Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia
Abstract
:1. Introduction
2. Results
2.1. Serotyping
2.2. Antimicrobial Susceptibility Testing
2.3. Detection of Antimicrobial Resistance Genes
2.4. Detection of Genes Encoding Virulence Factors
2.5. MLST
3. Discussion
4. Materials and Methods
4.1. Strains
4.2. Serotyping
4.3. Antimicrobial Susceptibility Testing
4.4. DNA Extraction and Detection of Antimicrobial Resistant Genes
4.5. Detection of Genes Encoding Virulence Factors
4.6. MLST
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diep, B.; Barretto, C.; Portmann, A.C.; Fournier, C.; Karczmarek, A.; Voets, G.; Li, S.; Deng, X.; Klijn, A. Salmonella Serotyping; Comparison of the Traditional Method to a Microarray-Based Method and an in silico Platform Using Whole Genome Sequencing Data. Front. Microbiol. 2019, 10, 2554. [Google Scholar] [CrossRef] [PubMed]
- Sodagari, H.R.; Wang, P.; Robertson, I.; Habib, I.; Sahibzada, S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals 2020, 10, 1192. [Google Scholar] [CrossRef] [PubMed]
- Adesiji, Y.O.; Shivakumaraswamy, S.K.; Deekshit, V.K.; Kallappa, G.S.; Karunasagar, I. Molecular characterization of antimicrobial multi-drug resistance in non-typhoidal Salmonellae from chicken and clam in Mangalore, India. J. Biomed. Res. 2017, 32, 237–244. [Google Scholar]
- Food and Agriculture Organization of the United Nations; World Health Organization. Interventions for the Control of Non-Typhoidal Salmonella spp. in Beef and Pork. Available online: https://www.fao.org/publications/card/en/c/e0083b71-7c0c-44b1-b017-183a5128358e/ (accessed on 13 December 2021).
- Kim, J.E.; Lee, Y.J. Molecular characterization of antimicrobial resistant non-typhoidal Salmonella from poultry industries in Korea. Ir. Vet. J. 2017, 70, 20. [Google Scholar] [CrossRef]
- Carneiro, M.R.P.; Berto, L.H.; Oliveira, J.G.S.; Santos, A.F.D.M.; Jain, S.; Rodrigues, D.D.P.; Fracalanzza, S.E.L. Salmonella Panama: Genetic diversity of the isolates collected from human and non-human sources. Rev. Soc. Bras. Med. Trop. 2019, 52, e20180285. [Google Scholar] [CrossRef] [Green Version]
- Suez, J.; Porwollik, S.; Dagan, A.; Marzel, A.; Schorr, Y.I.; Desai, P.T.; Agmon, V.; McClelland, M.; Rahav, G.; Gal-Mor, O. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS ONE 2013, 8, e58449. [Google Scholar] [CrossRef] [Green Version]
- Buchmeier, N.; Bossie, S.; Chen, C.Y.; Fang, F.C.; Guiney, D.G.; Libby, S.J. SlyA, a transcriptional regulator of Salmonella Typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect. Immun. 1997, 65, 3725–3730. [Google Scholar] [CrossRef] [Green Version]
- Brink, T.; Leiss, V.; Siegert, P.; Jehle, D.; Ebner, J.K.; Schwan, C.; Shymanets, A.; Wiese, S.; Nürnberg, B.; Hensel, M.; et al. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog. 2018, 14, e1007248. [Google Scholar] [CrossRef] [Green Version]
- Chin, C.F.; Lai, J.Y.; Choong, Y.S.; Anthony, A.A.; Ismail, A.; Lim, T.S. Delineation of B-cell epitopes of Salmonella enterica serovar Typhi Hemolysin E: Potential antibody therapeutic target. Sci. Rep. 2017, 7, 2176. [Google Scholar] [CrossRef]
- Thakur, R.; Pathania, P.; Kaur, N.; Joshi, V.; Kondepudi, K.K.; Suri, C.R.; Rishi, P. Prophylactic potential of cytolethal distending toxin B (CdtB) subunit of typhoid toxin against Typhoid fever. Sci. Rep. 2019, 9, 18404. [Google Scholar] [CrossRef] [Green Version]
- Cuypers, W.L.; Jacobs, J.; Wong, V.; Klemm, E.J.; Deborggraeve, S.; Van Puyvelde, S. Fluoroquinolone resistance in Salmonella: Insights by whole-genome sequencing. Microb. Genom. 2018, 4, e000195. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Song, L.; Liu, J.; Zhang, X.H.; Ren, Y.N.; Zhang, W.H.; Zhang, J.Y.; Liu, Y.H.; Webber, M.A.; Ogbolu, D.O.; et al. Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. Int. J. Antimicrob. Agents 2014, 43, 242–247. [Google Scholar] [CrossRef]
- Lunguya, O.; Lejon, V.; Phoba, M.F.; Bertrand, S.; Vanhoof, R.; Glupczynski, Y.; Verhaegen, J.; Muyembe-Tamfum, J.J.; Jacobs, J. Antimicrobial resistance in invasive non-typhoid Salmonella from the Democratic Republic of the Congo: Emergence of decreased fluoroquinolone susceptibility and extended-spectrum beta lactamases. PLoS Negl. Trop. Dis. 2013, 7, e2103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Stern, A.L.; Van der Verren, S.E.; Kanchugal, P.S.; Näsvall, J.; Gutiérrez-de-Terán, H.; Selmer, M. Structural mechanism of AadA, a dual-specificity aminoglycoside adenylyltransferase from Salmonella enterica. J. Biol. Chem. 2018, 293, 11481–11490. [Google Scholar] [CrossRef] [Green Version]
- Aarestrup, F.M.; Hendriksen, R.S.; Lockett, J.; Gay, K.; Teates, K.; McDermott, P.F.; White, D.G.; Hasman, H.; Sørensen, G.; Bangtrakulnonth, A.; et al. International spread of multidrug-resistant Salmonella Schwarzengrund in food products. Emerg. Infect. Dis. 2007, 13, 726–731. [Google Scholar] [CrossRef] [PubMed]
- WHO Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 15 December 2021).
- Agyare, C.; Boamah, V.E.; Zumbi, C.N.; Osei, F.B. Antibiotic use in poultry production and its effects on bacterial resistance. In Antimicrobial Resistance—A Global Threat; Kumar, Y., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [Green Version]
- Coyne, L.; Patrick, I.; Arief, R.; Benigno, C.; Kalpravidh, W.; McGrane, J.; Schoonman, L.; Sukarno, A.H.; Rushton, J. The costs, benefits and human behaviours for antimicrobial use in small commercial broiler chicken systems in Indonesia. Antibiotics 2020, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.M.; Kim, E.; Lee, W.; Kim, H.Y. Genomic characteristics and comparative genomics of Salmonella enterica subsp. enterica serovar Schwarzengrund strain S16 isolated from chicken feces. Gut Pathog. 2022, 14, 1. [Google Scholar] [CrossRef]
- Ferrari, R.; Galiana, A.; Cremades, R.; Rodríguez, J.C.; Magnani, M.; Tognim, M.C.; Oliveira, T.C.; Royo, G. Plasmid-mediated quinolone resistance (PMQR) and mutations in the topoisomerase genes of Salmonella enterica strains from Brazil. Braz. J. Microbiol. 2013, 44, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Anderson, C.M.; Mosci, R.E.; Newton, D.W.; Lephart, P.; Salimnia, H.; Khalife, W.; Rudrik, J.T.; Manning, S.D. Increasing frequencies of antibiotic resistant non-typhoidal Salmonella infections in Michigan and risk factors for disease. Front. Med. 2019, 6, 250. [Google Scholar] [CrossRef] [PubMed]
- Møller, T.S.; Overgaard, M.; Nielsen, S.S.; Bortolaia, V.; Sommer, M.O.; Guardabassi, L.; Olsen, J.E. Relation between tetR and tetA expression in tetracycline resistant Escherichia coli. BMC Microbiol. 2016, 16, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olowe, O.A.; Idris, O.J.; Taiwo, S.S. Prevalence of tet genes mediating tetracycline resistance in Escherichia coli clinical isolates in Osun State, Nigeria. Eur. J. Microbiol. Immunol. 2013, 3, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, T.; Khan, A.A. Molecular characterization of strains of fluoroquinolone-resistant Salmonella enterica serovar Schwarzengrund carrying multidrug resistance isolated from imported foods. J. Antimicrob. Chemother. 2012, 67, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osawa, K.; Shigemura, K.; Shimizu, R.; Kato, A.; Kimura, M.; Katayama, Y.; Okuya, Y.; Yutaka, S.; Nishimoto, A.; Kishi, A.; et al. Antimicrobial resistance in Salmonella strains clinically isolated in Hyogo, Japan (2009–2012). Jpn. J. Infect. Dis. 2014, 67, 54–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, L.Z.; Gomes, V.T.M.; Moreira, J.; de Oliveira, C.H.; Peres, B.P.; Silva, A.P.S.; Thakur, S.; La Ragione, R.M.; Moreno, A.M. First report of mcr-1-harboring Salmonella enterica serovar Schwarzengrund isolated from poultry meat in Brazil. Diagn. Microbiol. Infect. Dis. 2019, 93, 376–379. [Google Scholar] [CrossRef] [PubMed]
- Markley, J.L.; Wencewicz, T.A. Tetracycline-inactivating enzymes. Front. Microbiol. 2018, 9, 1058. [Google Scholar] [CrossRef] [Green Version]
- Yulistiani, R.; Praseptiangga, D.; Supyani; Sudibya. Contamination level and prevalence of foodborne pathogen Enterobacteriaceae in broiler and backyard chicken meats sold at traditional markets in Surabaya, Indonesia. Malays. Appl. Biol. 2019, 48, 95–103. [Google Scholar]
- USFDA. Bacteriological Analytical Manual (BAM). 2004. Available online: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm070149.htm (accessed on 12 March 2016).
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; Thirtieth Informational Supplement. M100-S31; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Msolo, L.; Iweriebor, B.C.; Okoh, A.I. Antimicrobial resistance profiles of diarrheagenic E. coli (DEC) and Salmonella species recovered from diarrheal patients in selected rural communities of the amathole district municipality, Eastern Cape Province, South Africa. Infect. Drug Resist. 2020, 13, 4615–4626. [Google Scholar] [CrossRef]
- Kozak, G.K.; Boerlin, P.; Janecko, N.; Reid-Smith, R.J.; Jardine, C. Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 2009, 75, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Benacer, D.; Thong, K.L.; Watanabe, H.; Puthucheary, S.D. Characterization of drug resistant Salmonella enterica serotype Typhimurium by antibiograms, plasmids, integrons, resistance genes and PFGE. J. Microbiol. Biotechnol. 2010, 20, 1042–1052. [Google Scholar] [PubMed] [Green Version]
- Eaves, D.J.; Liebana, E.; Woodward, M.J.; Piddock, L.J. Detection of gyrA mutations in quinolone-resistant Salmonella enterica by denaturing high-performance liquid chromatography. J. Clin. Microbiol. 2002, 40, 4121–4125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eaves, D.J.; Randall, L.; Gray, D.T.; Buckley, A.; Woodward, M.J.; White, A.P.; Piddock, L.J. Prevalence of mutations within the quinolone resistance-determining region of gyrA, gyrB, parC, and parE and association with antibiotic resistance in quinolone-resistant Salmonella enterica. Antimicrob. Agents Chemother. 2004, 48, 4012–4015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shams, E.; Firoozeh, F.; Moniri, R.; Zibaei, M. Prevalence of plasmid-mediated quinolone resistance genes among Extended-Spectrum β-lactamase-producing Klebsiella pneumoniae human isolates in Iran. J. Pathog. 2015, 2015, 434391. [Google Scholar] [CrossRef] [Green Version]
- Campioni, F.; Moratto Bergamini, A.M.; Falcão, J.P. Genetic diversity, virulence genes and antimicrobial resistance of Salmonella Enteritidis isolated from food and humans over a 24-year period in Brazil. Food Microbiol. 2012, 32, 254–264. [Google Scholar] [CrossRef]
- Achtman, M.; Wain, J.; Weill, F.X.; Nair, S.; Zhou, Z.; Sangal, V.; Krauland, M.G.; Hale, J.L.; Harbottle, H.; Uebeck, A.; et al. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012, 8, e1002776. [Google Scholar] [CrossRef] [Green Version]
- PubMLST. Salmonella organisms Database. Available online: https://pubmlst.org/organisms/Salmonella-spp (accessed on 3 December 2021).
O Group | Serotype | Strains (%) |
---|---|---|
O2 | S. Kiel | 1 (2) |
S. Nitra | 1 (2) | |
O4 | S. Schwarzengrund | 23 (46) |
S. Tokoin | 2 (4) | |
S. Typhimurium | 2 (4) | |
S. Budapest | 1 (2) | |
O7 | NT ※ | 3 (6) |
O8 | S. Istanbul | 4 (8) |
S. Corvallis | 2 (4) | |
S. Portanigra | 1 (2) | |
S. Herston | 1 (2) | |
NT | 3 (6) | |
O9 | S. Enteritidis | 2 (4) |
NT | 1 (2) | |
O3,10 | NT | 2 (4) |
O1,3,19 | S. Liverpool | 1 (2) |
total | 50 |
Antibiotic * | Number of Non-Susceptible Strains (%) | p-Value # | ||
---|---|---|---|---|
Total n = 50 | S. Schwarzengrund n = 23 | Other Serotypes n = 27 | ||
ABPC | 13 (26) | 11 (47.8) | 2 (7.4) | 0.001 |
AMPC/CVA | 3 (6) | 1 (4.3) | 2 (7.4) | 1.000 |
CTRX | 0 | 0 | 0 | - |
IPM | 0 | 0 | 0 | - |
GM | 6 (12) | 5 (21.7) | 1 (3.7) | 0.070 |
KM | 8 (16) | 7 (30.4) | 1 (3.7) | 0.007 |
AZM | 0 | 0 | 0 | - |
TC | 27 (54) | 22 (95.7) | 5 (18.5) | <0.001 |
CPFX | 5 (10) | 2 (8.7) | 3 (11.1) | 1.000 |
NA | 30 (60) | 23 (100) | 7 (25.9) | <0.001 |
CP | 0 | 0 | 0 | - |
Antimicrobial Resistance Gene | Number of Strains (%) | ||
---|---|---|---|
Total | S. Schwarzengrund | Other Serotypes | |
blaTEM | 12 | 11 (91.7) | 1 (8.3) |
aadA | 4 | 4 (100) | 0 |
tetA | 15 | 11 (73.3) | 4 (26.7) |
tetB | 6 | 5 (83.3) | 1 (16.7) |
tetAand tetB | 1 | 1 (100) | 0 |
tetC | 0 | 0 | 0 |
tetG | 0 | 0 | 0 |
Mutation of gyrA | 30 | 23 (76.7) | 7 (23.3) |
Mutation of gyrB | 0 | 0 | 0 |
Mutation of parC | 1 * | 0 | 1 (100) |
Mutation of parE | 0 | 0 | 0 |
qnrA | 0 | 0 | 0 |
qnrB | 0 | 0 | 0 |
qnrS | 0 | 0 | 0 |
aac(6′)-lb-cr | 0 | 0 | 0 |
qepA | 0 | 0 | 0 |
Virulence Gene | Number of Strains (%) | p-Value * | ||
---|---|---|---|---|
Total n = 50 | S. Schwarzengrund n = 23 | Other Serotypes n = 27 | ||
invA | 50 (100) | 23 (100) | 27 (100) | - |
sopB | 44 (88) | 21 (91.3) | 23 (85.2) | 0.674 |
ssel | 0 | 0 | 0 | - |
tcfA | 37 (74) | 23 (100) | 14 (51.9) | <0.001 |
hlyE | 43 (86) | 23 (100) | 20 (74.1) | 0.011 |
cdtB | 25 (50) | 21 (91.3) | 4 (14.8) | <0.001 |
sfbA | 31 (62) | 23 (100) | 8 (29.6) | <0.001 |
agfA | 44 (88) | 22 (95.7) | 22 (81.5) | 0.199 |
fimA | 32 (64) | 21 (91.3) | 11 (40.7) | <0.001 |
fliC | 0 | 0 | 0 | - |
spvC | 0 | 0 | 0 | - |
slyA | 30 (60) | 16 (69.6) | 14 (51.9) | 0.254 |
phoP/Q | 43 (86) | 23 (100) | 20 (74.1) | 0.011 |
Sequence Type | Allelic Profile in MLST | Number of Strains (%) N = 23 | ||||||
---|---|---|---|---|---|---|---|---|
aroC | dnaN | hemD | hisD | purE | sucA | thrA | ||
96 | 43 | 47 | 49 | 49 | 41 | 15 | 3 | 22 (95.7) |
Not typed | 43 | 47 | 49 | 7 | 41 | 15 | 3 | 1 (4.3) |
Target Genes | Amplicon Size (bp) | Tm (°C) | Primer | Sequence | Reference |
---|---|---|---|---|---|
blaTEM | 690 | 60 | blaTEMF | 5′-TTTCGTGTCGCCCTTATTC-3′ | [34] |
blaTEMR | 5′-CCGGCTCCAGATTTATCA-3′ | ||||
aadA | 525 | 60 | aadAF | 5′-GTGGATGGCGGCCTGAA-3′ | |
aadAR | 5′-AATGCCCAGTCGGCAGC-3′ | ||||
tetA | 201 | 55 | tetAF | 5′-GCTACATCCTGCTTGCCT-3′ | |
tetAR | 5′-CATAGATCGCCGTGAAG-3′ | ||||
tetB | 173 | 63 | TetBGK-F2m | 5′-CGCCCAGTGCTGTTGTTGTC-3′ | [35] |
TetBGK-R2m | 5′-CGCGTTGAGAAGCTGAGGTG-3′ | ||||
tetC | 505 | 50 | TetCF | 5′-GGTTGAAGGCTCTCAAGGGC-3′ | [36] |
TetCR | 5′-CCTCTTGCGGGAATCGTCC-3′ | ||||
tetG | 662 | 52 | TetGF | 5′-GCAGCGAAAGCGTATTTGCG-3′ | |
TetGR | 5′-TCCGAAAGCTGTCCAAGCAT-3′ | ||||
gyrA | 251 | 58.6 | stgyrA1 | 5′-CGTTGGTGACGTAATCGGTA-3′ | [37] |
stgyrA2 | 5′-CCGTACCGTCATAGTTATCC-3′ | ||||
gyrB | 181 | 58 | stmgyrB1 | 5′-GCGCTGTCCGAACTGTACCT-3′ | [38] |
stmgyrB2 | 5′-TGATCAGCGTCGCCACTTCC-3′ | ||||
parC | 270 | 67 | stmparC1 | 5′-CTATGCGATG TCAGAGCTGG-3′ | |
stmparC2 | 5′-TAACAGCAGCTCGGCGTATT-3′ | ||||
parE | 240 | stmparE1 | 5′TCTCTTCCGATGAAGTGCTG-3′ | ||
stmparE2 | 5′-ATACGGTATAGCGGCGGTAG-3′ | ||||
qnrA | 516 | 53 | qnrA F | 5′-ATTTCTCACGCCAGGATTTG-3′ | [39] |
qnrA R | 5′-GATCGGCAAAGGTTAGGTCA-3′ | ||||
qnrB | 469 | 59 | qnrB F | 5′-GATCGTGAAAGCCAGAAAGG-3′ | |
qnrB R | 5′-ACGATGCCTG¬GTAGTTGTCC-3′ | ||||
qnrS | 417 | qnrS F | 5′-ACGACATTCGTCAACTGCAA-3′ | ||
qnrS R | 5′- TAAATTGGCACCCTGTAGGC-3′ | ||||
aac (6′)-Ib-cr | 554 | aac(6′)-Ib-cr F | 5′-TGACCAACAGCAACGATTCC-3′ | ||
aac(6′)-Ib-cr R | 5′-TTAGGCATCACTGCGTGTTC-3′ | ||||
qepA | 720 | qepA F | 5′-GGACATCTACGGCTTCTTCG-3′ | ||
qepA R | 5′-AGCTGCAGGTACTGCGTCAT-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takaichi, M.; Osawa, K.; Nomoto, R.; Nakanishi, N.; Kameoka, M.; Miura, M.; Shigemura, K.; Kinoshita, S.; Kitagawa, K.; Uda, A.; et al. Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia. Pathogens 2022, 11, 543. https://doi.org/10.3390/pathogens11050543
Takaichi M, Osawa K, Nomoto R, Nakanishi N, Kameoka M, Miura M, Shigemura K, Kinoshita S, Kitagawa K, Uda A, et al. Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia. Pathogens. 2022; 11(5):543. https://doi.org/10.3390/pathogens11050543
Chicago/Turabian StyleTakaichi, Minori, Kayo Osawa, Ryohei Nomoto, Noriko Nakanishi, Masanori Kameoka, Makiko Miura, Katsumi Shigemura, Shohiro Kinoshita, Koichi Kitagawa, Atsushi Uda, and et al. 2022. "Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia" Pathogens 11, no. 5: 543. https://doi.org/10.3390/pathogens11050543
APA StyleTakaichi, M., Osawa, K., Nomoto, R., Nakanishi, N., Kameoka, M., Miura, M., Shigemura, K., Kinoshita, S., Kitagawa, K., Uda, A., Miyara, T., Mertaniasih, N. M., Hadi, U., Raharjo, D., Yulistiani, R., Fujisawa, M., Kuntaman, K., & Shirakawa, T. (2022). Antibiotic Resistance in Non-Typhoidal Salmonella enterica Strains Isolated from Chicken Meat in Indonesia. Pathogens, 11(5), 543. https://doi.org/10.3390/pathogens11050543