | 3 | 592 | 90 | 16.3 (1.5–31.1) | 95.8 |
B. canis | 1 | 203 | 1 | 0.5 (−0.5–1.5) | N/A |
Anaplasma | 3 | 819 | 40 | 3.5 (0.1–6.9) | 87.5 |
A. platys | 2 | 703 | 39 | 5.0 (2.1–7.9) | 67.4 |
Borrelia | 4 | 445 | 8 | 0.8 (−0.7–2.4) | 64.2 |
B. burgdorferi | 2 | 126 | 7 | 10.5 (10.9–31.9) | 85.8 |
Ehrlichia | 2 | 516 | 41 | 5.7 (−0.2–13.6) | 94.3 |
Rickettsia | 1 | 203 | 3 | 1.5 (−0.2–3.1) | N/A |
Parameter | No. Data Sets | No. Tested | No. Positive | Pooled Estimate % Based on 95% CI | Heterogeneity I2% |
---|---|---|---|---|---|
Rhipicephalus | 22 | 5053 | 249 | 10.1 (7.3–13.0) | 95.7 |
Babesia * | 3 | 372 | 123 | 40.6 (7.1–88.2) | 99.3 |
B. bovis | 1 | 100 | 55 | 55.0 (45.2–64.8) | N/A |
B. bigemina | 2 | 272 | 68 | 33.4 (−30.1–97.0) | 99.4 |
Anaplasma * | 4 | 679 | 59 | 4.5 (0.8–9.8) | 93.2 |
A. marginale | 1 | 61 | 1 | 1.6 (−1.5–4.8) | N/A |
A. platys | 1 | 156 | 2 | 1.3 (−0.5–3.0) | N/A |
A. platys-like | 1 | 61 | 1 | 1.6 (−1.5–4.8) | N/A |
A. phagocytophilum | 1 | 401 | 55 | 13.7 (10.3–17.1) | N/A |
Borrelia * | 7 | 439 | 28 | 5.4 (1.6–9.2) | 69.3 |
Borrelia spp. | 1 | 61 | 2 | 3.3 (−1.2–7.7) | N/A |
B. theileri | 2 | 233 | 12 | 4.9 (2.1–7.6) | 0.0 |
B. burgdorferi | 4 | 145 | 14 | 11.4 (0.5–22.4) | 83.5 |
C. burnetti | 1 | 28 | 1 | 3.6 (−3.3–10.4) | N/A |
Ehrlichia | 2 | 217 | 10 | 5.9 (−3.3–15.1) | 80.4 |
Rickettsia | 5 | 3342 | 48 | 10.9 (3.9–17.9) | 93.6 |
Ornithodoros | 1 (B. burgodorferi) | 47 | 31 | 66.0 (52.4–79.5) | N/A |
Hyalomma | 20 | 3700 | 328 | 21.0 (16.1–26.0) | 97.3 |
B. burgdorferi | 3 | 66 | 22 | 31.9 (14.9–48.9) | 58 |
C. burnetti | 2 | 436 | 27 | 6.2 (3.9–8.4) | 0.0 |
CCHFV | 2 | 1248 | 18 | 1.4 (0.8–2.1) | 0.0 |
Rickettsia | 13 | 1950 | 261 | 27.0 (14.5–39.5) | 97.4 |
Amblyomma | 6 | 224 | 46 | 16.7 (6.9–26.4) | 77.6 |
B. burgdorferi | 1 | 14 | 4 | 28.6 (4.9–52.2) | N/A |
C. burnetti | 2 | 37 | 2 | 5.4 (−1.9–12.7) | 0.0 |
Rickettsia | 3 | 173 | 40 | 22.2 (7.2–37.3) | 84.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Alfy, E.-S.; Abbas, I.; Baghdadi, H.B.; El-Sayed, S.A.E.-S.; Ji, S.; Rizk, M.A. Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 912. https://doi.org/10.3390/pathogens11080912
El-Alfy E-S, Abbas I, Baghdadi HB, El-Sayed SAE-S, Ji S, Rizk MA. Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis. Pathogens. 2022; 11(8):912. https://doi.org/10.3390/pathogens11080912
Chicago/Turabian StyleEl-Alfy, El-Sayed, Ibrahim Abbas, Hanadi B. Baghdadi, Shimaa Abd El-Salam El-Sayed, Shengwei Ji, and Mohamed Abdo Rizk. 2022. "Molecular Epidemiology and Species Diversity of Tick-Borne Pathogens of Animals in Egypt: A Systematic Review and Meta-Analysis" Pathogens 11, no. 8: 912. https://doi.org/10.3390/pathogens11080912