Methods of Identifying Gordonia Strains in Clinical Samples
Abstract
:1. Introduction
2. Biochemical Approaches
2.1. Medium Engineering
2.2. Biochemical Test
3. Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI–TOF) Mass Spectrometry (MS)
4. Chromatographic Approaches
4.1. High-Performance Liquid Chromatography (HPLC)
4.2. Thin-Layer Chromatography
5. Genetic Approaches
5.1. Amplification and Sequencing of Phylogenetic Markers
5.1.1. 16S rRNA
- Since the 16S rRNA gene is very conservative and evolves extremely slowly, it cannot be used to separate closely related strains and identify them.
- The number of copies of the 16S rRNA gene in different species is variable, and single-nucleotide polymorphisms (SNPs) at the single-cell level may result in an overestimation of diversity [111].
- In the case of closely related species, it is difficult to delineate species in cluster analysis [112].
5.1.2. gyrB (gyrase B)
5.1.3. secA, hsp65
5.2. DNA–DNA Hybridization
5.3. Next-Generation Sequencing (NGS) for Gordonia Identification
6. Treatment of Diseases Caused by Gordonia Strains
7. Prospects for Working with Infections Caused by Gordonia Strains
- Chromatographic methods and mass spectrometry are currently rarely used to identify Gordonia strains. Chromatographic methods fail to distinguish them from related genera (Nocardia and Rhodococcus).
- Currently, MALDI–TOF MS is the main instrument for identifying Gordonia in clinical samples. The accuracy of this method in detecting the genus is proven, but MALDI–TOF MS is unsuitable for accurately identifying Gordonia as a species.
- The analysis for antibiotic resistance is necessary to accumulate information regarding the resistance/sensitivity of different Gordonia species to antibiotics. Depending on this information, the treatment of infections caused by each species of Gordonia is selected.
- At the moment, the most accurate identification result can be obtained either by multilocus sequencing of housekeeping genes (16S rRNA, gyrB, and secA) or by whole-genome sequencing. There is reason to believe that these methods will become increasingly widespread.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andalibi, F.; Fatahi-Bafghi, M. Gordonia: Isolation and identification in clinical samples and role in biotechnology. Folia Microbiol. 2017, 62, 245–252. [Google Scholar] [CrossRef]
- Delegan, Y.A.; Valentovich, L.N.; Shafieva, S.M.; Ganbarov, K.G.; Filonov, A.E.; Vainstein, M.B. Characterization and genomic analysis of highly efficient thermotolerant oil-degrading bacterium Gordonia sp. 1D. Folia Microbiol. 2019, 64, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Koma, D.; Matsumiya, Y.; Chung, S.-Y.; Kubo, M. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 2008, 19, 749–757. [Google Scholar] [CrossRef]
- Wang, X.; Jin, D.; Zhou, L.; Wu, L.; An, W.; Zhao, L. Draft Genome Sequence of Gordonia alkanivorans Strain CGMCC6845, a Halotolerant Hydrocarbon-Degrading Bacterium. Genome Announc. 2014, 2, e01274-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurniati, T.H.; Rusmana, I.; Suryani, A.; Mubarik, N.R. Degradation of Polycyclic Aromatic Hydrocarbon Pyrene by Biosurfactant-Producing Bacteria Gordonia cholesterolivorans AMP 10. Biosaintifika J. Biol. Biol. Educ. 2016, 8, 336. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-L.; Shen, F.-T.; Tan, C.-C.; Huang, C.-C.; Chen, B.-Y.; Arun, A.B.; Young, C.-C. Characterization of Gordonia sp. strain CC-NAPH129-6 capable of naphthalene degradation. Microbiol. Res. 2012, 167, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Mai, Z.; Wang, L.; Li, Q.; Sun, Y.; Zhang, S. Biodegradation and metabolic pathway of phenanthrene by a newly isolated bacterium Gordonia sp. SCSIO19801. Biochem. Biophys. Res. Commun. 2021, 585, 42–47. [Google Scholar] [CrossRef]
- Aminsefat, A.; Rasekh, B.; Ardakani, M.R. Biodesulfurization of dibenzothiophene by Gordonia sp. AHV-01 and optimization by using of response surface design procedure. Microbiology 2012, 81, 154–159. [Google Scholar] [CrossRef]
- Delegan, Y.; Kocharovskaya, Y.; Frantsuzova, E.; Streletskii, R.; Vetrova, A. Characterization and genomic analysis of Gordonia alkanivorans 135, a promising dibenzothiophene-degrading strain. Biotechnol. Rep. 2021, 29, e00591. [Google Scholar] [CrossRef]
- Kim, S.B.; Brown, R.; Oldfield, C.; Gilbert, S.C.; Iliarionov, S.; Goodfellow, M. Gordonia amicalis sp. nov.; a novel dibenzothiophene-desulphurizing actinomycete. Int. J. Syst. Evol. Microbiol. 2000, 50, 2031–2036. [Google Scholar] [CrossRef]
- Wang, W.; Ma, T.; Lian, K.; Zhang, Y.; Tian, H.; Ji, K.; Li, G. Genetic Analysis of Benzothiophene Biodesulfurization Pathway of Gordonia terrae Strain C-6. PLoS ONE 2013, 8, e84386. [Google Scholar] [CrossRef] [Green Version]
- Andler, R.; Hiessl, S.; Yücel, O.; Tesch, M.; Steinbüchel, A. Cleavage of poly(cis-1,4-isoprene) rubber as solid substrate by cultures of Gordonia polyisoprenivorans. New Biotechnol. 2018, 44, 6–12. [Google Scholar] [CrossRef]
- Bröker, D.; Arenskotter, M.; Legatzki, A.; Nies, D.H.; Steinbüchel, A. Characterization of the 101-Kilobase-Pair Megaplasmid pKB1, Isolated from the Rubber-Degrading Bacterium Gordonia westfalica Kb1. J. Bacteriol. 2004, 186, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Linos, A.; Berekaa, M.M.; Steinbüchel, A.; Kim, K.K.; Sproer, C.; Kroppenstedt, R.M. Gordonia westfalica sp. nov., a novel rubber-degrading actinomycete. Int. J. Syst. Evol. Microbiol. 2002, 52, 1133–1139. [Google Scholar] [CrossRef] [Green Version]
- Arenskötter, M.; Linos, A.; Schumann, P.; Kroppenstedt, R.M.; Steinbüchel, A. Gordonia nitida Yoon et al. 2000 is a later synonym of Gordonia alkanivorans Kummer et al. 1999. Int. J. Syst. Evol. Microbiol. 2005, 55, 695–697. [Google Scholar] [CrossRef]
- Franzetti, A.; Caredda, P.; la Colla, P.; Pintus, M.; Tamburini, E.; Papacchini, M.; Bestetti, G. Cultural factors affecting biosurfactant production by Gordonia sp. BS29. Int. Biodeterior. Biodegrad. 2009, 63, 943–947. [Google Scholar] [CrossRef]
- Zargar, A.N.; Mishra, S.; Kumar, M.; Srivastava, P. Isolation and chemical characterization of the biosurfactant produced by Gordonia sp. IITR100. PLoS ONE 2022, 17, e0264202. [Google Scholar] [CrossRef]
- Morikawa, M.; Hirata, Y.; Imanaka, T. A study on the structure–function relationship of lipopeptide biosurfactants. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2000, 1488, 211–218. [Google Scholar] [CrossRef]
- Moormann, M.; Zähringer, U.; Moll, H.; Kaufmann, R.; Schmid, R.; Altendorf, K. A New Glycosylated Lipopeptide Incorporated into the Cell Wall of a Smooth Variant of Gordona hydrophobica. J. Biol. Chem. 1997, 272, 10729–10738. [Google Scholar] [CrossRef] [Green Version]
- Silva, T.P.; Paixão, S.M.; Tavares, J.; Gil, C.V.; Torres, C.A.V.; Freitas, F.; Alves, L. A New Biosurfactant/Bioemulsifier from Gordonia alkanivorans Strain 1B: Production and Characterization. Processes 2022, 10, 845. [Google Scholar] [CrossRef]
- Fernandes, A.S.; Paixão, S.M.; Silva, T.P.; Roseiro, J.C.; Alves, L. Influence of culture conditions towards optimal carotenoid production by Gordonia alkanivorans strain 1B. Bioprocess Biosyst. Eng. 2018, 41, 143–155. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.J.; Choi, Y.J.; Kim, J.M.; Lee, P.C. Complete Genome Sequence of the Carotenoid-Producing Strain Gordonia ajoucoccus A2. Microbiol. Resour. Announc. 2020, 9, e00662-20. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-W.; How, C.W.; Chen, L.; Chen, P.T.; Lan, J.C.-W.; Ng, H.-S. Integrated extractive disruption of Gordonia terrae cells with direct recovery of carotenoids using alcohol/salt aqueous biphasic system. Sep. Purif. Technol. 2019, 223, 107–112. [Google Scholar] [CrossRef]
- Loh, W.L.C.; Huang, K.-C.; Ng, H.S.; Lan, J.C.-W. Exploring the fermentation characteristics of a newly isolated marine bacteria strain, Gordonia terrae TWRH01 for carotenoids production. J. Biosci. Bioeng. 2020, 130, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Drzyzga, O. The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential. Crit. Rev. Microbiol. 2012, 38, 300–316. [Google Scholar] [CrossRef]
- Iida, S.; Taniguchi, H.; Kageyama, A.; Yazawa, K.; Chibana, H.; Murata, S.; Nomura, F.; Kroppenstedt, R.M.; Mikami, Y. Gordonia otitidis sp. nov.; isolated from a patient with external otitis. Int. J. Syst. Evol. Microbiol. 2005, 55, 1871–1876. [Google Scholar] [CrossRef] [Green Version]
- Kageyama, A.; Iida, S.; Yazawa, K.; Kudo, T.; Suzuki, S.; Koga, T.; Saito, H.; Inagawa, H.; Wada, A.; Kroppenstedt, R.M.; et al. Gordonia araii sp. nov. and Gordonia effusa sp. nov.; isolated from patients in Japan. Int. J. Syst. Evol. Microbiol. 2006, 56, 1817–1821. [Google Scholar] [CrossRef]
- Kang, Y.-Q.; Ming, H.; Gonoi, T.; Chen, Y.; Cao, Y.; Wang, Y.-Y.; Cheng, J.; Koga, T.; Mikami, Y.; Li, W.-J. Gordonia iterans sp. nov.; isolated from a patient with pneumonia. Int. J. Syst. Evol. Microbiol. 2014, 64, 3520–3525. [Google Scholar] [CrossRef] [Green Version]
- Klatte, S.; Rainey, F.A.; Kroppenstedt, R.M. Transfer of Rhodococcus aichiensis Tsukamura 1982 and Nocardia amarae Lechevalier and Lechevalier 1974 to the Genus Gordona as Gordona aichiensis comb. nov. and Gordona amarae comb. nov. Int. J. Syst. Bacteriol. 1994, 44, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Tsukamura, M. Proposal of a New Genus, Gordona, for Slightly Acid-fast Organisms Occurring in Sputa of Patients with Pulmonary Disease and in Soil. J. Gen. Microbiol. 1971, 68, 15–26. [Google Scholar] [CrossRef]
- Renvoise, A.; Harle, J.-R.; Raoult, D.; Roux, V. Gordonia sputi Bacteremia. Emerg. Infect. Dis. 2009, 15, 1535–1537. [Google Scholar] [CrossRef]
- Li, S.-H.; Jin, Y.; Cheng, J.; Park, D.-J.; Kim, C.-J.; Hozzein, W.N.; Wadaan, M.A.M.; Shu, W.-S.; Ding, L.-X.; Li, W.-J. Gordonia jinhuaensis sp. nov.; a novel actinobacterium, isolated from a VBNC (viable but non-culturable) state in pharmaceutical wastewater. Antonie Van Leeuwenhoek 2014, 106, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zhang, Z.; Chen, M.; Liu, Z. Gordonia crocea sp. nov. Isolated from Wound Infection After Pacemaker Implantation: Case Report and Literature Review. Infect. Drug Resist. 2022, 15, 2915–2920. [Google Scholar] [CrossRef]
- Tsang, C.-C.; Xiong, L.; Poon, R.W.S.; Chen, J.H.K.; Leung, K.-W.; Lam, J.Y.W.; Wu, A.K.L.; Chan, J.F.W.; Lau, S.K.P.; Woo, P.C.Y. Gordonia hongkongensis sp. nov., isolated from blood culture and peritoneal dialysis effluent of patients in Hong Kong. Int. J. Syst. Evol. Microbiol. 2016, 66, 3942–3950. [Google Scholar] [CrossRef]
- Lai, C.-C.; Hsieh, J.-H.; Tsai, H.-Y.; Liao, C.-H.; Hsueh, P.-R. Cutaneous Infection Caused by Gordonia amicalis after a Traumatic Injury. J. Clin. Microbiol. 2012, 50, 1821–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiraud, J.; Lescure, M.; Faganello, D.; Bébéar, C.; Pereyre, S.; Ménard, A. A case of prosthetic joint septic arthritis caused by Gordonia jacobaea. J. Microbiol. Immunol. Infect. 2022, 55, 355–357. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, T.; Sieiro, C.; Poza, M.; Villa, T.G. Isolation and taxonomic study of a new canthaxanthin-containing bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2000, 3, 107–111. [Google Scholar]
- Bzdil, J.; Slosarkova, S.; Fleischer, P.; Matiasovic, J. Gordonia species as a rare pathogen isolated from milk of dairy cows with mastitis. Sci. Rep. 2022, 12, 6028. [Google Scholar] [CrossRef]
- Xue, Y.; Sun, X.; Zhou, P.; Liu, R.; Liang, F.; Ma, Y. Gordonia paraffinivorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 2003, 53, 1643–1646. [Google Scholar] [CrossRef]
- Ding, X.; Yu, Y.; Chen, M.; Wang, C.; Kang, Y.; Li, H.; Lou, J. Bacteremia due to Gordonia polyisoprenivorans: Case report and review of literature. BMC Infect. Dis. 2017, 17, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Linos, A.; Steinbüchel, A.; Spröer, C.; Kroppenstedt, R.M. Gordonia polyisoprenivorans sp. nov., a rubber-degrading actinomycete isolated from an automobile tyre. Int. J. Syst. Evol. Microbiol. 1999, 49, 1785–1791. [Google Scholar] [CrossRef]
- Hart, D.H.L.; Andrew, J.H.; Peel, M.M.; Burdon, J.G.W. Lung infection caused by rhodococcus. Aust. New Zealand J. Med. 1988, 18, 790–791. [Google Scholar] [CrossRef] [PubMed]
- Stackebrandt, E.; Rainey, F.A.; Ward-Rainey, N.L. Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 1997, 47, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Hamid, M.; Musa, M.; El-Sanousi, S.; Hassan, M.; Joseph, M.; Goodfellow, M. Characterization of Gordonia sinesedis Isolated from a Zebu Cow Suffering from Lymphadenitis. Br. Microbiol. Res. J. 2015, 5, 216–226. [Google Scholar] [CrossRef] [Green Version]
- Maldonado, L.A.; Stainsby, F.M.; Ward, A.C.; Goodfellow, M. Gordonia sinesedis sp. nov., a novel soil isolate. Antonie Van Leeuwenhoek 2003, 83, 75–80. [Google Scholar] [CrossRef]
- Gil-Sande, E.; Brun-Otero, M.; Campo-Cerecedo, F.; Esteban, E.; Aguilar, L.; García-de-Lomas, J. Etiological Misidentification by Routine Biochemical Tests of Bacteremia Caused by Gordonia terrae Infection in the Course of an Episode of Acute Cholecystitis. J. Clin. Microbiol. 2006, 44, 2645–2647. [Google Scholar] [CrossRef] [Green Version]
- Stackebrandt, E.; Smida, J.; Collins, M.D. Evidence of phylogenetic heterogeneity within the genus Rhodococcus: Revival of the genus Gordona (Tsukamura). J. Gen. Appl. Microbiol. 1988, 34, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Gueneau, R.; Blanchet, D.; Rodriguez-Nava, V.; Bergeron, E.; Soulier, M.; Bestandji, N.; Demar, M.; Couppie, P.; Blaizot, R. Actinomycetoma caused by Gordonia westfalica: First reported case of human infection. New Microbes New Infect. 2020, 34, 100658. [Google Scholar] [CrossRef]
- Fang, W.; Li, J.; Cui, H.-S.; Jin, X.; Zhai, J.; Dai, Y.; Li, Y. First identification of Gordonia sputi in a post-traumatic endophthalmitis patient—A case report and literatures review. BMC Ophthalmol. 2017, 17, 190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.; Kim, Y.S.; Kim, K.-H.; Kim, N.; Kim, H.H.; Chang, C.L.; Yi, J. A Case of Chronic Gordonia otitidis Lung Infection Initially Regarded as Nontuberculous Mycobacterial Lung Disease. Ann. Clin. Microbiol. 2017, 20, 13. [Google Scholar] [CrossRef] [Green Version]
- Drancourt, M.; McNeil, M.M.; Brown, J.M.; Lasker, B.A.; Maurin, M.; Choux, M.; Raoult, D. Brain Abscess Due to Gordona terrae in an Immunocompromised Child: Case Report and Review of Infections Caused by G. terrae. Clin. Infect. Dis. 1994, 19, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Blaschke, A.J.; Bender, J.; Byington, C.L.; Korgenski, K.; Daly, J.; Petti, C.A.; Pavia, A.T.; Ampofo, K. Gordonia Species: Emerging Pathogens in Pediatric Patients That Are Identified by 16S Ribosomal RNA Gene Sequencing. Clin. Infect. Dis. 2007, 45, 483–486. [Google Scholar] [CrossRef] [Green Version]
- Ramanan, P.; Deziel, P.J.; Wengenack, N.L. Gordonia Bacteremia. J. Clin. Microbiol. 2013, 51, 3443–3447. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Brown, J.M.; Nunez, V.H.; Morey, R.E.; Steigerwalt, A.G.; Pellegrini, G.J.; Kessler, H.A. Native Valve Endocarditis Due to Gordonia polyisoprenivorans: Case Report and Review of Literature of Bloodstream Infections Caused by Gordonia Species. J. Clin. Microbiol. 2006, 44, 1905–1908. [Google Scholar] [CrossRef] [Green Version]
- Yoo, J.R.; Kim, M.; Lee, K.H.; Yoo, S.J.; Hyun, C.L.; Bae, J.; Heo, S.T.; Park, Y.G. A Fatal Infection due to Gordonia Terrae. J. Dermatol. Res. Ther. 2016, 2, 033. [Google Scholar] [CrossRef]
- Hou, C.; Yang, Y.; Li, Z. A Chinese patient with peritoneal dialysis-related peritonitis caused by Gordonia terrae: A case report. BMC Infect. Dis. 2017, 17, 179. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.G.; Casañ, C.; Antequera, P.; Candel, C.; Blázquez, R. Catheter-related bloodstream infection caused by Gordonia terrae in a bone-marrow transplant patient: Case report and review of the literature. JMM Case Rep. 2014, 1, e001032. [Google Scholar] [CrossRef]
- Kofteridis, D.P.; Valachis, A.; Scoulica, E.; Christidou, A.; Maraki, S.; Samonis, G. Hickman catheter-related bacteremia caused by Gordonia sputi in a patient with breast cancer. J. Infect. Dev. Ctries. 2011, 6, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Prasad, D.; Khara, H.S.; Alcid, D. A rubber-degrading organism growing from a human body. Int. J. Infect. Dis. 2010, 14, e75–e76. [Google Scholar] [CrossRef] [Green Version]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the Metabolically Diverse Genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef] [Green Version]
- Raghuram, A. Gordonia Catheter-related Bacteremia and Native Valve Endocarditis Treated with Ceftriaxone and Oral Ciprofloxacin—A Case Report and Review of the Literature. Infect. Non Infect. Dis. 2015, 1, 1–3. [Google Scholar] [CrossRef]
- Werno, A.M.; Anderson, T.P.; Chambers, S.T.; Laird, H.M.; Murdoch, D.R. Recurrent Breast Abscess Caused by Gordonia bronchialis in an Immunocompetent Patient. J. Clin. Microbiol. 2005, 43, 3009–3010. [Google Scholar] [CrossRef] [Green Version]
- Brust, J.C.M.; Whittier, S.; Scully, B.E.; McGregor, C.C.; Yin, M.T. Five cases of bacteraemia due to Gordonia species. J. Med. Microbiol. 2009, 58, 1376–1378. [Google Scholar] [CrossRef]
- Kummer, C.; Schumann, P.; Stackebrandt, E. Gordonia alkanivorans sp. nov.; isolated from tar-contaminated soil. Int. J. Syst. Evol. Microbiol. 1999, 49, 1513–1522. [Google Scholar] [CrossRef]
- Akrami, K.; Coletta, J.; Mehta, S.; Fierer, J. Gordonia sternal wound infection treated with ceftaroline: Case report and literature review. JMM Case Rep. 2017, 4, e005113. [Google Scholar] [CrossRef] [Green Version]
- Franczuk, M.; Klatt, M.; Filipczak, D.; Zabost, A.; Parniewski, P.; Kuthan, R.; Jakubowska, L.; Augustynowicz-Kopeć, E. From NTM (Nontuberculous mycobacterium) to Gordonia bronchialis—A Diagnostic Challenge in the COPD Patient. Diagnostics 2022, 12, 307. [Google Scholar] [CrossRef]
- Jannat-Khah, D.P.; Halsey, E.S.; Lasker, B.A.; Steigerwalt, A.G.; Hinrikson, H.P.; Brown, J.M. Gordonia araii Infection Associated with an Orthopedic Device and Review of the Literature on Medical Device-Associated Gordonia Infections. J. Clin. Microbiol. 2009, 47, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Otake, S.; Mori, T.; Hasegawa, D.; Kosaka, Y.; Ohkusu, K.; Kasai, M. A pediatric case of Gordonia otitidis bacteremia detected by long-term blood culture. J. Infect. Chemother. 2022, 28, 1427–1429. [Google Scholar] [CrossRef]
- Blanc, V.; Dalle, M.; Markarian, A.; Debunne, M.V.; Duplay, E.; Rodriguez-Nava, V.; Boiron, P. Gordonia terrae: A Difficult-To-Diagnose Emerging Pathogen? J. Clin. Microbiol. 2007, 45, 1076–1077. [Google Scholar] [CrossRef] [Green Version]
- Adams, T.; Brye, K.; Savin, M.; Lee, J.A.; Gbur, E. Microbial Carbon Substrate Utilization Differences among High- and Average-Yield Soybean Areas. Agriculture 2017, 7, 48. [Google Scholar] [CrossRef] [Green Version]
- Ercibengoa Arana, M.; Alonso, M.; Idigoras, P.; Vicente, D.; Marimón, J.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) score algorithm for identification of Gordonia species. AMB Express 2018, 8, 121. [Google Scholar] [CrossRef] [PubMed]
- Alcolea-Medina, A.; Fernandez, M.T.C.; Montiel, N.; García, M.P.L.; Sevilla, C.D.; North, N.; Lirola, M.J.M.; Wilks, M. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry). Sci. Rep. 2019, 9, 20216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Randall, L.P.; Lemma, F.; Koylass, M.; Rogers, J.; Ayling, R.D.; Worth, D.; Klita, M.; Steventon, A.; Line, K.; Wragg, P.; et al. Evaluation of MALDI-ToF as a method for the identification of bacteria in the veterinary diagnostic laboratory. Res. Vet. Sci. 2015, 101, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lozano, J.; Pérez-Llantada, E.; Agüero, J.; Rodríguez-Fernández, A.; Ruiz de Alegria, C.; Martinez-Martinez, L.; Calvo, J. Sternal wound infection caused by Gordonia bronchialis: Identification by MALDI-TOF MS. JMM Case Rep. 2016, 3, e005067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberis, C.; Almuzara, M.; Join-Lambert, O.; Ramírez, M.S.; Famiglietti, A.; Vay, C. Comparison of the Bruker MALDI-TOF Mass Spectrometry System and Conventional Phenotypic Methods for Identification of Gram-Positive Rods. PLoS ONE 2014, 9, e106303. [Google Scholar] [CrossRef] [Green Version]
- Mormeneo Bayo, S.; Palacián Ruíz, M.P.; Asin Samper, U.; Millán Lou, M.I.; Pascual Catalán, A.; Villuendas Usón, M.C. Pacemaker-induced endocarditis by Gordonia bronchialis. Enferm. Infecc. Y Microbiol. Clínica 2022, 40, 255–257. [Google Scholar] [CrossRef]
- Chang, J.-H.; Ji, M.; Hong, H.-L.; Choi, S.-H.; Kim, Y.-S.; Chung, C.-H.; Sung, H.; Kim, M.-N. Sternal Osteomyelitis Caused by Gordonia bronchialis after Open-Heart Surgery. Infect. Chemother. 2014, 46, 110. [Google Scholar] [CrossRef] [Green Version]
- Martín, D.; Barrios, A.; Domingo, D.; Sánchez, P.; Sánchez, M.; Ruiz-Dassy, A.; Miqueleiz, A.; Sanz, J. Cerebrospinal fluid shunt-associated meningitis caused by Gordonia sputi: Case report and review of the literature. Le Infez. Med. 2017, 25, 174–178. [Google Scholar]
- Lam, J.Y.W.; Wu, A.K.L.; Leung, W.-S.; Cheung, I.; Tsang, C.-C.; Chen, J.H.K.; Chan, J.F.W.; Tse, C.W.S.; Lee, R.A.; Lau, S.K.P.; et al. Gordonia Species as Emerging Causes of Continuous-Ambulatory-Peritoneal-Dialysis-Related Peritonitis Identified by 16S rRNA and secA1 Gene Sequencing and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry (MALDI-TOF MS). J. Clin. Microbiol. 2015, 53, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Sukackiene, D.; Rimsevicius, L.; Kiveryte, S.; Marcinkeviciene, K.; Bratchikov, M.; Zokaityte, D.; Tyla, R.; Laucyte-Cibulskiene, A.; Miglinas, M. A case of successfully treated relapsing peritoneal dialysis-associated peritonitis caused by Gordonia bronchialis in a farmer. Néphrologie Thérapeutique 2018, 14, 109–111. [Google Scholar] [CrossRef]
- Hsueh, P.-R.; Lee, T.-F.; Du, S.-H.; Teng, S.-H.; Liao, C.-H.; Sheng, W.-H.; Teng, L.-J. Bruker Biotyper Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry System for Identification of Nocardia, Rhodococcus, Kocuria, Gordonia, Tsukamurella, and Listeria Species. J. Clin. Microbiol. 2014, 52, 2371–2379. [Google Scholar] [CrossRef] [Green Version]
- Sowani, H.; Kulkarni, M.; Zinjarde, S.; Javdekar, V. Gordonia and Related Genera as Opportunistic Human Pathogens Causing Infections of Skin, Soft Tissues, and Bones. In The Microbiology of Skin, Soft Tissue, Bone and Joint Infections; Elsevier: Amsterdam, The Netherlands, 2017; pp. 105–121. [Google Scholar] [CrossRef]
- Alshamaony, L.; Goodfellow, M.; Minnikin, D.E. Free Mycolic Acids as Criteria in the Classification of Nocardia and the “rhodochrous” Complex. J. Gen. Microbiol. 1976, 92, 188–199. [Google Scholar] [CrossRef] [Green Version]
- Collins, M.D.; Goodfellow, M.; Minnikin, D.E. A Survey of the Structures of Mycolic Acids in Corynebacterium and Related Taxa. Microbiology 1982, 128, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Butler, W.R.; Jost, K.C.; Kilburn, J.O. Identification of mycobacteria by high-performance liquid chromatography. J. Clin. Microbiol. 1991, 29, 2468–2472. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.E.; Mihm, J.M. A Comparison of Nocardia asteroides and Nocardia brasiliensis. J. Gen. Microbiol. 1959, 20, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Gordon, R.E.; Mihm, J.M. The Type Species of the Genus Nocardia. J. Gen. Microbiol. 1962, 27, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Becker, B.; Lechevalier, M.P.; Gordon, R.E.; Lechevalier, H.A. Rapid Differentiation Between Nocardia and Streptomyces by Paper Chromatography of Whole-Cell Hydrolysates. Appl. Microbiol. 1964, 12, 421–423. [Google Scholar] [CrossRef]
- Lechevalier, M.P. Identification of aerobic actinomycetes of clinical importance. J. Lab. Clin. Med. 1968, 71, 934–944. [Google Scholar]
- Aoyama, K.; Kang, Y.; Yazawa, K.; Gonoi, T.; Kamei, K.; Mikami, Y. Characterization of Clinical Isolates of Gordonia Species in Japanese Clinical Samples during 1998–2008. Mycopathologia 2009, 168, 175–183. [Google Scholar] [CrossRef]
- Lechevalier, M.P.; Lechevalier, H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int. J. Syst. Bacteriol. 1970, 20, 435–443. [Google Scholar] [CrossRef] [Green Version]
- Jacques, M.-A.; Durand, K.; Orgeur, G.; Balidas, S.; Fricot, C.; Bonneau, S.; Quillévéré, A.; Audusseau, C.; Olivier, V.; Grimault, V.; et al. Phylogenetic Analysis and Polyphasic Characterization of Clavibacter michiganensis Strains Isolated from Tomato Seeds Reveal that Nonpathogenic Strains Are Distinct from C. michiganensis subsp. michiganensis. Appl. Environ. Microbiol. 2012, 78, 8388–8402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ratnikova, M.S.; Titok, M.A. Molecular Genetic Markers for Identification of Rhodococcus erythropolis and Rhodococcus qingshengii. Microbiology 2020, 89, 435–442. [Google Scholar] [CrossRef]
- Van de Peer, Y. A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res. 1996, 24, 3381–3391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cole, J.R.; Wang, Q.; Fish, J.A.; Chai, B.; McGarrell, D.M.; Sun, Y.; Brown, C.T.; Porras-Alfaro, A.; Kuske, C.R.; Tiedje, J.M. Ribosomal Database Project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014, 42, D633–D642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Wang, B.; Cui, Z.; Yu, S.; Sun, D.; Zhang, W.; Jin, X.; Cheng, X.; Chen, Y. Rapid detection of Gordonia aichiensis by metagenomic next-generation sequencing in a patient with peritoneal dialysis-associated peritonitis. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2022, 42, 542–545. [Google Scholar] [CrossRef]
- Lesens, O. Bacteremia and Endocarditis Caused by a Gordonia Species in a Patient with a Central Venous Catheter. Emerg. Infect. Dis. 2000, 6, 382–385. [Google Scholar] [CrossRef] [Green Version]
- Wright, S.N.; Gerry, J.S.; Busowski, M.T.; Klochko, A.Y.; McNulty, S.G.; Brown, S.A.; Sieger, B.E.; Michaels, P.K.; Wallace, M.R. Gordonia bronchialis Sternal Wound Infection in 3 Patients following Open Heart Surgery: Intraoperative Transmission from a Healthcare Worker. Infect. Control Hosp. Epidemiol. 2012, 33, 1238–1241. [Google Scholar] [CrossRef]
- Shen, F.-T.; Young, C.-C. Rapid detection and identification of the metabolically diverse genus Gordonia by 16S rRNA-gene-targeted genus-specific primers. FEMS Microbiol. Lett. 2005, 250, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.C.; Wang, C.Y.; Liu, C.Y.; Tan, C.K.; Lin, S.H.; Liao, C.H.; Chou, C.H.; Huang, Y.T.; Lin, H.I.; Hsueh, P.R. Infections Caused by Gordonia Species at a Medical Center in Taiwan, 1997 to 2008. Clin. Microbiol. Infect. 2009, 16, 1448–1453. [Google Scholar] [CrossRef]
- Neilan, B.A.; Jacobs, D.; Therese, D.D.; Blackall, L.L.; Hawkins, P.R.; Cox, P.T.; Goodman, A.E. rRNA Sequences and Evolutionary Relationships among Toxic and Nontoxic Cyanobacteria of the Genus Microcystis. Int. J. Syst. Bacteriol. 1997, 47, 693–697. [Google Scholar] [CrossRef]
- Negishi, T.; Matsumoto, T.; Saito, S.; Kasuga, E.; Horiuchi, K.; Natori, T.; Takehara, K.; Sugano, M.; Honda, T. Catheter-Related Bacteremia Due to Gordonia sputi in a Patient with Acute Lymphocytic Leukemia: A Case Report. Jpn. J. Infect. Dis. 2016, 69, 342–343. [Google Scholar] [CrossRef] [Green Version]
- Bartolomé-Álvarez, J.; Sáez-Nieto, J.A.; Escudero-Jiménez, A.; Barba-Rodríguez, N.; Galán-Ros, J.; Carrasco, G.; Muñoz-Izquierdo, M.P. Cutaneous abscess due to Gordonia bronchialis: Case report and literature review. Rev. Esp. De Quimioter. Publ. Of. De La Soc. Esp. De Quimioter. 2016, 29, 170–173. [Google Scholar]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Godon, J.J.; Zumstein, E.; Dabert, P.; Habouzit, F.; Moletta, R. Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl. Environ. Microbiol. 1997, 63, 2802–2813. [Google Scholar] [CrossRef] [Green Version]
- Pinto, A.J.; Raskin, L. PCR Biases Distort Bacterial and Archaeal Community Structure in Pyrosequencing Datasets. PLoS ONE 2012, 7, e43093. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.-L.; Jiang, X.; Wu, Q.L.; Zhou, N.-Y. Intragenomic Heterogeneity of 16S rRNA Genes Causes Overestimation of Prokaryotic Diversity. Appl. Environ. Microbiol. 2013, 79, 5962–5969. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.-Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [Green Version]
- Eren, A.M.; Maignien, L.; Sul, W.J.; Murphy, L.G.; Grim, S.L.; Morrison, H.G.; Sogin, M.L. Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 2013, 4, 1111–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peeters, K.; Willems, A. The gyrB gene is a useful phylogenetic marker for exploring the diversity of Flavobacterium strains isolated from terrestrial and aquatic habitats in Antarctica. FEMS Microbiol. Lett. 2011, 321, 130–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Takeda, K.; Yazawa, K.; Mikami, Y. Phylogenetic Studies of Gordonia Species Based on gyrB and secA1 Gene Analyses. Mycopathologia 2009, 167, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Debbia, E.A. The role of gyrA, gyrB, and dnaA functions in bacterial conjugation. Ann. Microbiol. 2016, 66, 223–228. [Google Scholar] [CrossRef]
- Hurtle, W.; Bode, E.; Kulesh, D.A.; Kaplan, R.S.; Garrison, J.; Bridge, D.; House, M.; Frye, M.S.; Loveless, B.; Norwood, D. Detection of the Bacillus anthracis gyrA Gene by Using a Minor Groove Binder Probe. J. Clin. Microbiol. 2004, 42, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Chun, J. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie Van Leeuwenhoek 2000, 78, 123–127. [Google Scholar] [CrossRef]
- Shen, F.-T.; Lu, H.-L.; Lin, J.-L.; Huang, W.-S.; Arun, A.B.; Young, C.-C. Phylogenetic analysis of members of the metabolically diverse genus Gordonia based on proteins encoding the gyrB gene. Res. Microbiol. 2006, 157, 367–375. [Google Scholar] [CrossRef]
- Delegan, Y.A.; Vetrova, A.A.; Akimov, V.N.; Titok, M.A.; Filonov, A.E.; Boronin, A.M. Thermotolerant oil-degrading bacteria isolated from soil and water of geographically distant regions. Appl. Biochem. Microbiol. 2016, 52, 389–396. [Google Scholar] [CrossRef]
- Yamamoto, S.; Harayama, S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl. Environ. Microbiol. 1995, 61, 1104–1109. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.A.; Onderdonk, A.B.; Cosimi, L.A.; Yawetz, S.; Lasker, B.A.; Bolcen, S.J.; Brown, J.M.; Marty, F.M. Gordonia bronchialis Bacteremia and Pleural Infection: Case Report and Review of the Literature. J. Clin. Microbiol. 2011, 49, 1662–1666. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, J.; Yamashita, A.; Mikami, Y.; Hoshino, Y.; Kurita, H.; Hotta, K.; Shiba, T.; Hattori, M. The complete genomic sequence of Nocardia farcinica IFM 10152. Proc. Natl. Acad. Sci. 2004, 101, 14925–14930. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Kang, Y.; Yazawa, K.; Gonoi, T.; Mikami, Y. Phylogenetic studies of Nocardia species based on gyrB gene analyses. J. Med. Microbiol. 2010, 59, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Lasker, B.A.; Moser, B.D.; Brown, J. Gordonia, in Molecular Detection of Human Bacterial Pathogens, 1st ed.; Section I Actinobacteria; CRC Press: Boca Raton, FL, USA, 2011; ISBN 9781439812389. [Google Scholar]
- Chaudhary, A.S.; Chen, W.; Jin, J.; Tai, P.C.; Wang, B. SecA: A potential antimicrobial target. Future Med. Chem. 2015, 7, 989–1007. [Google Scholar] [CrossRef]
- Lill, R.; Dowhan, W.; Wickner, W. The ATPase activity of secA is regulated by acidic phospholipids, secY, and the leader and mature domains of precursor proteins. Cell 1990, 60, 271–280. [Google Scholar] [CrossRef]
- Conville, P.S.; Zelazny, A.M.; Witebsky, F.G. Analysis of secA1 Gene Sequences for Identification of Nocardia Species. J. Clin. Microbiol. 2006, 44, 2760–2766. [Google Scholar] [CrossRef] [Green Version]
- Zelazny, A.M.; Calhoun, L.B.; Li, L.; Shea, Y.R.; Fischer, S.H. Identification of Mycobacterium Species by secA1 Sequences. J. Clin. Microbiol. 2005, 43, 1051–1058. [Google Scholar] [CrossRef] [Green Version]
- Steingrube, V.A.; Gibson, J.L.; Brown, B.A.; Zhang, Y.; Wilson, R.W.; Rajagopalan, M.; Wallace, R.J. PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J. Clin. Microbiol. 1995, 33, 149–153. [Google Scholar] [CrossRef] [Green Version]
- Telenti, A.; Marchesi, F.; Balz, M.; Bally, F.; Böttger, E.C.; Bodmer, T. Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J. Clin. Microbiol. 1993, 31, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Roth, A.; Reischl, U.; Streubel, A.; Naumann, L.; Kroppenstedt, R.M.; Habicht, M.; Fischer, M.; Mauch, H. Novel Diagnostic Algorithm for Identification of Mycobacteria Using Genus-Specific Amplification of the 16S-23S rRNA Gene Spacer and Restriction Endonucleases. J. Clin. Microbiol. 2000, 38, 1094–1104. [Google Scholar] [CrossRef] [Green Version]
- Senna, S.G.; Battilana, J.; Costa, J.C.; Silva, M.G.; Duarte, R.S.; Fonseca, L.S.; Suffys, P.N.; Bogo, M.R. Sequencing of hsp65 Gene for Identification of Mycobacterium Species Isolated from Environmental and Clinical Sources in Rio de Janeiro, Brazil. J. Clin. Microbiol. 2008, 46, 3822–3825. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.-H.; Huang, Y.-T.; Chang, S.-C.; Hsueh, P.-R. Brain Abscess Caused by Tsukamurella tyrosinosolvens in an Immunocompetent Patient. J. Clin. Microbiol. 2009, 47, 1602–1604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arenskötter, M.; Baumeister, D.; Berekaa, M.M.; Pötter, G.; Kroppenstedt, R.M.; Linos, A.; Steinbüchel, A. Taxonomic characterization of two rubber degrading bacteria belonging to the species Gordonia polyisoprenivorans and analysis of hyper variable regions of 16S rDNA sequences. FEMS Microbiol. Lett. 2001, 205, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Kempf, V.A.J.; Schmalzing, M.; Yassin, A.F.; Schaal, K.P.; Baumeister, D.; Arenskötter, M.; Steinbuchel, A.; Autenrieth, I.B. Gordonia polyisoprenivorans Septicemia in a Bone Marrow Transplant Patient. Eur. J. Clin. Microbiol. Infect. Dis. 2004, 23, 226–228. [Google Scholar] [CrossRef] [PubMed]
- Moser, B.D.; Pellegrini, G.J.; Lasker, B.A.; Brown, J.M. Pattern of Antimicrobial Susceptibility Obtained from Blood Isolates of a Rare but Emerging Human Pathogen, Gordonia polyisoprenivorans. Antimicrob. Agents Chemother. 2012, 56, 4991–4993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier-Kolthoff, J.P.; Auch, A.F.; Klenk, H.-P.; Göker, M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013, 14, 60. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.E.C.; Stackebrandt, E.; Kandler, O.; Colwell, R.R.; Krichevsky, M.I.; Truper, H.G.; Murray, R.G.E.; Wayne, L.G.; Grimont, P.A.D.; Brenner, D.J.; et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int. J. Syst. Evol. Microbiol. 1987, 37, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Stackebrandt, E.; Goebel, B.M. Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology. Int. J. Syst. Evol. Microbiol. 1994, 44, 846–849. [Google Scholar] [CrossRef] [Green Version]
- Koenigsaecker, T.M.; Eisen, J.A.; Coil, D.A. Draft Genome Sequence of Gordonia sp. Strain UCD-TK1 (Phylum Actinobacteria). Genome Announc. 2016, 4, e01121-16. [Google Scholar] [CrossRef] [Green Version]
- Tritt, A.; Eisen, J.A.; Facciotti, M.T.; Darling, A.E. An Integrated Pipeline for de Novo Assembly of Microbial Genomes. PLoS ONE 2012, 7, e42304. [Google Scholar] [CrossRef] [Green Version]
- Gulvik, C.A.; Batra, D.; Rowe, L.A.; Sheth, M.; Nobles, S.; Lee, J.S.; McQuiston, J.R.; Lasker, B.A. Complete and Circularized Bacterial Genome Sequence of Gordonia sp. Strain X0973. Microbiol. Resour. Announc. 2021, 10, e01479-20. [Google Scholar] [CrossRef]
- Ahrholdt, J. Gordonia parafnivorans–ein seltener Mastitiserreger bei Rindern (Gordonia parafnivorans: An uncommon agent of bovine mastitis). Prakt. Tierarzt 2020, 101, 882–888. [Google Scholar] [CrossRef]
- Valkó, A. Corynebacterinae Alrendbe Tartozó TőgygyulladáS-kórokozó baktériumok Diagnosztikai Vizsgálatai (Identification of Mastitis Causing Bacteria in the Corynebacterinae Suborder). Szent István Egyetem Állatorvos-tudományi Kar, Budapest, Hungary. Thesis. 2014, p. 39. Available online: http://www.huveta.hu/handle/10832/1350 (accessed on 26 March 2021).
- Brown-Elliott, B.A.; Brown, J.M.; Conville, P.S.; Wallace, R.J. Clinical and Laboratory Features of the Nocardia spp. Based on Current Molecular Taxonomy. Clin. Microbiol. Rev. 2006, 19, 259–282. [Google Scholar] [CrossRef] [Green Version]
- Buchman, A.L.; McNeil, M.M.; Brown, J.M.; Lasker, B.A.; Amentn, M.E. Central Venous Catheter Sepsis Caused by Unusual Gordona (Rhodococcus) Species: Identification with a Digoxigenin-Labeled rDNA Probe. Clin. Infect. Dis. 1992, 15, 694–697. [Google Scholar] [CrossRef]
- Pham, A.S.; De, I.; Rolston, K.V.; Tarrand, J.J.; Han, X.Y. Catheter-Related Bacteremia Caused by the Nocardioform Actinomycete Gordonia terrae. Clin. Infect. Dis. 2003, 36, 524–527. [Google Scholar] [CrossRef]
Species | Type of Sample | Disease | Identification Approach | Reference |
---|---|---|---|---|
Gordonia otitidis | ear discharge | external otitis | mycolic acid profile, compound utilization patterns, 16S rRNA gene sequencing | [26] |
Gordonia araii | sputum | bacterial pneumonia | TLC, HPLC, 16S rRNA gene sequencing, DNA–DNA hybridization | [27] |
Gordonia effusa | sputum | kidney dysfunction | TLC, HPLC, 16S rRNA gene sequencing, DNA–DNA hybridization | [27] |
Gordonia iterans | sputum | bacterial pneumonia | TLC, mycolic acid profile, 16S rRNA gene sequencing, DNA–DNA hybridization | [28] |
Gordonia aichiensis (previously, Rhodococcus aichiensis) | sputum | pulmonary disease | mycolic acid profile, 16S rRNA sequencing | [29] |
Gordonia bronchialis | sputum | cavitary pulmonary tuberculosis and/or bronchiectasis | mycolic acid profile, compound utilization patterns | [30] |
Gordonia sputi (previously, Rhodococcus sputi) | sputum | pulmonary disease | mycolic acid profile, compound utilization patterns | [31] |
Gordonia jinhuaensis | pharmaceutical wastewater | - | HPLC, 16S rRNA gene sequencing, compound utilization patterns | [32] |
Gordonia crocea | drainage strips | wound infection after pacemaker implantation | MALDI TOF MS, 16S rRNA gene sequencing | [33] |
Gordonia hongkongensis | (1) blood culture, (2) the peritoneal dialysis effluent | (1) continuous ambulatory peritoneal dialysis (CAPD)-related peritonitis, (2) bacteraemia | HPLC, 16S rRNA, gyrB, secA genes sequencing, DNA–DNA hybridization | [34] |
Species | Disease | Reference to an Article with an Example of a Pathogenic Strain | Isolation Source of the Type Strain | Reference to an Article with Type Strain Isolation |
---|---|---|---|---|
Gordonia amicalis | cutaneous infection after a traumatic injury | [35] | soil contaminated with thiophenes | [10] |
“Gordonia jacobaea” | prosthetic joint septic arthritis | [36] | soil | [37] |
Gordonia paraffinivorans | cow mastitis | [38] | oil-producing well of Daqing oilfield | [39] |
Gordonia polyisoprenivorans | catheter-related bacteremia | [40] | automobile tyre | [41] |
Gordonia rubripertincta | lung infection | [42] | soil | [43] |
Gordonia sinesedis | Lymphadenitis | [44] | soil | [45] |
Gordonia terrae | acute cholecystitis | [46] | soil | [47] |
Gordonia westfalica | mycetoma of the foot | [48] | foul water taken from the inside of a deteriorated automobile tyre | [14] |
Genus/Species Determined by the MALDI | Bruker Biotyper Version | Number of Identification Repetitions | Scores | The Result of Identification by an Additional Approach | The Approach Used for Additional Identification | Reference |
---|---|---|---|---|---|---|
G. bronchialis | ND | 2 | 1.68, 2.08 | G. bronchialis | 16S rRNA | [76] |
G. bronchialis | ND | 1 | 1.83 | G. bronchialis | gyrB | [65] |
G. rubripertincta | 3.0 | 1 | 1.764 | G. polyisoprenivorans | 16S rRNA, gyrB | [40] |
G. bronchialis | ND | 1 | 1.808 | G. bronchialis | 16S rRNA, hsp65 | [77] |
G. sputi | ND | 2 | 1.65, 1.57 | G. sputi | 16S rRNA | [78] |
G. bronchialis | ND | 2 | - | G. bronchialis | 16S rRNA | [66] * |
G. sputi | 3.1 | 1 | 2.039 | G. sputi | 16S rRNA, secA1 | [79] |
G. sputi | 1 | 2.026 | G. sputi | 16S rRNA, secA1 | ||
G. bronchialis | 1 | 1.743 | G. bronchialis | 16S rRNA, secA1 | ||
Gordonia sp. | 1 | 1.550 | G. lacunae/G. terrae/new species | 16S rRNA, secA1 | ||
G. rubripertincta | ND | 1 | - | G. bronchialis | 16S rRNA | [80] |
G. rubripertincta | 4.1 | 1 | (for 27 samples) 1.723–2.319 | G. paraffinovorans | WGS | [38] |
G. rubropertincta | ND | 1 | 1.702 | G. terrae | 16S rRNA | [56] |
№ | Primer Name | Primer Sequence | Species Identified | Reference |
---|---|---|---|---|
1 | P8-27 | 5′-AGA GTT TGA TCC TGG CTC AG-3′ | universal | [52,63,100] |
P1392-1372 | 5′-AAG GCC CGG GAA CGT ATT CAC-3′ | |||
2 | 16S-F | 5′-AGA GTT TGA TCC TGG CTC AG-3′ | G. bronchialis | [76] |
16S-R | 5′-ACG GCT ACC TTG TTA CGA CTT-3′ | |||
3 | fD1 | 5′-CCG AAT TCG TCG ACA ACA GAG TTT GAT CCT GGC TCA G-3′ | G. polyisoprenivorans | [54] |
rD1 | 5′-CCC GGG ATC CAA GCT TAA GGA GGT GAT CCA GCC-3′ | |||
4 | 27FLP | 5′-AGA GTT TGA TCM TGG CTC AG-3′ | G. terrae | [55] |
1492RPL | 5′-GGT TAC CTT GTT ACG ACT T-3′ | |||
5 | - | 5′-TGG AGA GTT TGA TCC TGG CTC AG-3′ | G. bronchialis | [101] |
- | 5′-TAC CGC GGC TGC TGG CAC-3′ | |||
6 | BACT | 5′-CAG GCC TAA CAC ATG CAA GTC-3′ | G. sputi | [58] |
UNI | 5′-GAC GGG CGG TGT GTA CAA-3′ | |||
7 | G268F | 5′-CGA CCT GAG AGG GTG ATC G-3′ | G. sputi, G. bronchialis, G. terrae/lacumae | [79,102] |
G1096R | 5′-ATA ACC CGC TGG CAA TAC AG-3′ | |||
8 | 8FLP | 5′-AGA GTT TGA TCC TGG CTC AG-3′ | G. terrae, G. sputi | [103] |
1492RPL | 5′-GGT TAC CTT GTT ACG ACT T-3′ | |||
9 | 5F | 5′-TTG GAG AGT TTG ATC CTG GCT C-3′ | G. terrae, G. otitidis, G. bronchialis | [52] |
1194R | 5′-ACG TCA TCC CCA CCT TCC TC-3′ | |||
10 | 27FI | 5′-AGA GTT TGA TCC TGG CTC AG-3′ | G. sputi | [104,105] |
1494Rc | 5′-TAC GGC TAC CTT GTT ACG AC-3′ | |||
11 | fD1 | 5′-CCG AAT TCG TCG ACA ACA GAG TTT GAT CCT GGC TCA G-3′ | G. bronchialis | [106,107] |
rP2 | 5′-CCC GGG ATC CAA GCT TAC GGC TAC CTT GTT ACG ACT T-3′ | |||
12 | 27F | 5′-GAG TTT GAT CCT GGC TCA G-3′ | G. terrae | [56] |
1492R | 5′-AAG GAG GTG ATC CAG CCG CA-3′ | |||
13 | 5F | 5′-TGG AGA GTT TGA TCC TGG CTA G-3′ | G. sputi, G. otitidis, G. bronchialis | [71] |
1193R | 5′-ACG TCA TCC CCG CTT CCT T-3′ | |||
14 | w001 | 5′-AGA GTT TGA TCM TGG CTC-3′ | G. bronchialis | [80,108] |
w002 | 5′-GNT ACC TTG TTA CGA CTT-3′ |
Primer Name | Primer Sequence | Species | Reference |
---|---|---|---|
GYRB1 | 5′-ATG CAN CAR YTN CAY GCN GGN-3′ | universal | [118] |
GYRB2 | 5′-SAY GAT CTT GTK RTA SCG MAA YTT-3′ | ||
UP-1 | 5′-GAA GTC ATC ATG ACC GTT CTG CAY GCN GGN GGN AAR TTY GA-3′ | universal | [120] |
UP-2 | 5′-AGC AGG GTA CGG ATG TGC GAG CCR TCN ACR TCN GCR TCN GTC AT-3′ | ||
UP1F | 5′-GAG GTC GTC ATG ACC CAG CTG CAY GCN GGN GGN AAR TTY GA-3′ | G. otitidis | [50] |
UP2r-modi | 5′-AGC AGC GTC GAG ATG TGC TGG CCR TCN ACR TCN GCR TCN GTC A-3′ |
Primer Name | Primer Sequence | Reference |
---|---|---|
SecA1-f | 5′-GTA AAA CGA CGG CCA GGA CAG YGA GTG GAT GGG YCG SGT GCA CCG-3′ | [114] |
SecA1-r | 5′-CAG GAA ACA GCT ATG ACG CGG ACG ATG TAG TCC TTG TC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frantsuzova, E.; Bogun, A.; Vetrova, A.; Delegan, Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens 2022, 11, 1496. https://doi.org/10.3390/pathogens11121496
Frantsuzova E, Bogun A, Vetrova A, Delegan Y. Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens. 2022; 11(12):1496. https://doi.org/10.3390/pathogens11121496
Chicago/Turabian StyleFrantsuzova, Ekaterina, Alexander Bogun, Anna Vetrova, and Yanina Delegan. 2022. "Methods of Identifying Gordonia Strains in Clinical Samples" Pathogens 11, no. 12: 1496. https://doi.org/10.3390/pathogens11121496
APA StyleFrantsuzova, E., Bogun, A., Vetrova, A., & Delegan, Y. (2022). Methods of Identifying Gordonia Strains in Clinical Samples. Pathogens, 11(12), 1496. https://doi.org/10.3390/pathogens11121496