The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection and Characteristics of Studies
2.2. Meta-Analysis Results on Overall Prevalence
2.3. Subgroup Analysis by Geographical Distribution
2.4. Subgroup Analysis by Parameters of Samples Analysis
2.5. Subgroup Analysis by Aquatic Source
2.6. Subgroup Analysis by Arcobacteraceae Species
3. Materials and Methods
3.1. Search Strategy and Study Selection
3.2. Data Extraction and Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vandamme, P.; De Ley, J. Proposal for a New Family, Campylobacteraceae. Int. J. Syst. Bacteriol. 1991, 41, 451–455. [Google Scholar] [CrossRef]
- On, S.L.W. Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: Current status, future prospects and immediate concerns. J. Appl. Microbiol. 2001, 90, 1S–15S. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.; Oleastro, M.; Domingues, F. Current insights on Arcobacter butzleri in food chain. Curr. Opin. Food Sci. 2019, 26, 9–17. [Google Scholar] [CrossRef]
- Alonso, R.; Girbau, C.; Martinez-Malaxetxebarria, I.; Pérez-Cataluña, A.; Salas-Massó, N.; Romalde, J.L.; Figueras, M.J.; Fernandez-Astorga, A. Aliarcobacter vitoriensis sp. nov., isolated from carrot and urban wastewater. Syst. Appl. Microbiol. 2020, 43, 126091. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Vanwonterghem, I.; Rinke, C.; Parks, D.H.; Zhang, Y.; Takai, K.; Sievert, S.M.; Simon, J.; Campbell, B.J.; Hanson, T.E.; et al. Comparative Genomic Analysis of the Class Epsilonproteobacteria and Proposed Reclassification to Epsilonbacteraeota (phyl. nov.). Front. Microbiol. 2017, 8, 682. [Google Scholar] [CrossRef]
- Pérez-Cataluña, A.; Salas-Massó, N.; Diéguez, A.L.; Balboa, S.; Lema, A.; Romalde, J.L.; Figueras, M.J. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order from the Chaos. Front. Microbiol. 2018, 9, 2077. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 2020, 70, 1–5. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 2019, 69, 5–9. [Google Scholar] [CrossRef]
- On, S.L.W.; Miller, W.G.; Biggs, P.J.; Cornelius, A.J.; Vandamme, P. A critical rebuttal of the proposed division of the genus Arcobacter into six genera using comparative genomic, phylogenetic, and phenotypic criteria. Syst. Appl. Microbiol. 2020, 43, 126108. [Google Scholar] [CrossRef]
- Oren, A.; Garrity, G.M. List of new names and new combinations previously effectively, but not validly, published. Int. J. Syst. Evol. Microbiol. 2020, 70, 2960–2966. [Google Scholar] [CrossRef]
- Collado, L.; Figueras, M.J. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin. Microbiol. Rev. 2011, 24, 174–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snelling, W.J.; Matsuda, M.; Moore, J.E.; Dooley, J.S.G. Under the microscope: Arcobacter. Lett. Appl. Microbiol. 2006, 42, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Hsu, T.-T.D.; Lee, J. Global Distribution and Prevalence of Arcobacter in Food and Water. Zoonoses Public Health 2015, 62, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Rahman, F.U.; Andree, K.B.; Salas-Massó, N.; Fernandez-Tejedor, M.; Sanjuan, A.; Figueras, M.J.; Furones, M.D. Improved culture enrichment broth for isolation of Arcobacter-like species from the marine environment. Sci. Rep. 2020, 10, 14547. [Google Scholar] [CrossRef] [PubMed]
- International Commission on Microbiological Specifications for Foods (ICMS). Microorganisms in Food 7—Microbiological Testing in Food Safety Management; Kuwer Academic/Plenum Publishers: New York, NY, USA, 2002; ISBN 0306472627. [Google Scholar]
- Wybo, I.; Breynaert, J.; Lauwers, S.; Lindenburg, F.; Houf, K. Isolation of Arcobacter skirrowii from a Patient with Chronic Diarrhea. J. Clin. Microbiol. 2004, 42, 1851–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van den Abeele, A.-M.; Vogelaers, D.; Van Hende, J.; Houf, K.; Van Den Abeele, A.; Vogelaers, D.; Van Hende, J.; Houf, K. Prevalence of Arcobacter Species among Humans, Belgium, 2008–2013. Emerg. Infect. Dis. 2014, 20, 1746–1749. [Google Scholar] [CrossRef] [Green Version]
- Vasiljevic, M.; Fenwick, A.J.; Nematollahi, S.; Gundareddy, V.P.; Romagnoli, M.; Zenilman, J.; Carroll, K.C. First Case Report of Human Bacteremia with Malacobacter (Arcobacter) mytili. Open Forum Infect. Dis. 2019, 6, ofz319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kerkhof, P.J.; Van den Abeele, A.M.; Strubbe, B.; Vogelaers, D.; Vandamme, P.; Houf, K. Diagnostic approach for detection and identification of emerging enteric pathogens revisited: The (Ali)arcobacter lanthieri case. New Microbes New Infect. 2021, 39, 100829. [Google Scholar] [CrossRef]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2016, 42, 364–383. [Google Scholar] [CrossRef] [PubMed]
- Raj Kannel, P.; Lee, S.; Lee, Y.; Kanel, S.; Pelletier, G. Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal. Ecol. Model. 2007, 202, 503–517. [Google Scholar] [CrossRef]
- Abulreesh, H.H.; Paget, T.A.; Goulder, R. Campylobacter in Waterfowl and Aquatic Environments: Incidence and Methods of Detection. Environ. Sci. Technol. 2006, 40, 7122–7131. [Google Scholar] [CrossRef]
- Mateus, C.; Martins, R.; Luís, Â.; Oleastro, M.; Domingues, F.; Pereira, L.; Ferreira, S. Prevalence of Arcobacter: From farm to retail—A systematic review and meta-analysis. Food Control 2021, 128, 108177. [Google Scholar] [CrossRef]
- Fera, M.T.; Maugeri, T.L.; Gugliandolo, C.; Beninati, C.; La Camera, E.; Carbone, M.; Giannone, M. Detection of Arcobacter spp. in the Coastal Environment of the Mediterranean Sea. Appl. Environ. Microbiol. 2004, 70, 1271–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.; Oleastro, M.; Domingues, F. Arcobacter spp. in Food Chain—From Culture to Omics. In Food Borne Pathogens and Antibiotic Resistance; Singh, O.V., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2017; pp. 73–118. [Google Scholar]
- Talay, F.; Molva, C.; Atabay, H.I. Isolation and identification of Arcobacter species from environmental and drinking water samples. Folia Microbiol. 2016, 61, 479–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, Y.; Alonso, J.L.; Botella, S.; Ferrús, M.A.; Hernández, J. Survival and injury of Arcobacter after artificial inoculation into drinking water. Res. Microbiol. 2004, 155, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Ertas, N.; Dogruer, Y.; Gonulalan, Z.; Guner, A.; Ulger, I.; Nurhan, E.; Dogruer, Y.; Zafer, G.; Guner, A.; Ulger, I. Prevalence of Arcobacter species in drinking water, spring water, and raw milk as determined by multiplex PCR. J. Food Prot. 2010, 73, 2099–2102. [Google Scholar] [CrossRef]
- Zerva, I.; Remmas, N.; Kagalou, I.; Melidis, P.; Ariantsi, M.; Sylaios, G.; Ntougias, S. Effect of chlorination on microbiological quality of effluent of a full-scale wastewater treatment plant. Life 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Collado, L.; Inza, I.; Guarro, J.; Figueras, M.J. Presence of Arcobacter spp. in environmental waters correlates with high levels of fecal pollution. Environ. Microbiol. 2008, 10, 1635–1640. [Google Scholar] [CrossRef]
- Fong, T.T.; Mansfield, L.S.; Wilson, D.L.; Schwab, D.J.; Molloy, S.L.; Rose, J.B. Massive microbiological groundwater contamination associated with a waterborne outbreak in Lake Erie, South Bass Island, Ohio. Environ. Health Perspect. 2007, 115, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Kopilovi, B.; Ucakar, V.; Koren, N.; Krek, M.; Kraigher, A. Waterborne outbreak of acute gastroenteritis in a costal area in Slovenia in June and July 2008. EuroSurveillance 2008, 13, 18957. [Google Scholar] [CrossRef] [Green Version]
- Salas-Massó, N.; Figueras, M.J.; Andree, K.B.; Furones, M.D. Do the Escherichia coli European Union shellfish safety standards predict the presence of Arcobacter spp., a potential zoonotic pathogen? Sci. Total Environ. 2018, 624, 1171–1179. [Google Scholar] [CrossRef]
- Kristensen, J.M.; Nierychlo, M.; Albertsen, M.; Nielsen, P.H. Bacteria from the Genus Arcobacter Are Abundant in Effluent from Wastewater Treatment Plants. Appl. Environ. Microbiol. 2020, 86, e03044-19. [Google Scholar] [CrossRef] [PubMed]
- Çelik, E.; Ünver, A. Isolation and Identification of Arcobacter spp. by Multiplex PCR from Water Sources in Kars Region. Curr. Microbiol. 2015, 71, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Light, R.J.; Pillemer, D.B. Summing Up: The Science of Reviewing Research; Harvard University Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Light, R.J.; Singer, J.D.; Willett, J.B. The visual presentation and interpretation of meta-analyses. In The Handbook of Research Synthesis; Cooper, M., Hedges, L.V., Eds.; Russell Sage Foundation: New York, NY, USA, 1994. [Google Scholar]
- Borenstein, M.; Hedges, L.; Higgins, J. Introduction to Meta-Analysis; John Wiley & Sons: Chichester, UK, 2009. [Google Scholar]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duval, S.; Tweedie, R. A non parametric “Trim and Fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar]
- Duval, S.; Tweedie, R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000, 56, 455–463. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, J.P.R.; Lapworth, D.J.; Read, D.S.; Nkhuwa, D.C.W.; Bell, R.A.; Chibesa, M.; Chirwa, M.; Kabika, J.; Liemisa, M.; Pedley, S. Tracing enteric pathogen contamination in sub-Saharan African groundwater. Sci. Total Environ. 2015, 538, 888–895. [Google Scholar] [CrossRef] [Green Version]
- Hsu, T.-T.D.; Mitsch, W.J.; Martin, J.F.; Lee, J. Towards sustainable protection of public health: The role of an urban wetland as a frontline safeguard of pathogen and antibiotic resistance spread. Ecol. Eng. 2017, 108, 547–555. [Google Scholar] [CrossRef]
- Levican, A.; Collado, L.; Figueras, M.J. The use of two culturing methods in parallel reveals a high prevalence and diversity of Arcobacter spp. in a wastewater treatment plant. Biomed Res. Int. 2016, 2016, 8132058. [Google Scholar] [CrossRef] [Green Version]
- Diergaardt, S.M.; Venter, S.N.; Spreeth, A.; Theron, J.; Brözel, V.S. The occurrence of campylobacters in water sources in South Africa. Water Res. 2004, 38, 2589–2595. [Google Scholar] [CrossRef]
- Klase, G.; Lee, S.; Liang, S.; Kim, J.; Zo, Y.G.; Lee, J. The microbiome and antibiotic resistance in integrated fishfarm water: Implications of environmental public health. Sci. Total Environ. 2019, 649, 1491–1501. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.T.; Lipman, L.J.; Gaastra, W. The introduction of Arcobacter spp. in poultry slaughterhouses. Int. J. Food Microbiol. 2008, 125, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Manzano, J.; Alonso, J.L.; Ferrús, M.A.; Moreno, Y.; Amorós, I.; Calgua, B.; Hundesa, A.; Guerrero-Latorre, L.; Carratala, A.; Rusiñol, M.; et al. Standard and new faecal indicators and pathogens in sewage treatment plants, microbiological parameters for improving the control of reclaimed water. Water Sci. Technol. 2012, 66, 2517–2523. [Google Scholar] [CrossRef]
- Moreno, Y.; Botella, S.; Alonso, J.L.; Ferrús, M.A.; Hernández, M.; Hernández, J. Specific detection of Arcobacter and Campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl. Environ. Microbiol. 2003, 69, 1181–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Smet, S.; De Zutter, L.; Houf, K. Small ruminants as carriers of the emerging foodborne pathogen Arcobacter on small and medium farms. Small Rumin. Res. 2011, 97, 124–129. [Google Scholar] [CrossRef]
- Chen, X.; Lang, X.L.; Xu, A.L.; Song, Z.W.; Yang, J.; Guo, M.Y. Seasonal variability in the microbial community and pathogens in wastewater final effluents. Water 2019, 11, 2586. [Google Scholar] [CrossRef] [Green Version]
- Suh, S.S.; Park, M.; Hwang, J.; Kil, E.J.; Jung, S.W.; Lee, S.; Lee, T.K. Seasonal dynamics of marine microbial community in the South Sea of Korea. PLoS ONE 2015, 10, e0131633. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.G.; Tandukar, S.; Bhandari, D.; Sherchan, S.P.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Prevalence of Arcobacter and other pathogenic bacteria in river water in Nepal. Water 2019, 11, 1416. [Google Scholar] [CrossRef] [Green Version]
- González, A.; Suski, J.; Ferrus, M.A. Rapid and accurate detection of Arcobacter contamination in commercial chicken products and wastewater samples by real-time polymerase chain reaction. Foodborne Pathog. Dis. 2010, 7, 327–338. [Google Scholar] [CrossRef]
- Chandra, S.; Saxena, T.; Nehra, S.; Mohan, M.K. Quality assessment of supplied drinking water in Jaipur city, India, using PCR-based approach. Environ. Earth Sci. 2016, 75, 153. [Google Scholar] [CrossRef]
- Shah, A.H.; Saleha, A.A.; Zunita, Z.; Cheah, Y.K.; Murugaiyah, M.; Korejo, N.A. Genetic characterization of Arcobacter isolates from various sources. Vet. Microbiol. 2012, 160, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.M.; Wesley, I.V.; Nestor, E.; Trampel, D.W. Prevalence of Arcobacter species in market-weight commercial turkeys. Antonie Leeuwenhoek 2007, 92, 309–317. [Google Scholar] [CrossRef]
- Webb, A.L.; Taboada, E.N.; Selinger, L.B.; Boras, V.F.; Inglis, G.D. Prevalence and diversity of waterborne Arcobacter butzleri in southwestern Alberta, Canada. Can. J. Microbiol. 2017, 63, 330–340. [Google Scholar] [CrossRef]
- Pejchalová, M.; Dostalikova, E.; Slámová, M.; Brožková, I.; Vytřasová, J. Prevalence and diversity of Arcobacter spp. in the Czech Republic. J. Food Prot. 2008, 71, 719–727. [Google Scholar] [CrossRef]
- Aydin, F.; Gümüşsoy, K.S.; Atabay, H.I.; Iça, T.; Abay, S. Prevalence and distribution of Arcobacter species in various sources in Turkey and molecular analysis of isolated strains by ERIC-PCR. J. Appl. Microbiol. 2007, 103, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.C.; Levican, A.; Figueras, M.J.; McLellan, S.L. Population dynamics and ecology of Arcobacter in sewage. Front. Microbiol. 2014, 5, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, S.; Oleastro, M.; Domingues, F.C. Occurrence, genetic diversity and antibiotic resistance of Arcobacter sp. in a dairy plant. J. Appl. Microbiol. 2017, 123, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Serraino, A.; Giacometti, F. Occurrence of Arcobacter species in industrial dairy plants. J. Dairy Sci. 2014, 97, 2061–2065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khoshbakht, R.; Tabatabaei, M.; Shirzad Aski, H.; Seifi, S. Occurrence of Arcobacter in Iranian poultry and slaughterhouse samples implicates contamination by processing equipment and procedures. Brit. Poult. Sci. 2014, 55, 732–736. [Google Scholar] [CrossRef] [PubMed]
- Hausdorf, L.; Neumann, M.; Bergmann, I.; Sobiella, K.; Mundt, K.; Fröhling, A.; Schlüter, O.; Klocke, M. Occurrence and genetic diversity of Arcobacter spp. in a spinach-processing plant and evaluation of two Arcobacter-specific quantitative PCR assays. Syst. Appl. Microbiol. 2013, 36, 235–243. [Google Scholar] [CrossRef]
- Giacometti, F.; Lucchi, A.; Manfreda, G.; Florio, D.; Zanoni, R.G.; Serraino, A. Occurrence and genetic diversity of Arcobacter butzleri in an artisanal dairy plant in Italy. Appl. Environ. Microbiol. 2013, 79, 6665–6669. [Google Scholar] [CrossRef] [Green Version]
- Collado, L.; Kasimir, G.; Perez, U.; Bosch, A.; Pinto, R.; Saucedo, G.; Huguet, J.M.; Figueras, M.J. Occurrence and diversity of Arcobacter spp. along the Llobregat River catchment, at sewage effluents and in a drinking water treatment plant. Water Res. 2010, 44, 3696–3702. [Google Scholar] [CrossRef]
- Elmali, M.; Can, H.Y. Occurence and antimicrobial resistance of Arcobacter species in food and slaughterhouse samples. Food Sci. Technol. 2017, 37, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.G.; Tanaka, Y.; Malla, B.; Bhandari, D.; Tandukar, S.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Next-generation sequencing identification of pathogenic bacterial genes and their relationship with fecal indicator bacteria in different water sources in the Kathmandu Valley, Nepal. Sci. Total Environ. 2017, 601, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Healy-Profitós, J.; Lee, S.; Mouhaman, A.; Garabed, R.; Moritz, M.; Piperata, B.; Lee, J. Neighborhood diversity of potentially pathogenic bacteria in drinking water from the city of Maroua, Cameroon. J. Water Health 2016, 14, 559–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houf, K.; De Zutter, L.; Verbeke, B.; Van Hoof, J.; Vandamme, P. Molecular characterization of Arcobacter isolates collected in a poultry slaughterhouse. J. Food Prot. 2003, 66, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Šilha, D.; Šilhová-Hrušková, L.; Vytřasová, J. Modified isolation method of Arcobacter spp. from different environmental and food samples. Folia Microbiol. 2015, 60, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Vytřasová, J.; Pejchalova, M.; Harsova, K.; Bínová, Š. Isolation of Arcobacter butzleri and A. cryaerophilus in samples of meats and from meat-processing plants by a culture technique and detection by PCR. Folia Microbiol. 2003, 48, 227–232. [Google Scholar] [CrossRef]
- Morita, Y.; Maruyama, S.; Kabeya, H.; Boonmar, S.; Nimsuphan, B.; Nagai, A.; Kozawa, K.; Nakajima, T.; Mikami, T.; Kimura, H. Isolation and phylogenetic analysis of Arcobacter spp. in ground chicken meat and environmental water in Japan and Thailand. Microbiol. Immunol. 2013, 48, 527–533. [Google Scholar] [CrossRef]
- Shrestha, G.R.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Identification of 16S rRNA and Virulence-Associated Genes of Arcobacter in Water Samples in the Kathmandu Valley, Nepal. Pathogens 2019, 8, 110. [Google Scholar] [CrossRef] [Green Version]
- Carney, R.L.; Brown, M.V.; Siboni, N.; Raina, J.B.; Kahlke, T.; Mitrovic, S.M.; Seymour, J.R. Highly heterogeneous temporal dynamics in the abundance and diversity of the emerging pathogens Arcobacter at an urban beach. Water Res. 2020, 171, 115405. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Cassi, X.; Silvera, C.; Cervero-Aragó, S.; Rusiñol, M.; Latif-Eugeni, F.; Bruguera-Casamada, C.; Civit, S.; Araujo, R.M.; Figueras, M.J.; Girones, R.; et al. Evaluation of the microbiological quality of reclaimed water produced from a lagooning system. Environ. Sci. Pollut. Res. 2016, 23, 16816–16833. [Google Scholar] [CrossRef] [PubMed]
- Salas-Massó, N.; Andree, K.B.; Furones, M.D.; Figueras, M.J. Enhanced recovery of Arcobacter spp. using NaCl in culture media and re-assessment of the traits of Arcobacter marinus and Arcobacter halophilus isolated from marine water and shellfish. Sci. Total Environ. 2016, 566, 1355–1361. [Google Scholar] [CrossRef]
- Cui, Q.; Huang, Y.; Wang, H.; Fang, T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ. Pollut. 2019, 249, 24–35. [Google Scholar] [CrossRef]
- Maugeri, T.L.; Irrera, G.P.; Lentini, V.; Carbone, M.; Fera, M.T.; Gugliandolo, C. Detection and enumeration of Arcobacter spp. in the coastal environment of the Straits of Messina (Italy). New Microbiol. 2005, 28, 177–182. [Google Scholar]
- González, A.; Botella, S.; Montes, R.M.; Moreno, Y.; Ferrus, M.A. Direct detection and identification of Arcobacter species by multiplex PCR in chicken and wastewater samples from Spain. J. Food Prot. 2007, 70, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.G.; Tanaka, Y.; Malla, B.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Sherchand, J.B.; Haramoto, E. Development of a quantitative PCR assay for Arcobacter spp. and its application to environmental water samples. Microbes Environ. 2018, 33, 309–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banihashemi, A.; Van Dyke, M.I.; Huck, P.M. Detection of viable bacterial pathogens in a drinking water source using propidium monoazide-quantitative PCR. J. Water Supply Res. Technol. 2015, 64, 139–148. [Google Scholar] [CrossRef]
- Chinivasagam, H.N.; Corney, B.G.; Wright, L.L.; Diallo, I.S.; Blackall, P.J. Detection of Arcobacter spp. in piggery effluent and effluent-irrigated soils in southeast Queensland. J. Appl. Microbiol. 2007, 103, 418–426. [Google Scholar] [CrossRef]
- Rathlavath, S.; Kumar, S.; Nayak, B.B. Comparative isolation and genetic diversity of Arcobacter sp. from fish and the coastal environment. Lett. Appl. Microbiol. 2017, 65, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Hausdorf, L.; Mundt, K.; Winzer, M.; Cordes, C.; Fröhling, A.; Schlüter, O.; Klocke, M. Characterization of the cultivable microbial community in a spinach-processing plant using MALDI-TOF MS. Food Microbiol. 2013, 34, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhang, X.X.; Wang, Z.; Huang, K.; Wang, Y.; Liang, W.; Tan, Y.; Liu, B.; Tang, J. Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS ONE 2015, 10, e0125549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leight, A.K.; Crump, B.C.; Hood, R.R. Assessment of fecal indicator bacteria and potential pathogen co-occurrence at a shellfish growing area. Front. Microbiol. 2018, 9, 384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merga, J.Y.; Royden, A.; Pandey, A.K.; Williams, N.J. Arcobacter spp. isolated from untreated domestic effluent. Lett. Appl. Microbiol. 2014, 59, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Agidi, S.; Marion, J.W.; Lee, J. Arcobacter in Lake Erie beach waters: An emerging gastrointestinal pathogen linked with human-associated fecal contamination. Appl. Environ. Microbiol. 2012, 78, 5511–5519. [Google Scholar] [CrossRef] [Green Version]
- Giacometti, F.; Piva, S.; Vranckx, K.; De Bruyne, K.; Drigo, I.; Lucchi, A.; Manfreda, G.; Serraino, A. Application of MALDI-TOF MS for the subtyping of Arcobacter butzleri strains and comparison with their MLST and PFGE types. Int. J. Food Microbiol. 2018, 277, 50–57. [Google Scholar] [CrossRef]
- Newton, R.J.; Bootsma, M.J.; Morrison, H.G.; Sogin, M.L.; McLellan, S.L. A microbial signature approach to identify fecal pollution in the waters off an urbanized coast of Lake Michigan. Microb. Ecol. 2013, 65, 1011–1023. [Google Scholar] [CrossRef]
- Acharya, K.; Blackburn, A.; Mohammed, J.; Haile, A.T.; Hiruy, A.M.; Werner, D. Metagenomic water quality monitoring with a portable laboratory. Water Res. 2020, 184, 116112. [Google Scholar] [CrossRef]
- Niedermeyer, J.A.; Miller, W.G.; Yee, E.; Harris, A.; Emanuel, R.E.; Jass, T.; Nelson, N.; Kathariou, S. Search for Campylobacter spp. reveals high prevalence and pronounced genetic diversity of Arcobacter butzleri in floodwater samples associated with Hurricane Florence in North Carolina, USA. Appl. Environ. Microbiol. 2020, 86, e01118-20. [Google Scholar] [CrossRef]
- Kutilova, I.; Medvecky, M.; Leekitcharoenphon, P.; Munk, P.; Masarikova, M.; Davidova-Gerzova, L.; Jamborova, I.; Bortolaia, V.; Pamp, S.J.; Dolejska, M. Extended-spectrum beta-lactamase-producing Escherichia coli and antimicrobial resistance in municipal and hospital wastewaters in Czech Republic: Culture-based and metagenomic approaches. Environ. Res. 2021, 193, 110487. [Google Scholar] [CrossRef]
- Godoy, R.G.; Marcondes, M.A.; Pessôa, R.; Nascimento, A.; Victor, J.R.; da Silva Duarte, A.J.; Clissa, P.B.; Sanabani, S.S. Bacterial community composition and potential pathogens along the Pinheiros River in the southeast of Brazil. Sci. Rep. 2020, 10, 9331. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Cheng, Y.; Qian, C.; Lu, W. Bacterial community evolution along full-scale municipal wastewater treatment processes. J. Water Health 2020, 18, 665–680. [Google Scholar] [CrossRef] [PubMed]
- Miltenburg, M.G.; Cloutier, M.; Craiovan, E.; Lapen, D.R.; Wilkes, G.; Topp, E.; Khan, I.U. Real-time quantitative PCR assay development and application for assessment of agricultural surface water and various fecal matter for prevalence of Aliarcobacter faecis and Aliarcobacter lanthieri. BMC Microbiol. 2020, 20, 164. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.U.H.; Becker, A.; Cloutier, M.; Plötz, M.; Lapen, D.R.; Wilkes, G.; Topp, E.; Abdulmawjood, A. Loop-mediated isothermal amplification: Development, validation and application of simple and rapid assays for quantitative detection of species of Arcobacteraceae family-and species-specific Aliarcobacter faecis and Aliarcobacter lanthieri. J. Appl. Microbiol. 2020, 131, 288–299. [Google Scholar] [CrossRef]
- Zhang, R.; Liu, W.C.; Liu, Y.; Zhang, H.L.; Zhao, Z.H.; Zou, L.Y.; Shen, Y.C.; Lan, W.S. Impacts of anthropogenic disturbances on microbial community of coastal waters in Shenzhen, South China. Ecotoxicology 2020, 30, 1652–1661. [Google Scholar] [CrossRef]
- Shrestha, R.G.; Sherchan, S.P.; Kitajima, M.; Tanaka, Y.; Gerba, C.P.; Haramoto, E. Reduction of Arcobacter at Two Conventional Wastewater Treatment Plants in Southern Arizona, USA. Pathogens 2019, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Shah, A.H.; Saleha, A.A.; Zunita, Z.; Murugaiyah, M.; Aliyu, A.B.; Jafri, N. Prevalence, Distribution and Antibiotic Re-sistance of Emergent Arcobacter spp. from Clinically Healthy Cattle and Goats. Transbound. Emerg. Dis. 2012, 60, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Pejchalová, M.; Vytřasová, J.; Brožková, I.; Husková, Z.; Červenka, L. Occurrence of arcobacters in the Czech Republic and the influence of sample matrix on their detection using PCR. J. Food Nut Res. 2006, 45, 152–158. [Google Scholar]
Countries/Continent/Income Level | n | Pooled Prevalence | 95% CI | Q-Value | I2 | tau2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
Countries | ||||||||
Australia | 2 | 0.946 | 0.607 | 0.995 | 0.2 | 0 | 0 | 0.655 |
Belgium | 2 | 0.647 | 0.15 | 0.95 | 11.215 | 91.084 | 6.069 | 0.001 |
Brazil | 1 | 0.962 | 0.298 | 0.999 | 0 | 0 | 0 | 1 |
Cameroon | 1 | 0.006 | 0 | 0.248 | 0 | 0 | 0 | 1 |
Canada | 4 | 0.919 | 0.686 | 0.983 | 157.866 | 98.1 | 6.533 | 0 |
China | 6 | 0.88 | 0.582 | 0.975 | 22.112 | 77.388 | 7.142 | <0.001 |
Czech Republic | 5 | 0.495 | 0.164 | 0.83 | 8.137 | 50.839 | 0.886 | 0.087 |
Denmark | 1 | 0.964 | 0.571 | 0.998 | 0 | 0 | 0 | 1 |
Ethiopia | 1 | 0.9 | 0.125 | 0.998 | 0 | 0 | 0 | 1 |
Germany | 2 | 0.458 | 0.066 | 0.91 | 4.993 | 79.972 | 4.889 | 0.025 |
India | 2 | 0.194 | 0.021 | 0.728 | 3.523 | 71.611 | 2.717 | 0.061 |
Iran | 1 | 0.633 | 0.08 | 0.972 | 0 | 0 | 0 | 1 |
Italy | 6 | 0.496 | 0.184 | 0.811 | 28.095 | 82.203 | 3.702 | <0.001 |
Japan | 1 | 0.235 | 0.091 | 0.486 | 0 | 0 | 0 | 1 |
Korea | 1 | 0.944 | 0.221 | 0.999 | 0 | 0 | 0 | 1 |
Malaysia | 2 | 0.111 | 0.012 | 0.56 | 0 | 0 | 0 | 1 |
Nepal | 4 | 0.78 | 0.408 | 0.948 | 29.843 | 89.947 | 2.843 | <0.001 |
Netherlands | 1 | 0.1 | 0.002 | 0.875 | 0 | 0 | 0 | 1 |
Portugal | 1 | 0.125 | 0.002 | 0.903 | 0 | 0 | 0 | 1 |
South Africa | 1 | 0.333 | 0.023 | 0.914 | 0 | 0 | 0 | 1 |
Spain | 10 | 0.894 | 0.742 | 0.961 | 63.897 | 85.915 | 1.383 | <0.001 |
Thailand | 1 | 0.938 | 0.461 | 0.996 | 0 | 0 | 0 | 1 |
Turkey | 4 | 0.124 | 0.028 | 0.413 | 31.328 | 90.424 | 1.365 | <0.001 |
UK | 2 | 0.935 | 0.443 | 0.996 | 0.07 | 0 | 0 | 0.792 |
USA | 9 | 0.857 | 0.669 | 0.947 | 98.424 | 91.872 | 1.361 | 0 |
Zambia | 1 | 0.114 | 0.006 | 0.736 | 0 | 0 | 0 | 1 |
Continent | ||||||||
Africa | 4 | 0.192 | 0.047 | 0.536 | 17.351 | 82.71 | 2.322 | <0.001 |
Asia | 22 | 0.499 | 0.336 | 0.663 | 149.357 | 85.939 | 1.143 | 0 |
Europe | 30 | 0.727 | 0.596 | 0.828 | 193.062 | 84.979 | 1.846 | 0 |
North America | 13 | 0.871 | 0.749 | 0.939 | 348.869 | 96.56 | 2.16 | 0 |
Oceania | 2 | 0.945 | 0.654 | 0.994 | 0.2 | 0 | 0 | 0.655 |
South America | 1 | 0.962 | 0.35 | 0.999 | 0 | 0 | 0 | 1 |
Income level | ||||||||
Low | 1 | 0.9 | 0.145 | 0.998 | 0 | 0 | 0 | 1 |
Lower middle | 8 | 0.398 | 0.18 | 0.666 | 54.123 | 87.067 | 1.211 | <0.001 |
Upper middle | 16 | 0.472 | 0.281 | 0.673 | 116.089 | 87.079 | 1.95 | 0 |
High | 47 | 0.79 | 0.702 | 0.858 | 644.845 | 92.867 | 1.956 | 0 |
Volume of Sample (mL) | n | Pooled Prevalence | 95% CI | Q-Value | I2 | tau2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
0–200 | 44 | 0.587 | 0.479 | 0.687 | 445.848 | 90.356 | 1.312 | <0.001 |
201–500 | 4 | 0.820 | 0.480 | 0.958 | 32.095 | 90.653 | 10.209 | <0.001 |
1000 | 3 | 0.903 | 0.684 | 0.976 | 8.358 | 76.069 | 0.517 | <0.001 |
>1000 | 7 | 0.858 | 0.666 | 0.948 | 72.324 | 91.704 | 4.86 | <0.001 |
Methods | n | Pooled Prevalence | 95% CI | Q-Value | I2 | tau2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
Culture—after enrichment | 37 | 0.433 | 0.348 | 0.521 | 278.038 | 87.052 | 0.779 | <0.001 |
Culture—without enrichment | 4 | 0.487 | 0.274 | 0.705 | 9.535 | 68.536 | 0.543 | 0.023 |
Molecular after enrichment | 10 | 0.631 | 0.437 | 0.79 | 39.809 | 77.392 | 0.924 | <0.001 |
Molecular direct | 30 | 0.876 | 0.769 | 0.937 | 422.349 | 93.134 | 4.281 | <0.001 |
—metagenomic sequencing | 16 | 0.96 | 0.891 | 0.986 | 7.954 | 0 | 0 | 0.926 |
—PCR and other amplification methods | 14 | 0.688 | 0.438 | 0.862 | 277.222 | 95.311 | 4.058 | <0.001 |
Sources Samples | n | Pooled Prevalence | 95% CI | Q-Value | I2 | tau2 | p-Value | |
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | |||||||
Seawater | 11 | 0.780 | 0.600 | 0.893 | 93.283 | 89.280 | 1.453 | <0.001 |
Surface water | 28 | 0.645 | 0.485 | 0.778 | 368.525 | 92.673 | 2.406 | <0.001 |
Ground water | 7 | 0.396 | 0.198 | 0.636 | 31.59 | 81.007 | 1.176 | <0.001 |
Raw sewage | 20 | 0.906 | 0.786 | 0.962 | 120.608 | 84.246 | 3.325 | <0.001 |
Processing Water | 9 | 0.343 | 0.141 | 0.624 | 33.624 | 76.207 | 1.942 | <0.001 |
Drinking water | 7 | 0.032 | 0.014 | 0.069 | 2.791 | 0 | 0 | 0.835 |
WWTP | ||||||||
Influent WWTP Treatment WWTP | 11 | 0.964 | 0.93 | 0.982 | 3.556 | 0 | 0 | 0.965 |
7 | 0.931 | 0.752 | 0.984 | 24.559 | 75.569 | 2.703 | <0.001 | |
Effluent WWTP | 9 | 0.876 | 0.774 | 0.936 | 12.725 | 37.13 | 0.366 | 0.122 |
Species | Drinking Water, Animals | Drinking Water, Humans | Surface Water | Seawater | Processing Water | Raw Sewage | Influent WWTP | Treatment WWTP | Efluent WWTP | Overall | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | n | Pooled Prevalence (95% CI) | |
Aliarcobacter butzleri | 3 | 0.090 (0.019–0.342) | 2 | 0.029 (0.004–0.195) | 18 | 0.503 (0.347–0.659) | 5 | 0.704 (0.389–0.898) | 3 | 0.090 (0.019–0.342) | 13 | 0.696 (0.502–0.838) | 4 | 0.954 (0.776–0.992) | 3 | 0.832 (0.485–0.963) | 3 | 0.830 (0.49–0.961) | 56 | 0.583 (0.483–0.675) |
Aliarcobacter skirrowii | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 1 | 0.962 (0.597–0.998) | 1 | 0.042 (0.003–0.425) | 0 | ̵̵̵̵̵̶- | 1 | 0.033 (0.062–0.366) | 1 | 0.125 (0.031–0.386) | 3 | 0.071 (0.014–0.288) | 1 | 0.071 (0.004–0.577) | 8 | 0.127 (0.057–0.258) |
Aliarcobacter cryaerophilus | 2 | 0.079 (0.007–0.50) | 0 | ̵̵̵̵̵̶- | 4 | 0.465 (0.120–0.847) | 4 | 0.207 (0.049–0.570) | 2 | 0.089 (0.01–0.479) | 9 | 0.500 (0.251–0.749) | 3 | 0.524 (0.135–0.885) | 4 | 0.770 (0.369–0.950) | 2 | 0.796 (0.237–0.98) | 30 | 0.425 (0.285–0.579) |
Aliarcobacter thereius | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 1 | 0.167 (0.023–0.631) | 1 | 0.167 (0.023–0.631) | 3 | 0.167 (0.055–0.409) | 1 | 0.071 (0.004–0.577) | 6 | 0.154 (0.068–0.311) |
Arcobacter nitrofigilis | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 1 | 0.042 (0.003–0.425) | 0 | ̵̵̵̵̵̶- | 2 | 0.108 (0.027–0.346) | 1 | 0.167 (0.023–0.631) | 3 | 0.071 (0.014–0.288) | 3 | 0.071 (0.014–0.288) | 10 | 0.088 (0.041–0.178) |
Malaciobacter mytili | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 2 | 0.207 (0.062–0.506) | 0 | ̵̵̵̵̵̶- | 1 | 0.033 (0.001–0.475) | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 3 | 0.162 (0.052–0.405) |
Pseudarcobactercloacae | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 1 | 0.091 (0.013–0.439) | ̵̵̵̵̵̶- | 2 | 0.197 (0.054–0.512) | 1 | 0.333 (0.084–0.732) | 3 | 0.071 (0.014–0.288) | 1 | 0.071 (0.004–0.577) | 8 | 0.148 (0.072–0.281) | |
Pseudarcobacter defluvii | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 0 | ̵̵̵̵̵̶- | 1 | 0.042 (0.003–0.425) | 0 | ̵̵̵̵̵̶- | 2 | 0.150 (0.049–0.377) | 1 | 0.167 (0.023–0.631) | 3 | 0.167 (0.055–0.409) | 2 | 0.160 (0.031–0.530) | 9 | 0.147 (0.078–0.261) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venâncio, I.; Luís, Â.; Domingues, F.; Oleastro, M.; Pereira, L.; Ferreira, S. The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis. Pathogens 2022, 11, 244. https://doi.org/10.3390/pathogens11020244
Venâncio I, Luís Â, Domingues F, Oleastro M, Pereira L, Ferreira S. The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis. Pathogens. 2022; 11(2):244. https://doi.org/10.3390/pathogens11020244
Chicago/Turabian StyleVenâncio, Igor, Ângelo Luís, Fernanda Domingues, Mónica Oleastro, Luísa Pereira, and Susana Ferreira. 2022. "The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis" Pathogens 11, no. 2: 244. https://doi.org/10.3390/pathogens11020244
APA StyleVenâncio, I., Luís, Â., Domingues, F., Oleastro, M., Pereira, L., & Ferreira, S. (2022). The Prevalence of Arcobacteraceae in Aquatic Environments: A Systematic Review and Meta-Analysis. Pathogens, 11(2), 244. https://doi.org/10.3390/pathogens11020244