Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cells
2.2. Viruses and Antibodies
2.3. Arbovirus Gene Selection and Synthesis
2.4. Generation of Replication-Inducible Recombinant Vaccinia Viruses (vINDs)
2.5. VLP Production and Purification
2.6. Western Blot Analysis of VLPs
2.7. Negative Staining and Transmission Electron Microscopy (TEM) of VLPs
3. Results
3.1. Successful Generation of VLPs for Five Arboviruses with the EPPIC VACV Platform
3.2. Improvement in the Yield of POWV VLPs
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buonaguro, L.; Tagliamonte, M.; Tornesello, M.; Buonaguro, F. Developments in virus-like particle-based vaccines for infectious diseases and cancer. Expert Rev. Vaccines 2011, 10, 1569–1583. Available online: https://pubmed.ncbi.nlm.nih.gov/22043956/ (accessed on 1 August 2021). [CrossRef] [PubMed]
- Mohsen, M.O.; Gomes, A.C.; Vogel, M.; Bachmann, M.F. Interaction of Viral Capsid-Derived Virus-Like Particles (VLPs) with the Innate Immune System. Vaccines 2018, 6, 37. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30004398 (accessed on 14 July 2018). [CrossRef] [PubMed] [Green Version]
- Naskalska, A.; Pyrć, K. Virus like particles as immunogens and universal nanocarriers. Pol. J. Microbiol. 2015, 64, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, C.; Liu, X.; Xu, Q.; Wang, Z.; Chen, J.; Li, T.; Zheng, Q.; Yu, H.; Gu, Y.; Li, S.; et al. Recent Progress on the Versatility of Virus-Like Particles. Vaccines 2020, 8, 139. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7157238/ (accessed on 4 December 2022). [CrossRef] [Green Version]
- Gubler, D.J. The Continuing Spread of West Nile Virus in the Western Hemisphere. Clin. Infect. Dis. 2007, 45, 1039–1046. [Google Scholar] [CrossRef]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2017, 17, e101–e106. [Google Scholar] [CrossRef] [Green Version]
- Kleber De Oliveira, W.; Cortez-Escalante, J.; Tenório Gonçalves Holanda De Oliveira, W.; Madeleine Ikeda do Carmo, G.; Maierovitch Pessanha Henriques, C.; Evelim Coelho Giovanny Vinícius Araújo de França, G. Increase in Reported Prevalence of Microcephaly in Infants Born to Women Living in Areas with Confirmed Zika Virus Transmission During the First Trimester of Pregnancy—Brazil, 2015. Morb. Mortal. Wkly. Rep. 2016, 65, 242–247. Available online: https://www.jstor.org/stable/24857956 (accessed on 4 December 2022). [CrossRef]
- Bhatt, S.; Gething, P.W.; Brady, O.J.; Messina, J.P.; Farlow, A.W.; Moyes, C.L.; Drake, J.M.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Mayer, S.V.; Tesh, R.B.; Vasilakis, N. The emergence of arthropod-borne viral diseases: A global prospective on dengue, chikungunya and zika fevers. Acta Trop. 2017, 166, 155–163. [Google Scholar] [CrossRef]
- Ebel, G.D. Update on Powassan virus: Emergence of a North American tick-borne flavivirus. Annu. Rev. Entomol. 2010, 55, 95–110. Available online: https://www.annualreviews.org/doi/pdf/10.1146/annurev-ento-112408-085446 (accessed on 4 December 2022). [CrossRef]
- Campbell, O.; Krause, P.J. The emergence of human Powassan virus infection in North America. Ticks Tick Borne Dis. 2020, 11, 101540. Available online: https://pubmed.ncbi.nlm.nih.gov/32993949/ (accessed on 4 October 2020). [CrossRef] [PubMed]
- Corrin, T.; Greig, J.; Harding, S.; Young, I.; Mascarenhas, M.; Waddell, L.A. Powassan virus, a scoping review of the global evidence. Zoonoses Public Health 2018, 65, 595–624. Available online: https://doi.org/10.1111/zph.12485 (accessed on 4 December 2022). [CrossRef] [PubMed]
- Yu, X.J.; Liang, M.F.; Zhang, S.Y.; Liu, Y.; Li, J.D.; Sun, Y.L.; Zhang, L.; Zhang, Q.F.; Popov, V.L.; Li, C.; et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N. Engl. J. Med. 2011, 364, 1523–1532. Available online: https://www.ncbi.nlm.nih.gov/pubmed/21410387 (accessed on 18 March 2011). [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, B.; Paessler, S.; Walker, D.H.; Tesh, R.B.; Yu, X.J. The Pathogenesis of Severe Fever with Thrombocytopenia Syndrome Virus Infection in Alpha/Beta Interferon Knockout Mice: Insights into the Pathologic Mechanisms of a New Viral Hemorrhagic Fever. J. Virol. 2014, 88, 1781–1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMullan, L.K.; Folk, S.M.; Kelly, A.J.; MacNeil, A.; Goldsmith, C.S.; Metcalfe, M.G.; Batten, B.C.; Albariño, C.G.; Zaki, S.R.; Rollin, P.E. A new phlebovirus associated with severe febrile illness in Missouri. N. Engl. J. Med. 2012, 367, 834–841. Available online: https://www.nejm.org/doi/pdf/10.1056/NEJMoa1203378 (accessed on 4 December 2022). [CrossRef]
- Kim, K.H.; Yi, J.; Kim, G.; Choi, S.J.; Jun, K.I.; Kim, N.H.; Choe, P.G.; Kim, N.J.; Lee, J.K.; Oh, M.D. Severe fever with thrombocytopenia syndrome, South Korea, 2012. Emerg. Infect. Dis. 2013, 19, 1892–1894. Available online: https://www.ncbi.nlm.nih.gov/pubmed/24206586 (accessed on 12 November 2013). [CrossRef]
- Brault, A.C.; Savage, H.M.; Duggal, N.K.; Eisen, R.J.; Staples, J.E. Heartland Virus Epidemiology, Vector Association, and Disease Potential. Viruses 2018, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Wang, B.; Li, Y.; Du, Y.; Ma, H.; Li, X.; Guo, W.; Xu, B.; Huang, X. Severe fever with thrombocytopenia syndrome: A systematic review and meta-analysis of epidemiology, clinical signs, routine laboratory diagnosis, risk factors, and outcomes. BMC Infect. Dis. 2020, 20, 575. [Google Scholar] [CrossRef]
- Kosoy, O.I.; Lambert, A.J.; Hawkinson, D.J.; Pastula, D.M.; Goldsmith, C.S.; Hunt, D.C.; Staples, J.E. Novel thogotovirus associated with febrile illness and death, United States, 2014. Emerg. Infect. Dis. 2015, 21, 760. [Google Scholar] [CrossRef]
- Auguste, A.J.; Liria, J.; Forrester, N.L.; Giambalvo, D.; Moncada, M.; Long, K.C.; Morón, D.; de Manzione, N.; Tesh, R.B.; Halsey, E.S. Evolutionary and ecological characterization of Mayaro virus strains isolated during an outbreak, Venezuela, 2010. Emerg. Infect. Dis. 2015, 21, 1742. [Google Scholar] [CrossRef]
- Azevedo, R.; Silva, E.; Carvalho, V.; Rodrigues, S.; Nunes-Neto, J.; Monteiro, H.; Peixoto, V.; Chiang, J.; Nunes, M.; Vasconcelos, P. Mayaro fever virus, Brazilian Amazon. Emerg. Infect. Dis. 2009, 15, 1830–1832. Available online: https://pubmed.ncbi.nlm.nih.gov/19891877/ (accessed on 2 August 2021). [CrossRef] [PubMed]
- LeDuc, J.; Pinheiro, F.; Travassos da Rosa, A. An outbreak of Mayaro virus disease in Belterra, Brazil. II. Epidemiology. Am. J. Trop. Med. Hyg. 1981, 30, 682–688. Available online: https://pubmed.ncbi.nlm.nih.gov/6266264/ (accessed on 2 August 2021). [CrossRef] [PubMed]
- Schaeffer, M.; Gajdusek, D.; Lema, A.; Eichenwald, H. Epidemic jungle fevers among Okinawan colonists in the Bolivian rain forest. I. Epidemiology. Am. J. Trop. Med. Hyg. 1959, 8, 372–396. Available online: https://pubmed.ncbi.nlm.nih.gov/13661542/ (accessed on 2 August 2021). [CrossRef] [PubMed]
- Pinheiro, F.P.; Freitas, R.B.; Travassos Da Rosa, J.F.; Gabbay, Y.B.; Mello, W.A.; LeDuc, J.W. An outbreak of Mayaro virus disease in Belterra, Brazil. I. Clinical and virological findings. Am. J. Trop. Med. Hyg. 1981, 30, 674–681. Available online: https://pubmed.ncbi.nlm.nih.gov/6266263/ (accessed on 21 September 2022). [CrossRef]
- Ganjian, N.; Riviere-Cinnamond, A. Mayaro virus in Latin America and the Caribbean. Rev. Panam. Salud Publica 2020, 44, e14. Available online: https://pubmed.ncbi.nlm.nih.gov/32051685/ (accessed on 2 August 2021). [CrossRef] [Green Version]
- Halsey, E.S.; Siles, C.; Guevara, C.; Vilcarromero, S.; Jhonston, E.J.; Ramal, C.; Aguilar, P.; Ampuero, J. Mayaro virus infection, Amazon basin region, Peru, 2010–2013. Emerg. Infect. Dis. 2013, 19, 1839–1842. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837653/pdf/13-0777.pdf (accessed on 4 December 2022). [CrossRef]
- Lázaro-Frías, A.; Gómez-Medina, S.; Sánchez-Sampedro, L.; Ljungberg, K.; Ustav, M.; Liljeström, P.; Munoz-Fontela, C.; Esteban, M.; Garcia-Arriaza, J. Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. J. Virol. 2018, 92, 363–381. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.E.; Perdiguero, B.; Sánchez-Corzo, C.; Sorzano, C.O.S.; Esteban, M. Immune Modulation of NYVAC-Based HIV Vaccines by Combined Deletion of Viral Genes that Act on Several Signalling Pathways. Viruses 2018, 10, 7. [Google Scholar] [CrossRef] [Green Version]
- García-Arriaza, J.; Garaigorta, U.; Pérez, P.; Lázaro-Frías, A.; Zamora, C.; Gastaminza, P.; del Fresno, C.; Casasnovas, J.; Sorzano, C.Ó.S.; Sancho, D.; et al. COVID-19 Vaccine Candidates Based on Modified Vaccinia Virus Ankara Expressing the SARS-CoV-2 Spike Protein Induce Robust T- and B-Cell Immune Responses and Full Efficacy in Mice. J. Virol. 2021, 95, e02260-20. [Google Scholar] [CrossRef]
- Jasperse, B.; O’Connell, C.M.; Wang, Y.; Verardi, P.H. Single dose of a replication-defective vaccinia virus expressing Zika virus-like particles is protective in mice. Sci. Rep. 2021, 11, 6492. Available online: https://www.nature.com/articles/s41598-021-85951-7 (accessed on 3 August 2021). [CrossRef]
- Jasperse, B.; O’Connell, C.M.; Wang, Y.; Verardi, P.H. EPPIC (Efficient Purification by Parental Inducer Constraint) Platform for Rapid Generation of Recombinant Vaccinia Viruses. Mol. Ther. Methods Clin. Dev. 2020, 11, 731–738. [Google Scholar] [CrossRef]
- Grigg, P.; Titong, A.; Jones, L.A.; Yilma, T.D.; Verardi, P.H. Safety mechanism assisted by the repressor of tetracycline (SMART) vaccinia virus vectors for vaccines and therapeutics. Proc. Natl. Acad. Sci. USA 2013, 110, 15407–15412. Available online: https://www.pnas.org/content/110/38/15407 (accessed on 10 August 2021). [CrossRef] [PubMed] [Green Version]
- Emanuelsson, O.; Nielsen, H.; Brunak, S.; von Heijne, G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J. Mol. Biol. 2000, 300, 1005–1016. Available online: https://pubmed.ncbi.nlm.nih.gov/10891285/ (accessed on 4 August 2021). [CrossRef] [PubMed] [Green Version]
- Hagen, C.; Titong, A.; Sarnoski, E.; Verardi, P. Antibiotic-dependent expression of early transcription factor subunits leads to stringent control of vaccinia virus replication. Virus Res. 2014, 181, 43–52. Available online: https://pubmed.ncbi.nlm.nih.gov/24394294/ (accessed on 10 August 2021). [CrossRef] [Green Version]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. Available online: https://www.nature.com/articles/nmeth.2089 (accessed on 11 August 2021). [CrossRef] [PubMed]
- Chakrabarti, S.; Sisler, J.; Moss, B. Compact, synthetic, vaccinia virus early/late promoter for protein expression. Biotechniques 1997, 23, 1094–1097. Available online: https://pubmed.ncbi.nlm.nih.gov/9421642/ (accessed on 9 August 2021). [CrossRef]
- Hammond, J.M.; Oke, P.G.; Coupar, B.E.H. A synthetic vaccinia virus promoter with enhanced early and late activity. J. Virol. Methods 1997, 66, 135–138. [Google Scholar] [CrossRef]
- O’Connell, C.M.; Jasperse, B.; Hagen, C.J.; Titong, A.; Verardi, P.H. Replication-inducible vaccinia virus vectors with enhanced safety in vivo. PLoS ONE 2020, 15, e0230711. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230711 (accessed on 10 August 2021). [CrossRef]
- Duke, G.M.; Hoffman, M.A.; Palmenberg, A.C. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J. Virol. 1992, 66, 1602. Available online: https://www.ncbi.nlm.nih.gov//pmc/articles/PMC240893/?report=abstract (accessed on 9 August 2021). [CrossRef] [Green Version]
- Mandl, C.W.; Holzmann, H.; Kunz, C.; Heinz, F.X. Complete genomic sequence of Powassan virus: Evaluation of genetic elements in tick-borne versus mosquito-borne flaviviruses. Virology 1993, 194, 173–184. Available online: https://www.sciencedirect.com/science/article/abs/pii/S004268228371247X?via%3Dihub (accessed on 4 December 2022). [CrossRef]
- Li, L.; Lok, S.M.; Yu, I.M.; Zhang, Y.; Kuhn, R.J.; Chen, J.; Rossmann, M.G. The flavivirus precursor membrane-envelope protein complex: Structure and maturation. Science 2008, 319, 1830–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavergne, A.; de Thoisy, B.; Lacoste, V.; Pascalis, H.; Pouliquen, J.F.; Mercier, V.; Tolou, H.; Dussart, P.; Morvan, J.; Talarmin, A. Mayaro virus: Complete nucleotide sequence and phylogenetic relationships with other alphaviruses. Virus Res. 2006, 117, 283–290. [Google Scholar] [CrossRef] [PubMed]
- García-Arriaza, J.; Cepeda, V.; Hallengärd, D.; Sorzano, C.Ó.S.; Kümmerer, B.M.; Liljeström, P.; Esteban, M. A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J. Virol. 2014, 88, 3527–3547. [Google Scholar] [CrossRef] [Green Version]
- Brandler, S.; Ruffié, C.; Combredet, C.; Brault, J.B.; Najburg, V.; Prevost, M.C.; Habel, A.; Tauber, E.; Desprès, P.; Tangy, F. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Vaccine 2013, 31, 3718–3725. Available online: https://www.sciencedirect.com/science/article/pii/S0264410X13007019?via%3Dihub (accessed on 4 December 2022). [CrossRef] [PubMed]
- Wang, D.; Suhrbier, A.; Penn-Nicholson, A.; Woraratanadharm, J.; Gardner, J.; Luo, M.; Le, T.; Anraku, I.; Sakalian, M.; Einfeld, D. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine 2011, 29, 2803–2809. Available online: https://www.sciencedirect.com/science/article/pii/S0264410X11001800?via%3Dihub (accessed on 16 November 2022). [CrossRef] [Green Version]
- Metz, S.W.; Gardner, J.; Geertsema, C.; Le, T.T.; Goh, L.; Vlak, J.M.; Suhrbier, A.; Pijlman, G.P. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl. Trop. Dis. 2013, 7, e2124. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3597470/pdf/pntd.0002124.pdf (accessed on 4 December 2022). [CrossRef] [PubMed]
- Akahata, W.; Yang, Z.Y.; Andersen, H.; Sun, S.; Holdaway, H.A.; Kong, W.P.; Lewis, M.G.; Higgs, S.; Rossmann, M.G.; Rao, S. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat. Med. 2010, 16, 334–338. Available online: https://www.nature.com/articles/nm.2105.pdf (accessed on 4 December 2022). [CrossRef] [Green Version]
- Mallilankaraman, K.; Shedlock, D.J.; Bao, H.; Kawalekar, O.U.; Fagone, P.; Ramanathan, A.A.; Ferraro, B.; Stabenow, J.; Vijayachari, P.; Sundaram, S.G. A DNA vaccine against chikungunya virus is protective in mice and induces neutralizing antibodies in mice and nonhuman primates. PLoS Negl. Trop. Dis. 2011, 5, e928. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3019110/pdf/pntd.0000928.pdf (accessed on 4 December 2022). [CrossRef] [Green Version]
- Nichol, S.T.; Beaty, B.J.E.R.M. Family Bunyaviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses; Elsevier: San Diego, CA, USA; Academic Press: San Diego, CA, USA, 2005; pp. 695–716. [Google Scholar]
- Acuna, R.; Cifuentes-Munoz, N.; Marquez, C.L.; Bulling, M.; Klingstrom, J.; Mancini, R.; Lozach, P.Y.; Tischler, N.D. Hantavirus Gn and Gc Glycoproteins Self-Assemble into Virus-like Particles. J. Virol. 2014, 88, 2344–2348. Available online: https://journals.asm.org/journal/jvi (accessed on 9 August 2021). [CrossRef] [Green Version]
- Ren, F.; Zhou, M.; Deng, F.; Wang, H.; Ning, Y.J. Combinatorial Minigenome Systems for Emerging Banyangviruses Reveal Viral Reassortment Potential and Importance of a Protruding Nucleotide in Genome “Panhandle” for Promoter Activity and Reassortment. Front. Microbiol. 2020, 11, 599. [Google Scholar] [CrossRef]
- Rezelj, V.V.; Mottram, T.J.; Hughes, J.; Elliott, R.M.; Kohl, A.; Brennan, B. M segment-based minigenomes and virus-like particle assays as an approach to assess the potential of tick-borne Phlebovirus genome reassortment. J. Virol. 2018, 93, e02068-18. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30567991 (accessed on 21 December 2018). [CrossRef] [Green Version]
- Yamada, H.; Taniguchi, S.; Shimojima, M.; Tan, L.; Kimura, M.; Morinaga, Y.; Fukuhara, T.; Matsuura, Y.; Komeno, T.; Furuta, Y.; et al. M Segment-Based Minigenome System of Severe Fever with Thrombocytopenia Syndrome Virus as a Tool for Antiviral Drug Screening. Viruses 2021, 13, 1061. Available online: https://pubmed.ncbi.nlm.nih.gov/34205062/ (accessed on 5 July 2021). [CrossRef] [PubMed]
- Lambert, A.J.; Velez, J.O.; Brault, A.C.; Calvert, A.E.; Bell-Sakyi, L.; Bosco-Lauth, A.M.; Staples, J.E.; Kosoy, O.I. Molecular, serological and in vitro culture-based characterization of Bourbon virus, a newly described human pathogen of the genus Thogotovirus. J. Clin. Virol. 2015, 73, 127–132. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5683172/pdf/nihms914169.pdf (accessed on 4 December 2022). [CrossRef] [PubMed] [Green Version]
- Hagmaier, K.; Gelderblom, H.R.; Kochs, G. Functional comparison of the two gene products of Thogoto virus segment 6. J. Gen. Virol. 2004, 85, 3699–3708. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.; Engelhardt, O.G.; Weber, F.; Haller, O.; Kochs, G. Formation of virus-like particles from cloned cDNAs of Thogoto virus. J. Gen. Virol. 2000, 81, 2849–2853. [Google Scholar] [CrossRef] [PubMed]
- Cimica, V.; Saleem, S.; Matuczinski, E.; Adams-Fish, D.; McMahon, C.; Rashid, S.; Stedman, T.T. A Virus-Like Particle-Based Vaccine Candidate against the Tick-Borne Powassan Virus Induces Neutralizing Antibodies in a Mouse Model. Pathogens 2021, 10, 680. Available online: https://www.mdpi.com/2076-0817/10/6/680 (accessed on 6 June 2021). [CrossRef]
- VanBlargan, L.A.; Himansu, S.; Foreman, B.M.; Ebel, G.D.; Pierson, T.C.; Diamond, M.S. An mRNA Vaccine Protects Mice against Multiple Tick-Transmitted Flavivirus Infections. Cell Rep. 2018, 25, 3382–3392.e3. Available online: https://www.ncbi.nlm.nih.gov/pubmed/30566864 (accessed on 20 December 2018). [CrossRef] [Green Version]
- Choi, H.; Kudchodkar, S.B.; Ho, M.; Reuschel, E.L.; Reynolds, E.; Xu, Z.; Bordoloi, D.; Ugen, K.E.; Tebas, P.; Kim, J.; et al. A novel synthetic DNA vaccine elicits protective immune responses against Powassan virus. PLoS Negl. Trop. Dis. 2020, 14, e0008788. [Google Scholar] [CrossRef]
- SIB Swiss Institute of Bioinformatics. Compute pI/Mw Tool. Available online: https://web.expasy.org/compute_pi/ (accessed on 11 August 2021).
- Abdelwahab, K.S.; Almeida, J.D.; Doane, F.W.; McLean, D.M. Powassan Virus: Morphology and Cytopathology. Can. Med. Assoc. J. 1964, 90, 1068–1072. [Google Scholar]
- Mourao, M.P.; Bastos Mde, S.; de Figueiredo, R.P.; Gimaque, J.B.; Galusso Edos, S.; Kramer, V.M.; de Oliveira, C.M.; Naveca, F.G.; Figueiredo, L.T. Mayaro fever in the city of Manaus, Brazil, 2007–2008. Vector Borne Zoonotic Dis. 2012, 12, 42–46. [Google Scholar] [CrossRef]
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Chang, G.J.J.; Hunt, A.R.; Davis, B. A single intramuscular injection of recombinant plasmid DNA induces protective immunity and prevents Japanese encephalitis in mice. J. Virol. 2000, 74, 4244–4252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verardi, P.; Titong, A.; Hagen, C. A vaccinia virus renaissance: New vaccine and immunotherapeutic uses after smallpox eradication. Hum. Vaccin. Immunother. 2012, 8, 961–970. Available online: https://pubmed.ncbi.nlm.nih.gov/22777090/ (accessed on 10 August 2021). [CrossRef] [PubMed] [Green Version]
- Li, L.; Jose, J.; Xiang, Y.; Kuhn, R.; Rossmann, M. Structural changes of envelope proteins during alphavirus fusion. Nature 2010, 468, 705–708. Available online: https://pubmed.ncbi.nlm.nih.gov/21124457/ (accessed on 11 August 2021). [CrossRef] [Green Version]
- Voss, J.; Vaney, M.; Duquerroy, S.; Vonrhein, C.; Girard-Blanc, C.; Crublet, E.; Thompson, A.; Bricogne, G.; Rey, F.A. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature 2010, 468, 709–712. Available online: https://pubmed.ncbi.nlm.nih.gov/21124458/ (accessed on 11 August 2021). [CrossRef]
- Shope, R.E. Bunyaviruses. In Medical Microbiology; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; pp. 461–463. Available online: https://www.ncbi.nlm.nih.gov/books/NBK8004/ (accessed on 9 August 2021).
- Hu, H.P.; Hsieh, S.C.; King, C.C.; Wang, W.K. Characterization of retrovirus-based reporter viruses pseudotyped with the precursor membrane and envelope glycoproteins of four serotypes of dengue viruses. Virology 2007, 368, 376–387. [Google Scholar] [CrossRef] [Green Version]
- Purdy, D.E.; Chang, G.J.J. Secretion of noninfectious dengue virus-like particles and identification of amino acids in the stem region involved in intracellular retention of envelope protein. Virology 2005, 333, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Keelapang, P.; Sriburi, R.; Supasa, S.; Panyadee, N.; Songjaeng, A.; Jairungsri, A.; Puttikhunt, C.; Kasinrerk, W.; Malasit, P.; Sittisombut, N. Alterations of pr-M Cleavage and Virus Export in pr-M Junction Chimeric Dengue Viruses. J. Virol. 2004, 78, 2367. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC369205/ (accessed on 30 June 2022). [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. What You Need to Know About Asian Longhorned Ticks—A New Tick in the United States. Available online: https://www.cdc.gov/ticks/longhorned-tick/index.html (accessed on 11 August 2021).
- Zhang, Y.Z.; Zhou, D.J.; Qin, X.C.; Tian, J.H.; Xiong, Y.; Wang, J.B.; Chen, X.P.; Gao, D.Y.; He, Y.W.; Jin, D.; et al. The ecology, genetic diversity, and phylogeny of Huaiyangshan virus in China. J. Virol. 2012, 86, 2864–2868. Available online: https://www.ncbi.nlm.nih.gov/pubmed/22190717 (accessed on 23 December 2011). [CrossRef] [Green Version]
- Niu, G.; Li, J.; Liang, M.; Jiang, X.; Jiang, M.; Yin, H.; Wang, Z.; Li, C.; Zhang, Q.; Jin, C.; et al. Severe Fever with Thrombocytopenia Syndrome Virus among Domesticated Animals, China. Emerg. Infect. Dis. 2013, 19, 756. Available online: https://www.ncbi.nlm.nih.gov//pmc/articles/PMC3647489/ (accessed on 10 August 2021). [CrossRef]
- Powers, J.M.; Haese, N.N.; Denton, M.; Ando, T.; Kreklywich, C.; Bonin, K.; Streblow, C.E.; Kreklywich, N.; Smith, P.; Broeckel, R.; et al. Non-replicating adenovirus based Mayaro virus vaccine elicits protective immune responses and cross protects against other alphaviruses. PLoS Negl. Trop. Dis. 2021, 15, e0009308. [Google Scholar] [CrossRef] [PubMed]
- Brennan, B.; Li, P.; Zhang, S.; Li, A.; Liang, M.; Li, D.; Elliott, R.M. Reverse genetics system for severe fever with thrombocytopenia syndrome virus. J. Virol. 2015, 89, 3026–3037. [Google Scholar] [CrossRef] [PubMed]
SS Modification | Prediction Score | Observed Change in Secretion Efficacy * |
---|---|---|
Natural | 0.886 | N/A |
D6W | 0.905 | ↑ |
D6K | 0.850 | = |
JEV | 0.886 | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Griffiths, A.; Brackney, D.E.; Verardi, P.H. Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform. Pathogens 2022, 11, 1505. https://doi.org/10.3390/pathogens11121505
Wang Y, Griffiths A, Brackney DE, Verardi PH. Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform. Pathogens. 2022; 11(12):1505. https://doi.org/10.3390/pathogens11121505
Chicago/Turabian StyleWang, Yuxiang, Anthony Griffiths, Douglas E. Brackney, and Paulo H. Verardi. 2022. "Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform" Pathogens 11, no. 12: 1505. https://doi.org/10.3390/pathogens11121505
APA StyleWang, Y., Griffiths, A., Brackney, D. E., & Verardi, P. H. (2022). Generation of Multiple Arbovirus-like Particles Using a Rapid Recombinant Vaccinia Virus Expression Platform. Pathogens, 11(12), 1505. https://doi.org/10.3390/pathogens11121505