Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure
Abstract
:1. Introduction
1.1. Inverse Substrate–Protease Examination
1.2. Viral Resistance and the gag Gene
1.3. Objectives
2. Results
2.1. Patients
2.2. Gag Sequences from Patients
2.3. Mutations Pre- and Post-ATI for the Entire Gag Gene
2.4. Mutations in the Regions of Gag
2.5. Gag Cleavage Site Mutations Pre- and Post-ATI
2.6. Gag Mutations in Plasma
2.7. Minor Protease Mutations in Relation to Gag Mutations
3. Discussion
3.1. Process of Reversion to the Wild Type
3.2. Cleavage Sites as the Foci of Gag Mutation Analysis
3.3. Relation of Gag Mutations to Protease Inhibitor Resistance
3.4. Impact of NGS on Mutation Persistence Analysis
4. Materials and Methods
4.1. Patients
4.2. Design
4.3. Sequencing of the HIV-1 Gag Gene
4.4. Inverse Substrate–Protease Analysis
4.5. Quantitative Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bajaria, S.H.; Webb, G.; Kirschner, D.E. Predicting differential responses to structured treatment interruptions during ART. Bull. Math. Biol. 2004, 66, 1093–1118. [Google Scholar] [CrossRef]
- Li, X.; Margolick, J.B.; Conover, C.S.; Badri, S.; Riddler, S.A.; Witt, M.D.; Jacobson, L.P. Interruption and Discontinuation of Highly Active Antiretroviral Therapy in the Multicenter AIDS Cohort Study. JAIDS J. Acquir. Immune Defic. Syndr. 2005, 38, 320–328. [Google Scholar] [PubMed]
- Koup, R.A. Reconsidering early HIV treatment and supervised treatment interruptions. PLoS Med. 2004, 1, e41. [Google Scholar] [CrossRef] [PubMed]
- Oxenius, A.; Price, D.A.; Günthard, H.F.; Dawson, S.J.; Fagard, C.; Perrin, L.; Fischer, M.; Weber, R.; Plana, M.; García, F.; et al. Stimulation of HIV-specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection. Proc. Natl. Acad. Sci. USA 2002, 99, 13747–13752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dybul, M.; Chun, T.-W.; Yoder, C.; Hidalgo, B.; Belson, M.; Hertogs, K.; Larder, B.; Dewar, R.L.; Fox, C.H.; Hallahan, C.W.; et al. Short-cycle structured intermittent treatment of chronic HIV infection with highly active antiretroviral therapy: Effects on virologic, immunologic, and toxicity parameters. Proc. Natl. Acad. Sci. USA 2001, 98, 15151–15156. [Google Scholar] [CrossRef] [Green Version]
- Ananworanich, J.; Nuesch, R.; Le Braz, M.; Chetchotisakd, P.; Vibhagool, A.; Wicharuk, S.; Kiata, R.; Hansjakobg, F.; Davidh, C.; Bernardc, H.; et al. Failures of 1 week on, 1 week off antiretroviral therapies in a randomized trial. AIDS 2003, 17, F33–F37. [Google Scholar] [CrossRef]
- Cohen, C.J.; Colson, A.E.; Sheble-Hall, A.G.; McLaughlin, K.A.; Morse, G.D. Pilot study of a novel short-cycle antiretroviral treatment interruption strategy: 48-week results of the five-days-on, two-days-off (FOTO) study. HIV Clin. Trials 2007, 8, 19–23. [Google Scholar] [CrossRef]
- Maggiolo, F.; Ripamonti, D.; Gregis, G.; Quinzan, G.; Callegaro, A.; Suter, F. Effect of prolonged discontinuation of sucessful antiretroviral therapy on CD4 T cells: A controlled, prospective trial. AIDS 2004, 18, 439–446. [Google Scholar] [CrossRef]
- Devereux, H.; Youle, M.; Johnson, M.; Loveday, C. Rapid decline in detectability of HIV-1 drug resistance mutations after stopping therapy. AIDS 1999, 13, 123–127. [Google Scholar] [CrossRef]
- Verhofstede, C.; Van Wanzeele, F.; Van Der Gucht, B.; De Cabooter, N.; Plum, J. Interruption of reverse transcriptase inhibitors or a switch from reverse transcriptase to protease inhibitors resulted in fast reappearence of virus strains with a reverse transcriptase inhibitor-sensitive genotype. AIDS 1999, 13, 2541–2546. [Google Scholar] [CrossRef]
- Izopet, J.; Massip, P.; Souyris, C.; Sandres, K.; Puissant, B.; Obadia, M.; Christophe, P.; Eric, B.; Bruno, M.; Jacqueline, P. Shift in HIV resistance genotype after treatment interruption and short-term antiviral effect following a new salvage regimen. AIDS 2000, 14, 2247–2255. [Google Scholar] [CrossRef]
- Deeks, S.; Grant, R.; Wrin, T.; Paxinos, E.; Liegler, T.; Hoh, R.; Martin, J.; Petropoulos, C. Persistence of drug-resistant HIV-1 after a structured treatment interruption and its impact on treatment response. AIDS 2003, 17, 361–370. [Google Scholar] [CrossRef]
- Silva, W.P.; Santos, D.E.M.; Brunstein, A.; Leal, E.S.; Sucupira, M.C.A.; Sabino, E.C.; Diaz, R.S. Reactivation of ancestral strains of HIV-1 in the gp120 V3 env region in patients failing antiretroviral therapy and subjected to structured treatment interruption. Virology 2006, 354, 35–47. [Google Scholar] [CrossRef] [Green Version]
- Komninakis, S.V.; Santos, D.E.M.; Santos, C.; Oliveros, M.P.R.; Sanabani, S.; Diaz, R.S. HIV-1 proviral DNA loads (as determined by quantitative PCR) in patients subjected to structured treatment interruption after antiretroviral therapy failure. J. Clin. Microbiol. 2012, 50, 2132–2133. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.R.; dos Santos, D.E.M.; Munerato, P.; Janini, L.M.; Castelo, A.; Sucupira, M.C.; Truong, H.M.; Diaz, R.S. Fitness Cost of Antiretroviral Drug Resistance Mutations on the pol Gene during Analytical Antiretroviral Treatment Interruption among Individuals Experiencing Virological Failure. Pathogens 2021, 10, 1425. [Google Scholar] [CrossRef]
- Clavel, F.; Mammano, F. Role of Gag in HIV Resistance to Protease Inhibitors. Viruses 2010, 2, 1411–1426. [Google Scholar] [CrossRef]
- Fun, A.; Wensing, A.M.J.; Verheyen, J.; Nijhuis, M. Human Immunodeficiency Virus Gag and protease: Partners in resistance. Retrovirology 2012, 9, 63. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Pescador, R.; Power, M.D.; Barr, P.J.; Steimer, K.S.; Stempien, M.M.; Brown-Shimer, S.L.; Gee, W.W.; Renard, A.; Randolph, A.; Levy, J.A.; et al. Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 1985, 227, 484–492. [Google Scholar] [CrossRef]
- Prabu-Jeyabalan, M.; Nalivaika, E.; Schiffer, C.A. Substrate shape determines specificity of recognition for HIV-1 protease: Analysis of crystal structures of six substrate complexes. Structure 2002, 10, 369–381. [Google Scholar] [CrossRef]
- Pariente, N.; Pernas, M.; de la Rosa, R.; Gomez-Mariano, G.; Fernandez, G.; Rubio, A.; López, M.; Benito, J.M.; Lopez-Galindez, C.; Leal, M.; et al. Long-term suppression of plasma viraemia with highly active antiretroviral therapy despite virus evolution and very limited selection of drug-resistant genotypes. J. Med. Virol. 2004, 73, 350–361. [Google Scholar] [CrossRef]
- Günthard, H.; Frost, S.; Leigh-Brown, A.; Ignacio, C.; Kee, K.; Perelson, A.; Spina, C.A.; Havlir, D.V.; Hezareh, M.; Looney, D.J.; et al. Evolution of envelope sequences of human immunodeficiency virus type 1 in cellular reservoirs in the setting of potent antiviral therapy. J. Virol. 1999, 73, 9404–9412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Ramratnam, B.; Tenner-Racz, K.; He, Y.; Vesanen, M.; Lewin, S.; Talal, A.; Racz, P.; Perelson, A.S.; Korber, B.; et al. Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 1999, 340, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Clarke, J.; White, N.; Weber, J. HIV compartmentalization: Pathogenesis and clinical implications. AIDS Rev. 2000, 2, 15–22. [Google Scholar]
- Finzi, D.; Blankson, J.; Siliciano, J.D.; Margolick, J.B.; Chadwick, K.; Pierson, T.; Smith, K.; Lisziewicz, J.; Lori, F.; Flexner, C.; et al. Latent Infection of CD4+ T Cells Provides a Mechanism for Lifelong Persistence of HIV-1, Even in Patients on Effective Combination Therapy. Nat. Med. 1999, 5, 512–517. [Google Scholar] [CrossRef]
- Siliciano, R.F. Latency and reservoirs for HIV-1. AIDS 1999, 13, S49–S50. [Google Scholar]
- Munerato, P.; Sucupira, M.C.; Oliveros, M.P.R.; Janini, L.M.; de Souza, D.F.; Pereira, A.A.; Inocencio, A.A.; Diaz, R.S. HIV type 1 antiretroviral resistance mutations in subtypes B, C, and F in the City of São Paulo, Brazil. AIDS Res. Hum. Retrovir. 2010, 26, 265–273. [Google Scholar] [CrossRef]
- Deeks, S.; Wrin, T.; Liegler, T.; Hoh, R.; Hayden, M.; Barbour, J.; Hellmann, N.A.; Petropoulos, C.J.; McCune, J.M.; Hellerstein, M.K.; et al. Virologic and immunologic consequences of discontinuing combination antiretroviral-drug therapy in HIV-infected patients with detectable viremia. N. Engl. J. Med. 2001, 344, 472–480. [Google Scholar] [CrossRef]
- Winters, M.; Baxter, J.; Mayers, D.; Wentworth, D.; Hoover, M.; Neaton, J.; Merigan, T.C.; Terry Beirn Community Programs for Clinical Research on AIDS. Frequency of antiretroviral drug resistance mutations in HIV-1 strains from patients failing triple drug regimens. Antivir. Ther. 2000, 5, 57–63. [Google Scholar] [CrossRef]
- Domingo, E.; Escarmis, C.; Sevilla, N.; Moya, A.; Santiago, E.; Quer, J.; Novella, I.S.; Holland, J.J. Basic concepts in RNA virus evolution. FASEB J. 1996, 10, 859–864. [Google Scholar] [CrossRef]
- Miller, V.; Sabin, C.; Hertogs, K.; Bloor, S.; Martinez-Picado, J.; D’Aquila, R.; Larder, B.; Lutz, T.; Gute, P.; Weidmann, E.; et al. Virological and immunological effects of treatment interruptions in HIV-1 infected patients with treatment failure. AIDS 2000, 14, 2857–2867. [Google Scholar] [CrossRef]
- Katlama, C.; Dominguez, S.; Gourlain, K.; Duvivier, C.; Delaugerre, C.; Legrand, M.; Tubiana, R.; Reynes, J.; Molina, J.-M.; Peytavin, G.; et al. Benefit of treatment interruption in HIV-infected patients with multiple therapeutic failures: A randomized controlled trial (ANRS 097). AIDS 2004, 18, 217–226. [Google Scholar] [CrossRef]
- Dam, E.; Quercia, R.; Glass, B.; Descamps, D.; Launay, O.; Duval, X.; Kräusslich, H.-G.; Hance, A.J.; Clavel, F.; ANRS 109 Study Group. Gag Mutations Strongly Contribute to HIV-1 Resistance to Protease Inhibitors in Highly Drug-Experienced Patients besides Compensating for Fitness Loss. PLoS Pathog. 2009, 5, e1000345. [Google Scholar] [CrossRef] [Green Version]
- Nijhuis, M.; van Maarseveen, N.M.; Lastere, S.; Schipper, P.; Coakley, E.; Glass, B.; Rovenska, M.; De Jong, D.; Chappey, C.; Goedegebuure, I.W.; et al. A novel substrate-based HIV-1 protease inhibitor drug resistance mechanism. PLoS Med. 2007, 4, e36. [Google Scholar] [CrossRef]
- Larrouy, L.; Chazallon, C.; Landman, R.; Capitant, C.; Peytavin, G.; Collin, G.; Charpentier, C.; Storto, A.; Pialoux, G.; Katlama, C.; et al. Gag Mutations Can Impact Virological Response to Dual-Boosted Protease Inhibitor Combinations in Antiretroviral-Naive HIV-Infected Patients. Antimicrob. Agents Chemother. 2010, 54, 2910–2919. [Google Scholar] [CrossRef] [Green Version]
- Wensing, A.M.; Calvez, V.; Günthard, H.; Johnson, V.A.; Paredes, R.; Pillay, D.; Shafer, R.W.; Richman, D.D. 2017 Update of the Drug Resistance Mutations in HIV-1. Top. Antivir. Med. 2017, 24, 132–133. [Google Scholar]
- Piantadosi, A.; Chohan, B.; Panteleeff, D.; Baeten, J.M.; Mandaliya, K.; Ndinya-Achola, J.O.; Overbaugh, J. HIV-1 evolution in gag and env is highly correlated but exhibits different relationships with viral load and the immune response. AIDS 2009, 23, 579–587. [Google Scholar] [CrossRef] [Green Version]
- Wijting, I.E.A.; Lungu, C.; Rijnders, B.J.A.; van der Ende, M.E.; Pham, H.T.; Mesplede, T.; Pas, S.D.; Voermans, J.J.C.; Schuurman, R.; van de Vijver, D.; et al. HIV-1 Resistance Dynamics in Patients with Virologic Failure to Dolutegravir Maintenance Monotherapy. J. Infect. Dis. 2018, 218, 688–697. [Google Scholar] [CrossRef] [Green Version]
- Guimarães, A.P.; Sa-Filho, D.J.; Sucupira, M.C.; Janini, L.M.; Diaz, R.S. Profiling resistance-related mutations in the protease region of the pol gene: Single genome sequencing of HIV in plasma and peripheral blood mononuclear cells. AIDS Res. Hum. Retrovir. 2008, 24, 969–971. [Google Scholar] [CrossRef]
- Flor-Parra, F.; Pérez-Pulido, A.J.; Pachón, J.; Pérez-Romero, P. The HIV type 1 protease L10I minor mutation decreases replication capacity and confers resistance to protease inhibitors. AIDS Res. Hum. Retrovir. 2011, 27, 65–70. [Google Scholar] [CrossRef]
- Leda, A.R.; Hunter, J.; Oliveira, U.C.; Azevedo, I.J.; Sucupira, M.C.A.; Diaz, R.S. Insights about minority HIV-1 strains in transmitted drug resistance mutation dynamics and disease progression. J. Antimicrob. Chemother. 2018, 73, 1930–1934. [Google Scholar] [CrossRef]
- Diaz, R.S.; Zhang, L.; Busch, M.P.; Mosley, J.W.; Mayer, A. Divergence of HIV-1 quasispecies in an epidemiologic cluster. AIDS 1997, 11, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Sucupira, M.C.; Caseiro, M.M.; Alves, K.; Tescarollo, G.; Janini, L.M.; Sabino, E.C.; Castelo, A.; Page-Shafer, K.; Diaz, R.S. High Levels of Primary Antiretroviral Resistance Genotypic Mutations and B/F Recombinants in Santos, Brazil. AIDS Patient Care STDs 2007, 21, 116–128. [Google Scholar] [CrossRef] [PubMed]
- R_Core_Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Huber, W.; Carey, V.J.; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Charif, D.; Lobry, J.R. SeqinR 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations; Bastolla, U., Porto, M., Roman, H.E., Vendruscolo, M., Eds.; Springer: New York, NY, USA, 2007; pp. 207–232, (Biological and Medical Physics, Biomedical Engineering). [Google Scholar]
- Bodenhofer, U.; Bonatesta, E.; Horejs-Kainrath, C.; Hochreiter, S. Msa: An R package for multiple sequence alignment. Bioinformatics 2015, 31, 3997–3999. [Google Scholar] [CrossRef]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [Green Version]
Region | Pre-Cleavage | Post-Cleavage | |||||||
---|---|---|---|---|---|---|---|---|---|
MA/CA | Codon | 131 | 132 | 133 | 134 | / | 135 | 136 | 137 |
Residue | S | Q | N | Y | / | P | I | V | |
CA/p2 | Codon | 362 | 363 | 364 | 365 | / | 366 | 367 | 368 |
Residue | A | R | V | L | / | A | E | A | |
p2/NC | Codon | 377 | 378 | 379 | 380 | / | 381 | 382 | 383 |
Residue | A | N | I | M | / | M | Q | R | |
NC/p1 | Codon | 431 | 432 | 433 | 434 | / | 435 | 436 | 437 |
Residue | R | Q | A | N | / | F | L | G | |
p1/p6 | Codon | 447 | 448 | 449 | 450 | / | 451 | 452 | 453 |
Residue | P | G | N | F | / | L | Q | S |
Region | Length in Codons | Mutations Pre-ATI | Mutations Post-ATI | Difference in Mutations |
---|---|---|---|---|
Matrix | 134 | 2.20 | 2.10 | 0.10 |
Capsid | 231 | 1.07 | 1.03 | 0.04 |
p2 | 15 | 5.53 | 5.53 | 0.00 |
Nucleocapsid | 54 | 2.37 | 1.87 | 0.50 |
p1 | 16 | 3.38 | 1.88 | 1.50 |
p6 | 113 | 2.42 | 1.44 | 0.98 |
Patient | Codon | Pre-ATI | Post-ATI | SF-2 | Revert to Wild Type |
---|---|---|---|---|---|
MA/CA Region | |||||
5 | 134 | F | F | Y | FALSE |
10 | 134 | F | F | Y | FALSE |
34 | 134 | F | Y | Y | TRUE |
CA/p2 Region | |||||
34 | 364 | I | I | V | FALSE |
52 | 364 | I | I | V | FALSE |
p2/NC Region | |||||
3 | 377 | T | T | N | FALSE |
3 | 378 | V | V | I | FALSE |
3 | 382 | K | K | R | FALSE |
4 | 377 | T | T | A | FALSE |
4 | 379 | V | V | I | FALSE |
5 | 377 | T | T | N | FALSE |
5 | 382 | K | K | R | FALSE |
6 | 377 | A | A | N | FALSE |
8 | 378 | V | V | I | FALSE |
10 | 377 | T | T | N | FALSE |
10 | 378 | V | V | I | FALSE |
14 | 378 | V | V | I | FALSE |
15 | 377 | T | T | N | FALSE |
15 | 382 | K | K | R | FALSE |
19 | 377 | A | A | N | FALSE |
21 | 380 | T | T | N | FALSE |
22 | 377 | T | T | N | FALSE |
23 | 377 | T | T | N | FALSE |
26 | 377 | T | T | N | FALSE |
34 | 377 | T | T | N | FALSE |
35 | 377 | T | A | N | FALSE |
41 | 377 | S | S | N | FALSE |
44 | 377 | T | T | N | FALSE |
44 | 378 | V | V | I | FALSE |
46 | 377 | T | T | N | FALSE |
46 | 378 | V | V | I | FALSE |
51 | 377 | A | A | N | FALSE |
53 | 377 | T | T | N | FALSE |
56 | 378 | T | T | N | FALSE |
56 | 379 | V | V | I | FALSE |
NC/p1 Region | |||||
10 | 433 | V | V | A | FALSE |
23 | 433 | V | V | A | FALSE |
35 | 437 | K | G | G | TRUE |
47 | 431 | N | N | T | FALSE |
47 | 435 | V | A | A | TRUE |
56 | 434 | I | I | A | FALSE |
p1/p6 Region | |||||
3 | 453 | N | N | S | FALSE |
4 | 452 | P | P | L | FALSE |
15 | 451 | P | P | L | FALSE |
19 | 453 | N | N | S | FALSE |
35 | 448 | R | G | G | TRUE |
35 | 451 | L | P | L | FALSE |
Gag Mutations | Major Protease Mutations (Plasma) from IAS | ||||||
---|---|---|---|---|---|---|---|
Codon | Sequence | Pre-ATI | Post-ATI | SF-2 | Gag Region | Number Mutations | Mutations |
47 | 24pre | Y | N | Matrix | 3 | M46L V82F I84V | |
47 | 24post | N | N | Matrix | 0 | No major PR mutations | |
76 | 43pre | K | R | Matrix | 1 | L90M | |
76 | 43post | R | R | Matrix | 0 | No major PR mutations | |
79 | 6pre | F | Y | Matrix | 1 | L90M | |
79 | 6post | Y | Y | Matrix | 1 | L90M | |
102 | 35pre | D | E | Matrix | 2 | G48V V82A | |
102 | 35post | E | E | Matrix | 0 | No major PR mutations | |
103 | 35pre | Q | K | Matrix | 2 | G48V V82A | |
103 | 35post | K | K | Matrix | 0 | No major PR mutations | |
111 | 34pre | C | S | Matrix | 1 | L90M | |
111 | 34post | S | S | Matrix | 1 | L90M | |
114 | 28pre | R | K | Matrix | 3 | M46I I84V L90M | |
114 | 28post | K | K | Matrix | 0 | No major PR mutations | |
121 | 48pre | D | A | Matrix | 2 | I84V L90M | |
121 | 48post | A | A | Matrix | 2 | I84V L90M | |
122 | 48pre | T | A | Matrix | 2 | I84V L90M | |
122 | 48post | A | A | Matrix | 2 | I84V L90M | |
134 * | 34pre | F | Y | Matrix | 1 | L90M | |
134 * | 34post | Y | Y | Matrix | 1 | L90M | |
149 | 28pre | L | I | Capsid | 3 | M46I I84V L90M | |
149 | 28post | I | I | Capsid | 0 | No major PR mutations | |
217 | 28pre | E | V | Capsid | 3 | M46I I84V L90M | |
217 | 28post | V | V | Capsid | 0 | No major PR mutations | |
243 | 47pre | S | T | Capsid | 3 | M46I I84V L90M | |
243 | 47post | T | T | Capsid | 0 | No major PR mutations | |
375 | 47pre | N | T | p2 | 3 | M46I I84V L90M | |
375 | 47post | T | T | p2 | 0 | No major PR mutations | |
386 | 28pre | K | R | Nucleocapsid | 3 | M46I I84V L90M | |
386 | 28post | R | R | Nucleocapsid | 0 | No major PR mutations | |
390 | 1pre | R | K | Nucleocapsid | 3 | M46L V82F I84V | |
390 | 1post | K | K | Nucleocapsid | 0 | No major PR mutations | |
420 | 52pre | K | R | Nucleocapsid | 3 | G48V V82A I84V | |
420 | 52post | R | R | Nucleocapsid | 0 | No major PR mutations | |
435 * | 47pre | V | A | p1 | 3 | M46I I84V L90M | |
435 * | 47post | A | A | p1 | 0 | No major PR mutations | |
451 * | 35pre | P | L | p6 | 2 | G48V V82A | |
451 * | 35post | L | L | p6 | 0 | No major PR mutations | |
455 | 28pre | L | P | p6 | 3 | M46I I84V L90M | |
455 | 28post | P | P | p6 | 0 | No major PR mutations | |
455 | 43pre | T | P | p6 | 1 | L90M | |
455 | 43post | P | P | p6 | 0 | No major PR mutations | |
457 | 47pre | L | P | p6 | 3 | M46I I84V L90M | |
457 | 47post | P | P | p6 | 0 | No major PR mutations | |
469 | 47pre | L | F | p6 | 3 | M46I I84V L90M | |
469 | 47post | F | F | p6 | 0 | No major PR mutations | |
472 | 36pre | A | T | p6 | 3 | M46I V82A L90M | |
472 | 3post | T | T | p6 | 0 | No major PR mutations | |
476 | 8pre | I | T | p6 | 2 | M46I I84V | |
476 | 8post | T | T | p6 | 0 | No major PR mutations |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunter, J.R.; dos Santos, D.E.M.; Munerato, P.; Janini, L.M.; Castelo, A.; Sucupira, M.C.; Truong, H.-H.M.; Diaz, R.S. Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens 2022, 11, 534. https://doi.org/10.3390/pathogens11050534
Hunter JR, dos Santos DEM, Munerato P, Janini LM, Castelo A, Sucupira MC, Truong H-HM, Diaz RS. Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens. 2022; 11(5):534. https://doi.org/10.3390/pathogens11050534
Chicago/Turabian StyleHunter, James R., Domingos E. Matos dos Santos, Patricia Munerato, Luiz Mario Janini, Adauto Castelo, Maria Cecilia Sucupira, Hong-Ha M. Truong, and Ricardo Sobhie Diaz. 2022. "Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure" Pathogens 11, no. 5: 534. https://doi.org/10.3390/pathogens11050534
APA StyleHunter, J. R., dos Santos, D. E. M., Munerato, P., Janini, L. M., Castelo, A., Sucupira, M. C., Truong, H.-H. M., & Diaz, R. S. (2022). Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens, 11(5), 534. https://doi.org/10.3390/pathogens11050534