A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population and Data Collection
2.3. Participant Characteristics
2.4. Depression and Cytokine Analysis
3. Results
3.1. Descriptive Statistics
3.2. Participant Characteristics
3.3. Cytokine Panel
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smithburn, K.C.; Hughes, T.P.; Burke, A.W.; Paul, J.H. A Neurotropic Virus Isolated from the Blood of a Native of Uganda. Am. J. Trop. Med. Hyg. 1940, 20, 471–472. [Google Scholar] [CrossRef]
- Nash, D.; O’Leary, D.; Sherman, M. The Outbreak of West Nile Virus Infection in the New York City Area in 1999. N. Engl. J. Med. 2001, 344, 1807–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization West Nile Virus. Available online: https://www.who.int/news-room/fact-sheets/detail/west-nile-virus (accessed on 6 March 2021).
- Suthar, M.S.; Diamond, M.S.; Gale, M., Jr. West Nile Virus Infection and Immunity. Nat. Rev. Microbiol. 2013, 11, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Komar, N.; Panella, N.A.; Burns, J.E.; Dusza, S.W.; Mascarenhas, T.M.; Talbot, T.O. Serologic Evidence for West Nile Virus Infection in Birds in the New York City Vicinity during an Outbreak in 1999. Emerg. Infect. Dis. 2001, 7, 621–625. [Google Scholar] [CrossRef]
- Miller, D.L.; Mauel, M.J.; Baldwin, C.; Burtle, G.; Ingram, D.; Hines, M.E.; Frazier, K.S. West Nile Virus in Farmed Alligators. Emerg. Infect. Dis. 2003, 9, 794–799. [Google Scholar] [CrossRef]
- Marfin, A.A.; Petersen, L.R.; Eidson, M.; Miller, J.; Hadler, J.; Farello, C.; Werner, B.; Campbell, G.L.; Layton, M.; Smith, P.; et al. Widespread West Nile Virus Activity, Eastern United States, 2000. Emerg. Infect. Dis. 2001, 7, 730–735. [Google Scholar] [CrossRef]
- Pealer, L.N.; Marfin, A.A.; Petersen, L.R.; Lanciotti, R.S.; Page, P.L.; Stramer, S.L.; Stobierski, M.G.; Signs, K.; Newman, B.; Kapoor, H.; et al. Transmission of West Nile Virus through Blood Transfusion in the United States in 2002. N. Engl. J. Med. 2003, 349, 1236–1245. [Google Scholar] [CrossRef]
- Iwamoto, M.; Jernigan, D.B.; Guasch, A.; Trepka, M.J.; Blackmore, C.G.; Hellinger, W.C.; Pham, S.M.; Zaki, S.; Lanciotti, R.S.; Lance-Parker, S.E.; et al. Transmission of West Nile Virus from an Organ Donor to Four Transplant Recipients. N. Engl. J. Med. 2003, 348, 2196–2203. [Google Scholar] [CrossRef]
- Alpert, S.G.; Fergerson, J.; Noël, L.-P. Intrauterine West Nile Virus: Ocular and Systemic Findings. Am. J. Ophthalmol. 2003, 136, 733–735. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Possible West Nile Virus Transmission to an Infant through Breast-Feeding—Michigan, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 877–878. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Laboratory-Acquired West Nile Virus Infections—United States, 2002. MMWR Morb. Mortal. Wkly. Rep. 2002, 51, 1133–1135. [Google Scholar]
- Fonseca, K.; Prince, G.D.; Bratvold, J.; Fox, J.D.; Pybus, M.; Preksaitis, J.K.; Tilley, P. West Nile Virus Infection and Conjunctival Exposure. Emerg. Infect. Dis. 2005, 11, 1648. [Google Scholar] [CrossRef] [PubMed]
- McDonald, E. West Nile Virus and Other Domestic Nationally Notifiable Arboviral Diseases—United States, 2018. MMWR Morb. Mortal. Wkly. Rep. 2019, 19, 2949–2954. [Google Scholar] [CrossRef]
- Rosenberg, R. Vital Signs: Trends in Reported Vectorborne Disease Cases—United States and Territories, 2004–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sejvar, J.J. West Nile Virus Infection. Microbiol. Spectr. 2016, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Basset, J.; Burlaud-Gaillard, J.; Feher, M.; Roingeard, P.; Rey, F.A.; Pardigon, N. A Molecular Determinant of West Nile Virus Secretion and Morphology as a Target for Viral Attenuation. J. Virol. 2020, 94, e00086-20. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.A.; Factor, D.L.; Tkachenko, N.; Templeton, S.M.; Crall, N.D.; Pape, W.J.; Bauer, M.J.; Ambruso, D.R.; Dickey, W.C.; Marfin, A.A. West Nile Viremic Blood Donors and Risk Factors for Subsequent West Nile Fever. Vector-Borne Zoonotic Dis. 2007, 7, 479–489. [Google Scholar] [CrossRef]
- Murray, K.; Baraniuk, S.; Resnick, M.; Arafat, R.; Kilborn, C.; Cain, K.; Shallenberger, R.; York, T.L.; Martinez, D.; Hellums, J.S.; et al. Risk Factors for Encephalitis and Death from West Nile Virus Infection. Epidemiol. Infect. 2006, 134, 1325–1332. [Google Scholar] [CrossRef]
- Murray, K.O.; Baraniuk, S.; Resnick, M.; Arafat, R.; Kilborn, C.; Shallenberger, R.; York, T.L.; Martinez, D.; Malkoff, M.; Elgawley, N.; et al. Clinical Investigation of Hospitalized Human Cases of West Nile Virus Infection in Houston, Texas, 2002–2004. Vector-Borne Zoonotic Dis. 2008, 8, 167–175. [Google Scholar] [CrossRef]
- Murray, K.O.; Resnick, M.; Miller, V. Depression after Infection with West Nile Virus. Emerg. Infect. Dis. 2007, 13, 479–481. [Google Scholar] [CrossRef]
- Nolan, M.S.; Hause, A.M.; Murray, K.O. Findings of Long-Term Depression up to 8 Years Post Infection From West Nile Virus. J. Clin. Psychol. 2012, 68, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, A.; Kakoulidis, I.; Butel, D.; Kehagia, E.; Papa, A. Follow-up Study of Greek Patients with West Nile Virus Neuroinvasive Disease. Int. J. Infect. Dis. 2013, 17, e494–e497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klee, A.L.; Maldin, B.; Edwin, B.; Poshni, I.; Mostashari, F.; Fine, A.D.; Layton, M.; Nash, D. Long-Term Prognosis for Clinical West Nile Virus Infection. Emerg. Infect. Dis. 2004, 10, 1405. [Google Scholar] [CrossRef] [PubMed]
- Sejvar, J.J. Neurologic Manifestations and Outcome of West Nile Virus Infection. JAMA 2003, 290, 511. [Google Scholar] [CrossRef] [Green Version]
- Berg, P.J.; Smallfield, S.; Svien, L. An Investigation of Depression and Fatigue Post West Nile Virus Infection. S. Dak. Med. 2010, 63, 127–129, 131–133. [Google Scholar]
- Cruz-Pereira, J.S.; Rea, K.; Nolan, Y.M.; O’Leary, O.F.; Dinan, T.G.; Cryan, J.F. Depression’s Unholy Trinity: Dysregulated Stress, Immunity, and the Microbiome. Annu. Rev. Psychol. 2020, 71, 49–78. [Google Scholar] [CrossRef]
- Green, H.F.; Treacy, E.; Keohane, A.K.; Sullivan, A.M.; O’Keeffe, G.W.; Nolan, Y.M. A Role for Interleukin-1β in Determining the Lineage Fate of Embryonic Rat Hippocampal Neural Precursor Cells. Mol. Cell. Neurosci. 2012, 49, 311–321. [Google Scholar] [CrossRef]
- Keohane, A.; Ryan, S.; Maloney, E.; Sullivan, A.M.; Nolan, Y.M. Tumour Necrosis Factor-α Impairs Neuronal Differentiation but Not Proliferation of Hippocampal Neural Precursor Cells: Role of Hes1. Mol. Cell. Neurosci 2010, 43, 127–135. [Google Scholar] [CrossRef]
- Zhang, J.-M.; An, J. Cytokines, Inflammation and Pain. Int. Anesthesiol. Clin. 2007, 45, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.R. The Functions of Cytokines and Their Uses in Toxicology. Int. J. Exp. Pathol. 2001, 82, 171–192. [Google Scholar] [CrossRef]
- ThermoFischer. Scientific Pro-Inflammatory Cytokines Overview—US. Available online: //www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-analysis-learning-center/immunology-at-work/proinflammatory-cytokines-overview.html (accessed on 19 April 2021).
- Murray, K.O.; Garcia, M.N.; Rahbar, M.H.; Martinez, D.; Khuwaja, S.A.; Arafat, R.R.; Rossmann, S. Survival Analysis, Long-Term Outcomes, and Percentage of Recovery up to 8 Years Post-Infection among the Houston West Nile Virus Cohort. PLoS ONE 2014, 9, e102953. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Zidovec-Lepej, S.; Vilibic-Cavlek, T.; Barbic, L.; Ilic, M.; Savic, V.; Tabain, I.; Ferenc, T.; Grgic, I.; Gorenec, L.; Bogdanic, M.; et al. Antiviral Cytokine Response in Neuroinvasive and Non-Neuroinvasive West Nile Virus Infection. Viruses 2021, 13, 342. [Google Scholar] [CrossRef] [PubMed]
- Vidaña, B.; Johnson, N.; Fooks, A.R.; Sánchez-Cordón, P.J.; Hicks, D.J.; Nuñez, A. West Nile Virus Spread and Differential Chemokine Response in the Central Nervous System of Mice: Role in Pathogenic Mechanisms of Encephalitis. Transbound. Emerg. Dis. 2020, 67, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Gharaee-Kermani, M.; Denholm, E.M.; Phan, S.H. Costimulation of Fibroblast Collagen and Transforming Growth Factor Β1 Gene Expression by Monocyte Chemoattractant Protein-1 via Specific Receptors. J. Biol. Chem. 1996, 271, 17779–17784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, B.; West, N.; Vider, J.; Zhang, P.; Griffiths, R.E.; Wolvetang, E.; Burtonclay, P.; Warrilow, D. Inflammatory Responses to a Pathogenic West Nile Virus Strain. BMC Infect. Dis. 2019, 19, 912. [Google Scholar] [CrossRef]
- Misiak, B.; Bartoli, F.; Carrà, G.; Małecka, M.; Samochowiec, J.; Jarosz, K.; Banik, A.; Stańczykiewicz, B. Chemokine Alterations in Bipolar Disorder: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2020, 88, 870–877. [Google Scholar] [CrossRef]
- de la Peña, F.R.; Cruz-Fuentes, C.; Palacios, L.; Girón-Pérez, M.I.; Medina-Rivero, E.; Ponce-Regalado, M.D.; Alvarez-Herrera, S.; Pérez-Sánchez, G.; Becerril-Villanueva, E.; Maldonado-García, J.L.; et al. Serum Levels of Chemokines in Adolescents with Major Depression Treated with Fluoxetine. World J. Psychiatry 2020, 10, 175–186. [Google Scholar] [CrossRef]
- Leis, A.A.; Grill, M.F.; Goodman, B.P.; Sadiq, S.B.; Sinclair, D.J.; Vig, P.J.S.; Bai, F. Tumor Necrosis Factor-Alpha Signaling May Contribute to Chronic West Nile Virus Post-Infectious Proinflammatory State. Front. Med. 2020, 7, 164. [Google Scholar] [CrossRef]
- Yao, L.; Pan, L.; Qian, M.; Sun, W.; Gu, C.; Chen, L.; Tang, X.; Hu, Y.; Xu, L.; Wei, Y.; et al. Tumor Necrosis Factor-α Variations in Patients With Major Depressive Disorder Before and After Antidepressant Treatment. Front. Psychiatry 2020, 11, 518837. [Google Scholar] [CrossRef]
- Vasek, M.J.; Garber, C.; Dorsey, D.; Durrant, D.M.; Bollman, B.; Soung, A.; Yu, J.; Perez-Torres, C.; Frouin, A.; Wilton, D.K.; et al. A Complement–Microglial Axis Drives Synapse Loss during Virus-Induced Memory Impairment. Nature 2016, 534, 538–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iodice, S.; Ceresa, A.; Esposito, C.; Mucci, F.; Conti, D.; Pergoli, L.; Tarantini, L.; Vigna, L.; Bollati, V.; Buoli, M.; et al. The Independent Role of Body Mass Index (BMI) and Severity of Depressive Symptoms on Biological Changes of Women Affected by Overweight/Obesity. Int. J. Environ. Res. Public Health 2021, 18, 2923. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.E.; Deleger, S.; Strawbridge, W.J.; Kaplan, G.A. Prospective Association between Obesity and Depression: Evidence from the Alameda County Study. Int. J. Obes. 2003, 27, 514–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheppard, D.P.; Woods, S.P.; Hasbun, R.; Salazar, L.; Nolan, M.S.; Murray, K.O. Does Intra-Individual Neurocognitive Variability Relate to Neuroinvasive Disease and Quality of Life in West Nile Virus? J. Neurovirol. 2018, 24, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; Azevedo, I. Chronic Inflammation in Obesity and the Metabolic Syndrome. Mediat. Inflamm. 2010, 2010, e289645. [Google Scholar] [CrossRef] [PubMed]
- Khedr, E.M.; Abo-Elfetoh, N.; Deaf, E.; Hassan, H.M.; Amin, M.T.; Soliman, R.K.; Attia, A.A.; Zarzour, A.A.; Zain, M.; Mohamed-Hussein, A.; et al. Surveillance Study of Acute Neurological Manifestations among 439 Egyptian Patients with COVID-19 in Assiut and Aswan University Hospitals. Neuroepidemiology 2021, 52, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Vrillon, A.; Carle, G.; Berzero, G.; Honnorat, J.; Huberfeld, G.; Psimaras, D.; Azuar, C. Psychiatric Symptoms in Anti Glutamic Acid Decarboxylase Associated Limbic Encephalitis in Adults: A Systematic Review. Neurosci. Biobehav. Rev. 2020, 119, 128–137. [Google Scholar] [CrossRef]
- Shorter, E. The First Psychiatric Pandemic: Encephalitis Lethargica, 1917–27. Med. Hypotheses 2021, 146, 110420. [Google Scholar] [CrossRef]
- Huang, Y.-Q.; Xiong, H. Anti-NMDA Receptor Encephalitis: A Review of Mechanistic Studies. Int. J. Physiol. Pathophysiol. Pharmacol. 2021, 13, 1. [Google Scholar]
- Clé, M.; Desmetz, C.; Barthelemy, J.; Martin, M.-F.; Constant, O.; Maarifi, G.; Foulongne, V.; Bolloré, K.; Glasson, Y.; De Bock, F.; et al. Zika Virus Infection Promotes Local Inflammation, Cell Adhesion Molecule Upregulation, and Leukocyte Recruitment at the Blood-Brain Barrier. mBio 2020, 11, e01183-20. [Google Scholar] [CrossRef]
- Clé, M.; Eldin, P.; Briant, L.; Lannuzel, A.; Simonin, Y.; Van de Perre, P.; Cabié, A.; Salinas, S. Neurocognitive Impacts of Arbovirus Infections. J. Neuroinflamm. 2020, 17, 233. [Google Scholar] [CrossRef] [PubMed]
- Soung, A.; Klein, R.S. Viral Encephalitis and Neurologic Diseases: Focus on Astrocytes. Trends Mol. Med. 2018, 24, 950–962. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.M.; Altman, D.G. Multiple Significance Tests: The Bonferroni Method. BMJ 1995, 310, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perneger, T.V. What’s Wrong with Bonferroni Adjustments. BMJ 1998, 316, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.R.; Fresard, L.; Knowles, D.A.; Pala, M.; Bustamante, C.D.; Battle, A.; Montgomery, S.B. An Efficient Multiple-Testing Adjustment for EQTL Studies That Accounts for Linkage Disequilibrium between Variants. Am. J. Hum. Genet. 2016, 98, 216–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. Poisson Approximation for Significance in Genome-Wide ChIP-Chip Tiling Arrays. Bioinformatics 2008, 24, 2825–2831. [Google Scholar] [CrossRef] [PubMed]
- Carleton, R.N.; Thibodeau, M.A.; Teale, M.J.N.; Welch, P.G.; Abrams, M.P.; Robinson, T.; Asmundson, G.J.G. The Center for Epidemiologic Studies Depression Scale: A Review with a Theoretical and Empirical Examination of Item Content and Factor Structure. PLoS ONE 2013, 8, e58067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, J.W.; Russo, S.J.; Ferguson, D.; Nestler, E.J.; Duman, R.S. Nuclear Factor-ΚB Is a Critical Mediator of Stress-Impaired Neurogenesis and Depressive Behavior. Proc. Natl. Acad. Sci. USA 2010, 107, 2669–2674. [Google Scholar] [CrossRef] [Green Version]
- American Psychological Association (APA). Depression Assessment Instruments. Available online: https://www.apa.org/depression-guideline/assessment (accessed on 9 April 2021).
All Participants (n = 53) | Self-Reported New Onset Depression Following WNV (n = 31) | Clinical Evidence of Depression with CES-D Scores ≥ 15 (n = 21) | |||||
---|---|---|---|---|---|---|---|
p-Value † | Odds Ratio (95% CI) | p-Value † | Odds Ratio (95% CI) | ||||
Patient Demographics | |||||||
Sex, n (%) | |||||||
Male | 28 (52.8%) | 15 (48.4%) | 0.443 | 0.65 (0.22, 1.96) | 9 (42.9%) | 0.241 | 0.51 (0.17, 1.57) |
Age at onset, median (range) | 50.7 (10–79) | 49.9 (24–79) | 0.823 | 1.00 (0.97, 1.04) | 48.0 (24–79) | 0.491 | 0.99 (0.95, 1.02) |
Race, n (%) | |||||||
Caucasian | 46 (86.8%) | 29 (93.5%) | 0.103 | 4.26 (0.74, 24.44) | 19 (90.5%) | 0.525 | 1.76 (0.31, 10.04) |
African American | 4 (7.5%) | 1 (3.2%) | 0.192 | 0.21 (0.02, 2.18) | 1 (4.8%) | 0.541 | 0.48 (0.05, 4.99) |
Asian ‡ | 1 (1.9%) | 0 (0.0%) | undefined | undefined | 1 (4.8%) | undefined | undefined |
Ethnicity, n (%) | |||||||
Hispanic | 4 (7.5%) | 3 (9.7%) | 0.496 | 2.25 (0.22, 23.19) | 1 (4.8%) | 0.541 | 0.48 (0.05, 4.99) |
Diagnosis, n (%) | |||||||
WNND | 29 (54.7%) | 20 (64.5%) | 0.092 | 2.63 (0.85, 8.08) | 12 (57.1%) | 0.774 | 1.18 (0.39, 3.57) |
Encephalitis | 20 (37.7%) | 15 (48.4%) | 0.063 | 3.19 (0.94, 10.81) | 7 (33.3%) | 0.593 | 0.73 (0.23, 2.31) |
WNF | 15 (28.30%) | 9 (29.0%) | 0.889 | 1.09 (0.32, 3.69) | 7 (33.3%) | 0.511 | 1.50 (0.45, 5.03) |
Asymptomatic | 9 (17.0%) | 2 (6.5%) | 0.027 * | 0.15 (0.03, 0.80) | 2 (9.5%) | 0.254 | 0.38 (0.07, 2.02) |
Depression Risk Factors, n (%) | |||||||
Current Alcohol Consumption | 29 (54.7%) | 17 (54.8%) | 0.455 | 1.65 (0.44, 6.17) | 13 (61.9%) | 0.188 | 2.71 (0.61, 11.94) |
Obesity | 17 (32.1%) | 13 (41.9%) | 0.053 | 3.68 (0.99, 13.77) | 6 (28.6%) | 0.879 | 0.91 (0.27, 3.10) |
Diabetes | 11 (20.8%) | 9 (29.0%) | 0.094 | 4.09 (0.79, 21.25) | 6 (28.6%) | 0.261 | 2.16 (0.56, 8.28) |
Hypertension | 19 (35.8%) | 10 (32.3%) | 0.683 | 0.78 (0.25, 2.51) | 6 (28.6%) | 0.494 | 0.65 (0.19, 2.21) |
Heart Disease | 6 (11.3%) | 5 (16.1%) | 0.183 | 4.55 (0.49, 42.31) | 3 (14.3%) | 0.503 | 1.80 (0.32, 10.06) |
Other, n (%) | |||||||
Depression medicine | 13 (24.5%) | 13 (41.9%) | undefined | undefined | 11 (52.4%) | 0.002 * | 14.85 (2.79, 79.06) |
Depression counseling | 7 (13.2%) | 7 (22.6%) | undefined | undefined | 6 (28.6%) | 0.032 * | 11.20 (1.23, 101.89) |
Years Post-infection, median (std. error) | 7.0 (0.267) | 7.0 (0.376) | 0.881 | 0.98 (0.74, 1.30) | 7.0 (6.286) | 0.610 | 0.93 (0.70, 1.24) |
Self-Reported New Onset Depression Following WNV Infection | |||
---|---|---|---|
Adjusted Odds Ratio ‡ | 95% CI | p-Value † | |
WNND | 4.07 | 1.09, 15.18 | 0.037 * |
Encephalitis | 6.56 | 1.38, 31.28 | 0.018 * |
WNF | 0.88 | 0.22, 3.53 | 0.860 |
Asymptomatic | 0.13 | 0.02, 0.74 | 0.021 * |
Current Alcohol Consumption | 1.56 | 0.39, 6.29 | 0.530 |
Obesity | 5.59 | 1.21, 25.75 | 0.027 * |
Diabetes | 4.94 | 0.76, 32.22 | 0.095 |
Hypertension | 0.92 | 0.25, 3.41 | 0.897 |
Heart disease | 6.37 | 0.59, 68.77 | 0.127 |
Years post-infection | 0.98 | 0.73, 1.32 | 0.910 |
Self-Reported Depression since WNV Infection (n = 31) | Clinical Evidence of Depression with CES-D Scores ≥ 15 (n = 21) | History of WNND (n = 29) | ||||
---|---|---|---|---|---|---|
Median (Std. Error) ** | p-Value † | Median (Std. Error) ** | p-Value † | Median (Std. Error) ** | p-Value † | |
G-CSF | 32.59 (5.402) | 0.671 | 32.59 (6.570) | 0.326 | 37.92 (16.542) | 0.030 * |
IL12p40 | 15.96 (10.576) | 0.483 | 18.09 (12.533) | 0.819 | 18.09 (15.368) | 0.397 |
IL17α | 2.32 (10.249) | 0.117 | 2.32 (14.932) | 0.938 | 2.32 (40.129) | 0.481 |
IL1α | 17.96 (26.225) | 0.942 | 29.29 (37.858) | 0.180 | 18.80 (14.700) | 0.768 |
IL1β | 2.33 (7.607) | 0.251 | 4.48 (11.105) | 0.698 | 2.33 (2.897) | 0.435 |
IL6 | 3.99 (3.973) | 0.649 | 3.99 (5.766) | 0.647 | 4.37 (6.085) | 0.373 |
IL8 | 21.34 (21.811) | 0.957 | 17.68 (7.578) | 0.490 | 26.56 (33.586) | 0.124 |
IFN-α2 | 15.79 (12.643) | 0.486 | 13.79 (18.549) | 0.572 | 17.81 (8.55) | 0.100 |
IFN-γ | 4.43 (21.872) | 0.124 | 4.87 (31.686) | 0.777 | 4.43 (20.194) | 0.244 |
IP-10 | 374.00 (29.210) | 0.780 | 340.00 (32.485) | 0.148 | 388.00 (56.108) | 0.348 |
MCP1 | 615.00 (47.843) | 0.027 * | 614.00 (37.482) | 0.473 | 615.00 (53.384) | 0.486 |
MIP1α | 7.10 (5.006) | 0.955 | 7.10 (6.752) | 0.776 | 7.10 (4.630) | 0.837 |
MIP1β | 64.04 (11.632) | 0.850 | 64.04 (15.771) | 0.663 | 63.58 (12.587) | 0.900 |
TNFα | 11.14 (3.623) | 0.325 | 10.27 (5.314) | 0.013 * | 13.48 (2.543) | 0.514 |
TNFβ | 3.85 (3.769) | 0.783 | 3.36 (5.162) | 0.692 | 4.83 (3.986) | 0.697 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lino, A.; Erickson, T.A.; Nolan, M.S.; Murray, K.O.; Ronca, S.E. A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection. Pathogens 2022, 11, 650. https://doi.org/10.3390/pathogens11060650
Lino A, Erickson TA, Nolan MS, Murray KO, Ronca SE. A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection. Pathogens. 2022; 11(6):650. https://doi.org/10.3390/pathogens11060650
Chicago/Turabian StyleLino, Allison, Timothy A. Erickson, Melissa S. Nolan, Kristy O. Murray, and Shannon E. Ronca. 2022. "A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection" Pathogens 11, no. 6: 650. https://doi.org/10.3390/pathogens11060650
APA StyleLino, A., Erickson, T. A., Nolan, M. S., Murray, K. O., & Ronca, S. E. (2022). A Preliminary Study of Proinflammatory Cytokines and Depression Following West Nile Virus Infection. Pathogens, 11(6), 650. https://doi.org/10.3390/pathogens11060650