Individual and Combined Application of Nematophagous Fungi as Biological Control Agents against Gastrointestinal Nematodes in Domestic Animals
Abstract
:1. Introduction
2. The Most Representative Biocontrol Candidates—Individual Application
2.1. Predatory Fungi
2.1.1. Duddingtonia
2.1.2. Arthrobotrys
2.1.3. Monacrosporium
2.2. Ovicidal Fungi
2.2.1. Pochonia
2.2.2. Other
3. Potential New Strategies of Biological Control
3.1. Coadministration of Fungi with Fungi
3.2. Coadministration of Fungi with Compounds
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoogen, J.; Geisen, S.; Routh, D.; Ferris, H.; Crowther, T.W. Soil nematode abundance and functional group composition at a global scale. Nature 2019, 572, 194–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisen, S.; Snoek, L.B.; Hooven, F.T.; Duyts, H.; Kostenko, O.; Bloem, J.; Martens, H.; Quist, C.W.; Helder, J.A.; van der Putten, W.H. Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods Ecol. Evol. 2018, 9, 1366–1378. [Google Scholar] [CrossRef] [Green Version]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.; de Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera-an outline for soil ecologists. J. Nematol. 1993, 25, 315–331. [Google Scholar] [CrossRef]
- Yadav, C.L.; Uppal, R.P.; Kalra, S. An outbreak of haemonchosis associated with anthelmintic resistance in sheep. Int. J. Parasitol. 1993, 23, 411–413. [Google Scholar] [CrossRef]
- Charlier, J.; Mariska, V.; Kenyon, F.; Skuce, P.; Vercruysse, J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014, 30, 361–367. [Google Scholar] [CrossRef]
- Grisi, L.; Leite, R.C.; Martins, J.; Barros, A.; Andreotti, R.; CancAdo, P.; León, A.; Pereira, J.B.; Villela, H.S. Reassessment of the potential economic impact of cattle parasites in Brazil. Rev. Bras. Parasitol. Vet. 2014, 23, 150–156. [Google Scholar] [CrossRef] [Green Version]
- Roeber, F.; Jex, A.R.; Gasser, R.B. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance-an Australian perspective. Parasites Vectors 2013, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Bolajoko, M.B.; Rose, H.; Musella, V.; Bosco, A.; Rinaldi, L.; Dijk, J.V.; Cringoli, G.; Morgan, E.R. The basic reproduction quotient (Q0) as a potential spatial predictor of the seasonality of ovine haemonchosis. Geospat. Health 2015, 9, 333–350. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Martinez, R.; Mendoza-de-Gives, P.; Aguilar-Marcelino, L.; Lopez-Arellano, M.E.; Gamboa-Angulo, M.; Rosas-Saito, G.H.; Reyes-Estebanez, M.; Garcia-Rubio, V.G. In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. BioMed Res. Int. 2018, 2018, 3501827. [Google Scholar] [CrossRef]
- Olsen, O.W. Animal parasites: Their life cycles and ecology. J. Parasitol. 1974, 60, 924. [Google Scholar]
- Kenyon, F.; Greer, A.W.; Coles, G.C.; Cringoli, G.; Papadopoulos, E.; Cabaret, J.; Berrag, B.; Varady, M.; Van Wyk, J.A.; Thomas, E.; et al. The role of targeted selective treatments in the development of refugia-based approaches to the control of gastrointestinal nematodes of small ruminants. Vet. Parasitol. 2009, 164, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sagüés, M.; Purslow, P.; Fernández, S.; Fusé, L.; Iglesias, L.; Saumell, C. Nematophagous fungi used for the biological control of gastrointestinal nematodes in livestock and administration routes. Rev. Iberoma. Micol. 2011, 28, 143–147. [Google Scholar] [CrossRef] [PubMed]
- Franco, B.; Alberto, F.L.; Federica, S.M.; Emilia, I.L.; Silvina, F.A.; Sara, Z.; Inés, G.; Alfredo, S.C. Predatory effect of Duddingtonia flagrans on infective larvae of gastro-intestinal parasites under sunny and shaded conditions. Exp. Parasitol. 2018, 193, 27–32. [Google Scholar] [CrossRef]
- Silveira, W.; Braga, F.R.; Alexandre, D.; Santos, L.D.; Domingues, R.R.; Aguiar, A.R.; Ferraz, C.M.; Carvalho, L.D.; Thiago, D.; Zanuncio, J.C. Nematophagous fungi combinations reduce free-living stages of sheep gastrointestinal nematodes in the field. J. Invertebr. Pathol. 2017, 150, 1–5. [Google Scholar] [CrossRef]
- Tariq, K.A. A review of the epidemiology and control of gastrointestinal nematode infections of small ruminants. Proc. Natl. Acad. Sci. India A 2015, 85, 693–703. [Google Scholar] [CrossRef]
- Braga, F.R.; Ferraz, C.M.; Silva, E.; Araújo, J. Efficiency of the Bioverm (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 2020, 10, 62. [Google Scholar] [CrossRef]
- Xue, Y.J.; Li, E.L.; Wang, A.H.; Cai, K.Z. Predatory activity and passage of six nematophagous fungi species in gastrointestinal tract of trichostrongylide-infected sheep. Biocontrol Sci. Technol. 2018, 28, 654–662. [Google Scholar] [CrossRef]
- Dai, H.W.; Xu, Q.; Wang, B.B.; Jia, X.Y.; Wan, X.M.; Yang, X.C.; Cai, K.Z.; Liu, Z.B. In vitro, in vivo and interaction studies of nematophagous fungus Arthrobotrys thaumasia (Monacrsporium thaumasium) with the larave of trichostrongylides of sheep. J. Parasitol. 2017, 103, 692–698. [Google Scholar] [CrossRef]
- Ocampo-Gutierrez, A.Y.; Hernandez-Velazquez, V.M.; Aguilar-Marcelino, L.; Cardoso-Taketa, A.; Zamilpa, A.; Lopez-Arellano, M.E.; Gonzalez-Cortazar, M.; Hernandez-Romano, J.; Reyes-Estebanez, M.; Mendoza-De Gives, P. Morphological and molecular characterization, predatory behaviour and effect of organic extracts of four nematophagous fungi from Mexico. Fungal Ecol. 2021, 49, 101004. [Google Scholar] [CrossRef]
- Vieira, T.S.; Oliveira, I.; Campos, A.K.; Araújo, J. Association and predatory capacity of fungi Pochonia chlamydosporia and Arthrobotrys cladodes in the biological control of parasitic helminths of bovines. Parasitology 2019, 146, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.R.; Araujo, J.V.; Silva, A.R.; Carvalho, R.O.; Araujo, J.M.; Ferreira, S.R.; Carvalho, G.R. Viability of the nematophagous fungus Pochonia chlamydosporia after passage through the gastrointestinal tract of horses. Vet. Parasitol. 2010, 168, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Sagüés, M.; Fusé, L.; Fernández, A.; Iglesias, L.E.; Moreno, F.C.; Saumell, C.A. Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes of sheep. Parasitol. Res. 2011, 109, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Chang, F.F.; Zhao, T.Y.; Huang, H.Y.; Li, F.D.; Wang, F.; Wang, B.B.; Wang, F.H.; Liu, Q.; Luo, Q.H.; et al. Biological control of sheep gastrointestinal nematode in three feeding systems in Northern China by using powder drug with nematophagous fungi. Biocontrol Sci. Technol. 2020, 30, 701–715. [Google Scholar] [CrossRef]
- Yang, J.; Liang, L.; Li, J. Nematicidal enzymes from microorganisms and their applications. Appl. Microbiol. Biotechnol. 2013, 97, 7081–7095. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl. Microbiol. Biotechnol. 2014, 98, 71–82. [Google Scholar] [CrossRef]
- Da Costa, P.W.L.; Alvares, F.B.V.; Bezerra, R.A.; Sarmento, W.F.; da Silva, F.F.; Rodrigues, J.A.; Feitosa, T.F.; de Araujo, J.V.; Braga, F.R.; Vilela, V.L.R. Effect of refrigeration storage of nemathophagous fungi embedded in sodium alginate pellets on predatory activity against asinine gastrointestinal nematodes. Biocontrol Sci. Technol. 2019, 29, 1106–1117. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.S.; Li, H.X.; Wang, R.R.; Zhang, K.Q.; Xu, J.P. Fungi-Nematode interactions: Diversity, ecology, and biocontrol prospects in agriculture. J. Fungi 2020, 6, 206. [Google Scholar] [CrossRef]
- Liu, X.; Xiang, M.; Che, Y. The living strategy of nematophagous fungi. Mycoscience 2009, 50, 20–25. [Google Scholar] [CrossRef]
- Saxena, G.; Mittal, N. Trap formation by conidia of nematode-trapping Monacrosporium spp. Mycol. Res. 1995, 99, 839–840. [Google Scholar] [CrossRef]
- Saxena, G. Biological control of root-knot and cyst nematodes using nematophagous fungi. In Root Biology; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Elias, D.; Leite, S.B.; Humberto, D. Nematophagous fungi: Far beyond the endoparasite, predator and ovicidal groups. Agric. Nat. Resour. 2018, 52, 1–8. [Google Scholar] [CrossRef]
- Lysek, H. Classification of ovicide fungi according to type of ovicidity. Acta Univ. Palacki Olomuc Fac. Med. 1976, 76, 9–13. [Google Scholar]
- Araújo, J.M.; Araújo, J.V.; Braga, F.R.; Carvalho, R.O.; Campos, A.K. Interaction and ovicidal activity of nematophagous fungus Pochonia chlamydosporia on Taenia saginata eggs. Exp. Parasitol. 2009, 121, 338–341. [Google Scholar] [CrossRef] [PubMed]
- Rubner, A. Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud. Mycol. 1996, 39, 1–129. [Google Scholar]
- Kendrick, B. Ainsworth & Bisby’s dictionary of the fungi—A review. Mycologist 2003, 17, 17–19. [Google Scholar] [CrossRef]
- Buzatti, A.; De Paula Santos, C.; Fernandes, M.A.M.; Yoshitani, U.Y.; Sprenger, L.K.; dos Santos, C.D.; Molento, M.B. Duddingtonia flagrans in the control of gastrointestinal nematodes of horses. Exp. Parasitol. 2015, 159, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Gronvold, J.; Henriksen, S.A.; Larsen, M.; Nansen, P.; Wolstrup, J. Biological control-Aspects of biological control-With special reference to arthropods, protozoans and helminths of domesticated animals. Vet. Parasitol. 1996, 64, 47–64. [Google Scholar] [CrossRef]
- Silva, M.; Braga, F.R.; Borges, L.A.; Oliveira, P.D.; Lima, W.; Araujo, J. Producción de conidios y clamidosporas de los hongos Duddingtonia flagrans y Monacrosporium thaumasium en diferentes medios sólidos. Arq. Do Inst. Biol. 2015, 82, 00218. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, P.K.; Sarkar, A.K.; Patel, N.K.; Mandal, S.C.; Pal, S. Formulation of a strategy for the application of Duddingtonia flagrans to control caprine parasitic gastroenteritis. J. Helminthol. 2008, 82, 169–174. [Google Scholar] [CrossRef]
- Luns, F.D.; Assis, R.C.L.; Silva, L.P.C.; Ferraz, C.M.; Braga, F.R.; de Araujo, J.V. Coadministration of nematophagous fungi for biological control over nematodes in Bovine in the south-eastern Brazil. BioMed Res. Int. 2018, 2018, 2934674. [Google Scholar] [CrossRef] [Green Version]
- Assis, R.C.L.; Luns, F.D.; Araujo, J.V.; Braga, F.R.; Assis, R.L.; Marcelino, J.L.; Freitas, P.C.; Andrade, M.A.S. Comparison between the action of nematode predatory fungi Duddingtonia flagrans and Monacrosporium thaumasium in the biological control of bovine gastrointestinal nematodiasis in tropical southeastern Brazil. Vet. Parasitol. 2013, 193, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.B.; Wang, F.H.; Qiang, X.; Wang, K.Y.; Cao, X. In vitro and in vivo studies of the native isolates of nematophagous fungi from China against the larvae of trichostrongylides. J. Basic Microbiol. 2017, 57, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, D.; Yu, Z.; Hou, B.; Wang, R. Comparative genome and transcriptome analysis of the nematode-trapping fungus Duddingtonia flagrans reveals high pathogenicity during nematode infection. Biol. Control. 2020, 143, 104159. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Choi, J.; Ahn, K.; Park, B.; Park, J.; Kang, S.; Lee, Y.H. Fungal cytochrome P450 database. BMC Genom. 2008, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Barron, G.L. Predatory fungi, wood decay, and the carbon cycle. Biodiversity 2003, 4, 3–9. [Google Scholar] [CrossRef]
- Rodrigues, J.A.; Roque, F.L.; Alvares, F.B.V.; da Silva, A.L.P.; de Lima, E.F.; Filho, G.M.D.; Feitosa, T.F.; de Araujo, J.V.; Braga, F.R.; Vilela, V.L.R. Efficacy of a commercial fungal formulation containing Duddingtonia flagrans (Bioverm (R)) for controlling bovine gastrointestinal nematodes. Rev. Bras. Parasitol. Vet. 2021, 30, e026620. [Google Scholar] [CrossRef] [PubMed]
- Isabela, D.; Vieira, Í.; Carvalho, L.D.; Campos, A.K.; Freitas, S.G.; Araujo, J.D.; Braga, F.R.; Araújo, J.D. Reduction of bovine strongilides in naturally contaminated pastures in the southeast region of Brazil. Exp. Parasitol. 2018, 194, 9–15. [Google Scholar] [CrossRef]
- Oliveira, I.D.; de Carvalho, L.M.; Vieira, I.S.; Campos, A.K.; Freitas, S.G.; de Araujo, J.M.; Braga, F.R.; de Araujo, J.V. Using the fungus Arthrobotrys cladodes var. macroides as a sustainable strategy to reduce numbers of infective larvae of bovine gastrointestinal parasitic nematodes. J. Invertebr. Pathol. 2018, 158, 46–51. [Google Scholar] [CrossRef]
- Cai, K.Z.; Wang, F.H.; Wang, B.B.; Liu, J.L.; Wang, K.Y.; Xu, Q.; Xue, Y.J.; Wang, F.; Zhang, C.; Fang, W.X.; et al. In vitro predatory activity of Arthrobotrys oligospora and after passing through gastrointestinal tract of small ruminants on infective larvae of trichostrongylides. Exp. Parasitol. 2017, 177, 104–111. [Google Scholar] [CrossRef]
- Cai, K.Z.; Wang, B.B.; Xu, Q.; Liu, J.L.; Wang, K.Y.; Xue, Y.J.; Zhang, H.Y.; Wang, H.Y.; Cao, X.; Ma, Z.R. In vitro and in vivo studies of nematophagous fungi Arthrobotrys musiformis and Arthrobotrys robusta against the larvae of the trichostrongylides. Acta Parasitol. 2017, 62, 666–674. [Google Scholar] [CrossRef]
- De Oliveira, L.; Dias, F.G.S.; Melo, A.L.T.; de Carvalho, L.M.; Silva, E.N.; de Araujo, J.V.D. Bioverm(R) in the control of nematodes in beef cattle raised in the central-west region of Brazil. Pathogens 2021, 10, 548. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.A.; Oliveira, C.R.C.; Anjos, D.H.S.; Ornellas, E.I.; Rodrigues, M.L.A. Potencial dos fungos nematofagos Arthrobotrys sp. e Monacrosporium thaumasium para o controle de larvas de ciatostomineos de equinos (Nematoda: Cyathostominae). Rev. Bras. Parasitol. Vet. 2003, 12, 53–57. [Google Scholar]
- Braga, F.R.; Araujo, J.V.; Silva, A.R.; Araujo, J.M.; Carvalho, R.O.; Campos, A.K.; Tavela, A.O.; Ferreira, S.R.; Frassy, L.N.; Alves, C.D.F. Duddingtonia flagrans, Monacrosporium thaumasium and Pochonia chlamydosporia as possible biological control agents of Oxyuris equi and Austroxyuris finlaysoni. J. Helminthol. 2010, 84, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.F.; Costa, P.W.L.; Bezerra, R.A.; Silva, S.S.; Vilela, V.L.R. Influnce of storage time of Monacrosporium thaumasium pellets on the predation of infective larvae of sheep gastrointestinal nematodes. Ars Vet. 2018, 34, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Cooke, R.C.; Godfrey, B. A key to the nematode-destroying fungi. Trans. Br. Mycol. Soc. 1964, 47, 61–74. [Google Scholar] [CrossRef]
- Barron, G.L. Nematophagous fungi—New Arthrobotrys with non-septate conidia. Can. J. Bot. 1979, 57, 1371–1373. [Google Scholar] [CrossRef]
- Blaszkowska, J.; Kurnatowski, P.; Wojcik, A.; Goralska, K.; Szwabe, K. In vitro evaluation of the ovistatic and ovicidal effect of the cosmopolitan filamentous fungi isolated from soil on Ascaris suum eggs. Vet. Parasitol. 2014, 199, 165–171. [Google Scholar] [CrossRef]
- Thapa, S.; Mejer, H.; Thamsborg, S.M.; Lekfeldt, J.D.S.; Wang, R.; Jensen, B.; Magid, J.; Meyling, N.V. Survival of chicken ascarid eggs exposed to different soil types and fungi. Appl. Soil Ecol. 2017, 121, 143–151. [Google Scholar] [CrossRef]
- Braga, F.R.; Araujo, J.V.; Soares, F.E.F.; Tavela, A.O.; Araujo, J.M.; Carvalho, R.O.; Fernandes, F.M.; Queiroz, J.H. Enzymatic analysis and in vitro ovicidal effect of Pochonia chlamydosporia and Paecilomyces lilacinus on Oxyuris equi eggs of horses. Biocontrol Sci. Technol. 2012, 22, 685–696. [Google Scholar] [CrossRef]
- Silva, A.R.; Araújo, J.; Braga, F.R.; Alves, C.; Filho, J. Destruction of Anoplocephala perfoliata eggs by the Nematophagous fungus Pochonia chlamydosporia. J. Equine Vet. Sci. 2010, 30, 701–704. [Google Scholar] [CrossRef]
- Valado, M.C.; Carvalho, L.; Vieira, T.S.; Neves, P.H.; Araújo, J. Germination capacity of the Pochonia chlamydosporia fungus after its passage through the gastrointestinal tract of domestic chickens (Gallus gallus domesticus). Exp. Parasitol. 2020, 216, 107936. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.M.; Araújo, J.; Braga, F.R.; Ferreira, S.R.; Tavela, A. Predatory activity of chlamydospores of the fungus Pochonia chlamydosporia on Toxocara canis eggs under laboratory conditions. Rev. Bras. Parasitol. Vet. 2013, 22, 171–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, I.S.; Oliveira, I.D.; Campos, A.K.; de Araujo, J.V. In vitro biological control of bovine parasitic nematodes by Arthrobotrys cladodes, Duddingtonia flagrans and Pochonia chlamydosporiaunder different temperature conditions. J. Helminthol. 2020, 94, e194. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.D.; Braga, F.R.; Domingues, R.R.; Araujo, J.M.; Lelis, R.T.; Paula, A.D.; Silveira, W.; Araújo, J.D. Interaction of the nematophagous fungus Pochonia chlamydosporia and Parascaris equorum eggs in different culture media. J. Basic Microbiol. 2014, 54, S109–S114. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.O.; Araújo, J.; Braga, F.R.; Araujo, J.M.; Alves, C. Ovicidal activity of Pochonia chlamydosporia and Paecilomyces lilacinus on Toxocara canis eggs. Vet. Parasitol. 2010, 169, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Thapa, S.; Meyling, N.V.; Katakam, K.K.; Thamsborg, S.M.; Mejer, H. A method to evaluate relative ovicidal effects of soil microfungi on thick-shelled eggs of animal-parasitic nematodes. Biocontrol Sci. Technol. 2015, 25, 756–767. [Google Scholar] [CrossRef]
- Cortiñas, F.J.; Cazapal-Monteiro, C.F.; Hernández, J.A.; Arroyo, F.L.; Miguélez, S.; Suárez, J.; López de Arellano, M.E.; Sánchez-Andrade, R.; Mendoza de Gives, P.; Paz-Silva, A.; et al. Potential use of Mucor circinelloides for the biological control of certain helminths affecting livestock reared in a care farm. Biocontrol Sci. Technol. 2015, 25, 1443–1452. [Google Scholar] [CrossRef]
- Arroyo, F.L.; Arias, M.S.; Cazapal-Monteiro, C.F.; Hernández, J.A.; Suárez, J.; Miguélez, S.; Romasanta, A.; Sánchez-Andrade, R.; Paz-Silva, A. The capability of the fungus Mucor circinelloides to maintain parasiticidal activity after the industrial feed pelleting enhances the possibilities of biological control of livestock parasites. Biol. Control 2016, 92, 38–44. [Google Scholar] [CrossRef]
- Cespedes-Gutierrez, E.; Aragon-Novoa, D.M.; Gomez-Alvarez, M.I.; Cortes-Rojas, D.F. In vitro evaluation of physicochemical variables on the nematophagous fungus Duddingtonia flagrans. J. Basic Microbiol. 2021, 61, 547–556. [Google Scholar] [CrossRef]
- Liu, K.K.; Zhang, W.W.; Lai, Y.L.; Xiang, M.C.; Wang, X.N.; Zhang, X.Y.; Liu, X.Z. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genom. 2014, 15, 114. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, C.V. Dactylella, Monacrosporium and Dactylina. J. Indian Bot. Soc. 1963, 42, 291–300. [Google Scholar]
- Melo, L.M.; Bevilaqua, C.M.L.; Araújo, J.V.D.; Melo, A.C.F.L. Atividade predatória do fungo Monacrosporium thaumasium contra o nematóide Haemonchus contortus, após passagem pelo trato gastrintestinal de caprinos. Cienc. Rural 2003, 33, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Vinícius, L.; Feitosa, T.F.; Braga, F.R.; Araújo, J.D.; Santos, A.D.; Morais, D.D.; Vagner, D.; Athayde, A. Coadministration of nematophagous fungi for biological control over gastrointestinal helminths in sheep in the semiarid region of northeastern Brazil. Vet. Parasitol. 2016, 221, 139–143. [Google Scholar] [CrossRef]
- Niu, X.M.; Zhang, K.Q. Arthrobotrys oligospora: A model organism for understanding the interaction between fungi and nematodes. Mycology 2011, 2, 59–78. [Google Scholar] [CrossRef]
- Braga, F.R.; Araújo, J.; Campos, A.K.; Silva, A.R.; Araujo, J.M.; Carvalho, R.O.; Corrêa, D.; Pereira, C. In vitro evaluation of the effect of the nematophagous fungi Duddingtonia flagrans, Monacrosporium sinense and Pochonia chlamydosporia on Schistosoma mansoni eggs. World J. Microbiol. Biotechnol. 2008, 24, 2713–2716. [Google Scholar] [CrossRef]
- Lopez-Llorca, L.V.; Olivares-Bernabeu, C.; Salinas, J.; Jansson, H.B.; Kolattukudy, P.E. Pre-penetration events in fungal parasitism of nematode eggs. Mycol. Res. 2002, 106, 499–506. [Google Scholar] [CrossRef]
- Vieira, T.S.; Oliveira, I.; Campos, A.K.; Araújo, J. Arthrobotrys cladodes and Pochonia chlamydosporia: Nematicidal effects of single and combined use after passage through cattle gastrointestinal tract. Exp. Parasitol. 2020, 218, 108005. [Google Scholar] [CrossRef]
- Mikami, Y.; Yazawa, K.; Fukushima, K.; Arai, T.; Samson, R.A. Paecilotoxin production in clinical or terrestrial isolates of Paecilomyces lilacinus strains. Mycopathologia 1989, 108, 195–199. [Google Scholar] [CrossRef]
- Araujo, J.M.; Braga, F.R.; de Araujo, J.V.; Rogério, O.C. Activity of nematophagous fungi Pochonia chlamydosporia and Paecilomyces lilacinus on Dipylidium caninum egg capsules. Rev. Do Inst. Adolfo Lutz 2009, 68, 488–491. [Google Scholar]
- Mikami, Y.; Fukushima, K.; Arai, T.; Abe, F.; Ommura, Y. Leucinostatins, peptide mycotoxins produced by Paecilomyces lilacinus and their possible roles in fungal infection. Zent. Für Bakteriol. Mikrobiol. Hyg. 1984, 257, 275–283. [Google Scholar] [CrossRef]
- Khan, A.; Williams, K.; Nevalainen, H. Testing the nematophagous biological control strain Paecilomyces lilacinus 251 for paecilotoxin production. FEMS Microbiol. Lett. 2003, 227, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Filho, F.; Pereira, D.; Vieira, J.N.; Berne, M.; Ptter, L. Fungal ovicidal activity on Toxocara canis eggs. Rev. Iberoam. Micol. 2013, 30, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Arias, M.S.; Cazapal-Monteiro, C.F.; Suarez, J.; Miguelez, S.; Francisco, I.; Arroyo, F.L.; Suarez, J.L.; Paz-Silva, A.; Sanchez-Andrade, R.; de Gives, P.M. Mixed production of filamentous fungal spores for preventing soil-transmitted helminth zoonoses: A preliminary analysis. BioMed Res. Int. 2013, 2013, 567876. [Google Scholar] [CrossRef] [Green Version]
- Cazapal-Monteiro, C.F.; Hernández, J.; Arroyo, F.L.; Miguélez, S.; Arias, M.S. Analysis of the effect of soil saprophytic fungi on the eggs of Baylisascaris procyonis. Parasitol. Res. 2015, 114, 2443–2450. [Google Scholar] [CrossRef] [PubMed]
- Canhao-Dias, M.; Paz-Silva, A.; de Carvalho, L.M.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals-A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- De Gives, P.M.; Davies, K.G.; Clark, S.J.; Behnke, J.M. Predatory behaviour of trapping fungi against srf mutants of Caenorhabditis elegans and different plant and animal parasitic nematodes. Parasitology 1999, 119, 95–104. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, N.; Gong, P.T.; Li, J.; Yang, J.; Zhang, X.; Cai, K. Effect of temperature, pH, physical and chemical factors on germination rate of the chlamydospores of the nematophagous fungus Duddingtonia flagrans. FEMS Microbiol. Lett. 2019, 366, fnz212. [Google Scholar] [CrossRef]
- Bird, J.; Herd, R.P. In-vitro assessment of a species of nematophagous fungi (Arthrobotrys-oligospora and Arthrobotrys-flagrans) to control the development of infetive cyathostome larvae from naturally infected horses. Vet. Parasitol. 1995, 56, 181–187. [Google Scholar] [CrossRef]
- Silva, A.R.; Araújo, J.; Braga, F.R.; Benjamim, L.A.; Souza, D.L.; Carvalho, R.O. Comparative analysis of destruction of the infective forms of Trichuris trichiura and Haemonchus contortus by nematophagous fungi Pochonia chlamydosporia; Duddingtonia flagrans and Monacrosporium thaumasium by scanning electron microscopy. Vet. Microbiol. 2011, 147, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Matthews, J.B.; Hodgkinson, J.E.; Dowdall, S.; Proudman, C.J. Recent developments in research into the Cyathostominae and Anoplocephala perfoliata. Vet. Res. 2004, 35, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Vilela, V.; Feitosa, T.F.; Braga, F.R.; Araújo, J.; Souto, D.; Santos, H.; Silva, G.; Athayde, A. Biological control of goat gastrointestinal helminthiasis by Duddingtonia flagrans in a semi-arid region of the northeastern Brazil. Vet. Parasitol. 2012, 188, 127–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vilela, V.; Feitosa, T.F.; Braga, F.R.; Araújo, J.; Lucena, S.; Dantas, E.S.; Athayde, A.; Silva, W.W. Efficacy of Monacrosporium thaumasium in the control of goat gastrointestinal helminthiasis in a semi-arid region of Brazil. Parasitol. Res. 2013, 112, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Tavela, A.O.; Araujo, J.V.; Braga, F.R.; Araujo, J.M.; Magalhaes, L.Q.; Silveira, W.F.; Borges, L.A. In vitro association of nematophagous fungi Duddingtonia flagrans (AC001), Monacrosporium thaumasium (NF34) and Pochonia chlamydosporia (VC1) to control horse cyathostomin (Nematoda: Strongylidae). Biocontrol Sci. Technol. 2012, 22, 607–610. [Google Scholar] [CrossRef]
- Eduardo, S.M.; Ribeiro, B.F.; Mendoza, D.; Jair, M.O.; Mercado, U.; Aguilar, M.L.; Freitas, S.; Luiza, A.A.; Souza, V.T.; Rocha, A.A. Fungal antagonism assessment of predatory species and producers metabolites and their effectiveness on Haemonchus contortus infective larvae. BioMed Res. Int. 2015, 22, 1–6. [Google Scholar] [CrossRef]
- Silva, M.; Braga, F.R.; Gives, P.; Uriostegui, M.; Reyes, M.; Soares, F.; Carvalho, L.; Rodrigues, F.B.; Araújo, J. Efficacy of Clonostachys rosea and Duddingtonia flagrans in reducing the Haemonchus contortus infective larvae. BioMed Res. Int. 2015, 2015, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Silveira, W.F.D.; Oliveira, G.D.D.; Braga, F.R.; Carvalho, L.M.D.; Domingues, R.R.; Silva, L.A.D.; Zanuncio, J.C.; Araújo, J.V.D. Predation rate of nematophagous fungi after passing through the gastrointestinal tract of goats. Small Rumin. Res. 2017, 147, 101–105. [Google Scholar] [CrossRef]
- Fernandes, F.M.; Aguiar, A.R.; Silva, L.P.C.; Senna, T.; de Mello, I.N.K.; de Oliveira, T.; Freitas, S.G.; Silveira, W.F.; Braga, F.R.; Araujo, J.V. Biological control on gastrointestinal nematodes in cattle with association of nematophagous fungi. Biocontrol Sci. Technol. 2017, 27, 1445–1453. [Google Scholar] [CrossRef]
- Tavela, A.; Araújo, J.D.; Braga, F.R.; Silveira, W.; Herold, D.; Júnior, M.C.; Borges, L.A.; Araujo, J.M.; Benjamin, L.; Carvalho, G.R. Coadministration of sodium alginate pellets containing the fungi Duddingtonia flagrans and Monacrosporium thaumasium on cyathostomin infective larvae after passing through the gastrointestinal tract of horses. Res. Vet. Sci. 2013, 94, 568–572. [Google Scholar] [CrossRef]
- Tiago, D.; Monteiro, T.; Braga, F.R.; Elias, D.; Mello, I.D.; Araujo, J.M.; Freitas, L.D.; Araújo, J.D. Assessment of compatibility between the nematophagous fungi Arthrobotrys robusta and Duddingtonia flagrans under laboratory conditions. Rev. Iberoam. Micol. 2016, 33, 129–130. [Google Scholar] [CrossRef]
- Soares, F.B.; Monteiro, A.C. Compatibilidade de Metarhizium anisopliae com carrapaticidas qumicos. Arq. Do Inst. Biológico 2011, 78, 385–391. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Vina, C.; Hernandez, J.A.; Voinot, M.; Vila, M.; Silva, M.I.; Paz-Silva, A.; Sanchez-Andrade, R.; Arias, M.S. Formulating fungal spores to prevent infection by trichostrongylids in a zoological park: Practical approaches to a persisting problem. Biol. Control 2021, 152, 104466. [Google Scholar] [CrossRef]
- Silva, M.; Braga, F.R.; Borges, L.A.; Oliveira, J.; Lima, W.; Guimarães, M.; Araújo, J. Evaluation of the effectiveness of Duddingtonia flagrans and Monacrosporium thaumasium in the biological control of gastrointestinal nematodes in female bovines bred in the semiarid region. Vet. Res. Commun. 2014, 38, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, C.M.; Sobral, S.A.; Senna, C.C.; Fidelis, O.; Moreira, T.F.; Tobias, F.L.; Soares, F.E.D.; Genier, H.L.A.; Vilela, V.L.R.; Lima, J.A.C.; et al. Combined use of ivermectin, dimethyl sulfoxide, mineral oil and nematophagous fungi to control Rhabditis spp. Vet. Parasitol. 2019, 275, 108924. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, V.; Ferreira, F.T.; Ribeiro, B.F.; Diniz, V.V.; De, L.; De, A. Control of sheep gastrointestinal nematodes using the combination of Duddingtonia flagrans and Levamisole Hydrochloride 5%. Rev. Bras. Parasitol. Vet. 2018, 27, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Zhang, N.; Gong, P.; Li, J.; Wang, X.; Li, X.; Wang, F.; Cai, K.; Zhang, X. In vitro assays on the susceptibility of four species of nematophagous fungi to anthelmintics and chemical fungicides/antifungal drug. Lett. Appl. Microbiol. 2021, 73, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Vieira, J.N.; Filho, F.M.; Ferreira, G.F.; Mendes, J.F.; Gonçalves, C.; Villela, M.M.; Pereira, D.; Nascente, P.S. In vitro susceptibility of nematophagous fungi to antiparasitic drugs: Interactions and implications for biological control. Braz. J. Biol. 2016, 77, 476–479. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, P.K.; Chauhan, J.B.; Mukhopadhyaya, P.N. Implications of fungicidal effects of Benzimidazole compounds on Duddingtonia flagrans in integrated nematode parasite management in livestock. Vet. Res. Commun. 2004, 28, 375–385. [Google Scholar] [CrossRef]
- Silva, A.R.; Araujo, J.V.; Braga, F.R.; Alves, C.D.F.; Frassy, L.N. Activity in vitro of fungal conidia of Duddingtonia flagrans and Monacrosporium thaumasium on Haemonchus contortus infective larvae. J. Helminthol. 2011, 85, 138–141. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev. 2004, 56, 603–618. [Google Scholar] [CrossRef]
- Singh, R.K.; Sanyal, P.K.; Patel, N.K.; Sarkar, A.K.; Santra, A.K.; Pal, S.; Mandal, S.C. Fungus-benzimidazole interactions: A prerequisite to deploying egg-parasitic fungi Paecilomyces lilacinus and Verticillium chlamydosporium as biocontrol agents against fascioliasis and amphistomiasis in ruminant livestock. J. Helminthol. 2010, 84, 123–131. [Google Scholar] [CrossRef]
- Wu, B.; Hussain, M.; Zhang, W.; Stadler, M.; Liu, X.; Xiang, M. Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 2019, 10, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.P. Fungal species concepts in the genomics era. Genome 2020, 63, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Nordbring-Hertz, B.; Jansson, H.-B.; Tunlid, A. Nematophagous fungi. In Encyclopedia of Life Sciences; Wiley & Sons: New York, NY, USA, 2006; p. 0004293. [Google Scholar]
Fungi | GIN Species | Dose | Nematicidal Activities | Reference | |
---|---|---|---|---|---|
In Vivo Test | In Vitro Test | ||||
A. cladodes | Haemonchus sp., Cooperia sp., Oesophagostomum sp. (cattle) | 1g pellets/10 kg BW, twice a week | 52–59% | 68.7% | [48,49] |
A. oligospora | H. contortus, T. colubriformis (sheep) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 53.88–97.26% | 90–99.99% | [50] |
A. conoides, A. sinense | trichostrongylides (sheep) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 37.84–78.64%, 54.49–86.93% | 80.00–97.41%, 97.02–98.49% | [18] |
A. superba | Haemonchus contortus (sheep) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 83.79% | 86.48–97.69% | [19] |
A. musiformis, A. robusta | trichostrongylides (goat) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 47.60–55.93%, 41.96–66.97% | 97.71–99.98%, 97.99–99.95% | [51] |
D. flagrans | cyathostomins (horse) | 6 × 105 chlamydospores/kg, BW for 21 days | 37.24–98.62% | [37] | |
D. flagrans | Haemonchus contortus (sheep) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 55.15–98.82% | 62.12–99.88% | [43] |
D. flagrans | Strongyloides papillosus (sheep) | 1g Bioverm® (105 chlamydospores/g) | 91.5% | [17,52] | |
D. flagrans | Haemonchus contortus Trichostrongylus colubriformis, Teladorsagia circumcincta, Bunostomum ovina, Chabertia ovina (sheep) | 5 × 105 spores/kg BW, twice a week | 85.4%, 87.5%, 90%, 81.0%, 71.4%, | [24] | |
D. flagrans | Haemonchus spp., Trichostrongylus spp., Oesophagostomum sp. and Strongyloides sp. (cattle) | 1 g Bioverm® /10 kg BW, (containing 105 chlamydospores) | 88.2%, | [47] | |
Mo. thaumasium | cyathostome (horse) | 1ml of solution containing 1000 spores, single dose | 95% | [53] | |
Mo. thaumasium | Oxyuris equi (horse) | Each petri dish contained fungal isolate | 69% | [54] | |
Mo. thaumasium | Haemonchus, Trichostrongylus, Oesophagostomum, and Strongyloides (sheep) | 3 g of pellets/10 kg BW | 79% | [55] | |
Mo. thaumasium | The gastrointestinal nematodes (sheep) | 100 g pellets (20g fungal mycelia), single dose | 93% | [27] | |
Mo. thaumasium | trichostrongylides, Marshallagia mongolica (sheep) | 5 × 105 spores/kg BW; 2 mL fungal suspension | 51.68–88.16% | 75.54–99.97% | [19] |
Fungi | GIN Species | Dose | In Vivo/Vitro Test | Reference |
---|---|---|---|---|
Po. chlamydosporia | Ascaridia galli, Heterakis spp (chicken) | 0.9 × 106 chlamydospores and 5.4 × 107 conidia | 75% | [59] |
Po. chlamydosporia | Oxyuris equi (horse) | 100g pellets, single does; each Petri dish contained fungal isolate | 21.8%/27.2% | [22,54] |
Po. chlamydosporia | Oxiuris equi (horse) | Fungal isolate added gelatin | 72% | [60] |
Po. chlamydosporia | Anoplocephala perfoliata Eggs (horse) | Each Petri dish contained fungal isolate | 71.17% | [61] |
Po. chlamydosporia | Ascaridia galli, Heterakis gallinarum (chicken) | 3.3 × 106 conidia/chlamydospores, single dose; subcultures were inoculated in petri dishes | 59.9%, 43.2% | [62] |
Po. chlamydosporia | Toxocara canis (dog) | 1.0 × 105 chlamydospores, various concentrations | 78.5% | [63] |
Po. chlamydosporia | Haemonchus, Cooperia, Oesophagostomum (bovine) | Each Petri dish contained fungal isolate | 87.4% | [64] |
Pa. lilacinus | Oxiuris equi (horse) | Fungal isolate added gelatin | 62% | [60] |
Po. chlamydosporia | Parascaris equorum (horse) | Each Petri dish contained fungal isolate | 44.9% | [65] |
Pa. lilacinus | Toxocara canis (dog) | Each Petri dish contained fungal isolate | 20.0% | [66] |
Pa. lilacinus | Ascaridia galli (chicken) Toxocara canis (dog) | 1.5 × 105 conidia | 15–29%, 4–28% | [67] |
Po. Chlamydosporia | Ascaridia galli (chicken), Toxocara canis (dog) | 1.5 × 105 conidia | 64–86%, 26–67% | [67] |
Mu. circinelloides | Ascaris suum (pig) | The mash with fungal spores (2 kg/ pig/day); 1 × 106 spores | 60/53% | [68] |
Mu. circinelloides | Parascaris equorum (horse) | 1 mL pellet, 2 × 106 spores/mL | 61–67% | [69] |
Nematophagous Fungus (% Reduction of L3 Numbers) | GIN Species | Comment | References |
---|---|---|---|
A. cladodes (77.0%) + Po. chlamydosporia (66.8%) [86.3%] | Haemonchus, Cooperia, Oesophagostomum. (cattle) | In vitro, synergistic effect | [78] |
D. flagrans (58.9%) + Mo. thaumasium (34%) [83%] | Haemonchus sp., Trichostrongylus spp., Strongyloides sp., Oesophagostomum sp. (sheep) | In vitro, synergistic effect | [92,93] |
A. cladodes (81.73%) + Po. chlmydosporia (68.25%) [92.67%] | Haemonchus, Cooperia, Oesophagostomum (cattle) | In vitro, synergistic effect, compatibility | [21] |
D. flagrans (61.6%) + Mo. thaumasium (66.1%) [92.4%]; D. flagrans(61.6%) + Po. chlamydosporia (73.2%) [86.8%]; Mo. thaumasium (66.1%) + Po. chlamydosporia (73.2%) [77.3%] | cyathostomin (horse) | In vitro, synergistic effect, compatibility (D. flagrans + Mo. thaumasium) | [69,94] |
D. flagrans (96.4%) + Mo. thaumasium (93.4%) [90.7%]; D. flagrans (96.4%) + A. robusta [86.3%]; D. flagran (96.4%) + Mo. thaumasium + A. robusta [78.3%] | Cooperia sp., Haemonchus, Oesophagostomum (cattle) | In vitro, antagonistic effect, incompatibility (D. flagrans + A. robusta) | [41] |
D. flagrans (91.5%) + Clonostachys rosea (88.9%) [74.5%] | Haemonchus contortus (sheep) | In vitro, antagonistic effect | [95,96] |
A. robusta + D. flagrans [93%] A. conoides + Mo. thaumasium [98%] | The gastrointestinal nematodes (goat) | In vitro, associated application showed high predatory activity | [97] |
D. flagrans+ Po. chlamydosporia+ A. robusta [94%, 91.8%] | Haemonchus sp., Cooperia sp., Oesophagos- tomum sp. (cattle) | In vitro and vivo, associated application showed high predatory activity | [98] |
D. flagrans + Mo. thaumasium (>80%) | cyathostomin (horse) | In vitro, associated application showed high predatory activity | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, D.; Gong, J.; Zhang, Y. Individual and Combined Application of Nematophagous Fungi as Biological Control Agents against Gastrointestinal Nematodes in Domestic Animals. Pathogens 2022, 11, 172. https://doi.org/10.3390/pathogens11020172
Li S, Wang D, Gong J, Zhang Y. Individual and Combined Application of Nematophagous Fungi as Biological Control Agents against Gastrointestinal Nematodes in Domestic Animals. Pathogens. 2022; 11(2):172. https://doi.org/10.3390/pathogens11020172
Chicago/Turabian StyleLi, Shuoshuo, Da Wang, Jianchuan Gong, and Ying Zhang. 2022. "Individual and Combined Application of Nematophagous Fungi as Biological Control Agents against Gastrointestinal Nematodes in Domestic Animals" Pathogens 11, no. 2: 172. https://doi.org/10.3390/pathogens11020172