Mycoplasma ovipneumoniae: A Most Variable Pathogen
Abstract
:1. Introduction
2. Epidemiology in Sheep and Goats
3. Pathology and Clinical Presentation
4. Infection in Wild Ruminants
5. Virulence Factors
6. Metabolism
7. Comparative Genomics
8. Genotypic Variability
9. Phenotypic Variability
10. Evolutionary Mechanisms
11. Isolation and Culture
12. Detection and Identification
13. Antimicrobial Susceptibility
14. Variations in Antimicrobial Susceptibility Profiles
15. Vaccines
16. Control
17. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cottew, G.S. Caprine-Ovine Mycoplasmas. In The Mycoplasmas, Human and Animal Mycoplasmas; Tully, J.G., Whitcomb, R.F., Eds.; Academic Press: New York, NY, USA, 1979; Volume 2, pp. 103–132. ISBN 0124144012. [Google Scholar]
- Nicholas, R.A.J.; Ayling, R.; McAuliffe, L. Respiratory Diseases of Small Ruminants. In Mycoplasma Diseases of Ruminants; CAB International: Wallingford, UK, 2008; pp. 169–198. ISBN 978 0 85199 012 5. [Google Scholar]
- Besser, T.E.; Levy, J.; Ackerman, M.; Nelson, D.; Manlove, K.; Potter, K.A.; Busboom, J.; Benson, M. A Pilot Study of the Effects of Mycoplasma ovipneumoniae Exposure on Domestic Lamb Growth and Performance. PLoS ONE 2019, 14, e0207420. [Google Scholar] [CrossRef] [Green Version]
- Manlove, K.; Branan, M.; Baker, K.; Bradway, D.; Cassirer, E.F.; Marshall, K.L.; Miller, R.S.; Sweeney, S.; Cross, P.C.; Besser, T.E. Risk Factors and Productivity Losses Associated with Mycoplasma ovipneumoniae Infection in United States Domestic Sheep Operations. Prev. Vet. Med. 2019, 168, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Alley, M.R.; Clarke, J.K.; Ionas, G. Chronic Non-Progressive Pneumonia of Sheep in New Zealand—A Review of the Role of Mycoplasma ovipneumoniae. N. Z. Vet. J. 1999, 47, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Sheehan, M.; Cassidy, J.P.; Brady, J.; Ball, H.; Doherty, M.L.; Quinn, P.J.; Nicholas, R.A.J.; Markey, B.K. An Aetiopathological Study of Chronic Bronchopneumonia in Lambs in Ireland. Vet. J. 2007, 173, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.; Mariano, I.; Núñez, A.; Branco, S.; Fairfoul, G.; Nicholas, R. Atypical Non-Progressive Pneumonia in Goats. Vet. J. 2010, 183, 219–221. [Google Scholar] [CrossRef]
- Nicholas, R.A.J.; Ayling, R.D.; Rosales, S.R.; Myerscough, C. Investigation of Severe Coughing and Ill Thrift in Adult Hill Sheep Associated with Mycoplasma ovipneumoniae. Vet. Rec. Case Rep. 2015, 3, e000255. [Google Scholar] [CrossRef]
- Black, S.R.; Barker, I.K.; Mehren, K.G.; Crawshaw, G.J.; Rosendal, S.; Ruhnke, L.; Thorsen, J.; Carman, P.S. An Epizootic of Mycoplasma ovipneumoniae Infection in Captive Dall’s Sheep (Ovis Dalli Dalli). J. Wildl. Dis. 1988, 24, 627–635. [Google Scholar] [CrossRef]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; VanderSchalie, J.; Fischer, A.; Knowles, D.P.; Herndon, D.R.; Rurangirwa, F.R.; Weiser, G.C.; Srikumaran, S. Association of Mycoplasma ovipneumoniae Infection with Population-Limiting Respiratory Disease in Free-Ranging Rocky Mountain Bighorn Sheep (Ovis Canadensis Canadensis). J. Clin. Microbiol. 2008, 46, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Handeland, K.; Tengs, T.; Kokotovic, B.; Vikoren, T.; Ayling, R.D.; Bergsjo, B.; Sigurðardóttir, Ó.G.; Bretten, T. Mycoplasma ovipneumoniae—A Primary Cause of Severe Pneumonia Epizootics in the Norwegian Muskox (Ovibos moschatus) Population. PLoS ONE 2014, 9, e106116. [Google Scholar] [CrossRef] [Green Version]
- Highland, M.; Herndon, D.; Bender, S.; Hansen, L.; Gerlach, R.; Beckmen, K. Mycoplasma ovipneumoniae in Wildlife Species beyond Subfamily Caprinae. Emerg. Infect. Dis. 2018, 24, 2384–2386. [Google Scholar] [CrossRef]
- Rovani, E.R.; Beckmen, K.B.; Highland, M.A. Mycoplasma ovipneumoniae Associated with Polymicrobial Pneumonia in a Free-Ranging Yearling Barren Ground Caribou (Rangifer tarandus granti) from Alaska, USA. J. Wildl. Dis. 2019, 55, 733–736. [Google Scholar] [CrossRef] [PubMed]
- Wolff, P.L.; Blanchong, J.A.; Nelson, D.D.; Plummer, P.J.; McAdoo, C.; Cox, M.; Besser, T.E.; Muñoz-Gutiérrez, J.; Anderson, C.A. Detection of Mycoplasma ovipneumoniae in Pneumonic Mountain Goat (Oreamnos americanus) Kids. J. Wildl. Dis. 2019, 55, 206–212. [Google Scholar] [CrossRef]
- Shirkey, N.; Roug, A.; Besser, T.; Bleich, V.C.; Darby, N.; Dekelaita, D.; Galloway, N.L.; Gonzales, B.; Hughson, D.; Konde, L.; et al. Previously Unrecognized Exposure of Desert Bighorn Sheep (Ovis canadensis nelsoni) to Mycoplasma ovipneumoniae in the California Mojave Desert. J. Wildl. Dis. 2021, 57, 447–452. [Google Scholar] [CrossRef]
- Thirkell, D.; Spooner, R.K.; Jones, G.E.; Russell, W.C. Polypeptide and Antigenic Variability among Strains of Mycoplasma ovipneumoniae Demonstrated by SDS-PAGE and Immunoblotting. Vet. Microbiol. 1990, 21, 241–254. [Google Scholar] [CrossRef]
- Parham, K.; Churchward, C.P.; McAuliffe, L.; Nicholas, R.A.J.; Ayling, R.D. A High Level of Strain Variation within the Mycoplasma ovipneumoniae Population of the UK Has Implications for Disease Diagnosis and Management. Vet. Microbiol. 2006, 118, 83–90. [Google Scholar] [CrossRef]
- Maksimović, Z.; De la Fe, C.; Amores, J.; Gómez-Martín, Á.; Rifatbegović, M. Comparison of Phenotypic and Genotypic Profiles among Caprine and Ovine Mycoplasma ovipneumoniae Strains. Vet. Rec. 2017, 180, 180. [Google Scholar] [CrossRef]
- Jaÿ, M.; Ambroset, C.; Tricot, A.; Colin, A.; Tardy, F. Population Structure and Antimicrobial Susceptibility of Mycoplasma ovipneumoniae Isolates in France. Vet. Microbiol. 2020, 248, 108828. [Google Scholar] [CrossRef]
- Maksimović, Z.; De la Fe, C.; Rifatbegović, M. Assessment of in Vitro Growth Characteristics of Mycoplasma ovipneumoniae. Rev. Sci. Technol. Off. Int. Epiz. 2020, 39, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, W.; Hao, Y. Improving Mycoplasma ovipneumoniae Culture Medium by a Comparative Transcriptome Method. J. Vet. Sci. 2020, 21, e30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DaMassa, A.J.; Wakenell, P.S.; Brooks, D.L. Mycoplasmas of Goats and Sheep. J. Vet. Diagn. Investig. 1992, 4, 101–113. [Google Scholar] [CrossRef]
- Miles, R.J.; Agbanyim, C. Determination of Substrate Utilisation Rates of Mycoplasmas. In Methods in Molecular Biology, Mycoplasmas Protocols; Miles, R.J., Nicholas, R.A.J., Eds.; Humana Press: Totowa, NJ, USA, 1998; Volume 104, pp. 95–104. ISBN 0896035255. [Google Scholar]
- Quinlan, J.R.; Alley, M.R.; Clarke, J.K. In Vitro Sensitivity of New Zealand Strains of Mycoplasma ovipneumoniae to Some Antibiotics. N. Z. Vet. J. 2011, 23, 188–189. [Google Scholar] [CrossRef]
- Maksimović, Z.; Bačić, A.; Rifatbegović, M. Antimicrobial Susceptibility of Caprine and Ovine Mycoplasma ovipneumoniae Isolates. Microb. Drug Resist. 2020, 26, 1271–1274. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, R.A.J.; Ayling, R.D.; Loria, G.R. Ovine Mycoplasmal Infections. Small Rumin. Res. 2008, 76, 92–98. [Google Scholar] [CrossRef]
- Ionas, G.; AJ, M.; Alley, M.; Clarke, J.; Robinson, A.; Marshall, R. Colonisation of the Respiratory Tract of Lambs by Strains of Mycoplasma ovipneumoniae. Vet. Microbiol. 1985, 10, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Ionas, G.; Clarke, J.K.; Marshall, R.B. The Isolation of Multiple Strains of Mycoplasma ovipneumoniae from Individual Pneumonic Sheep Lungs. Vet. Microbiol. 1991, 29, 349–360. [Google Scholar] [CrossRef]
- Nicholas, R.A.J. Improvements in the Diagnosis and Control of Diseases of Small Ruminants Caused by Mycoplasmas. Small Rumin. Res. 2002, 45, 145–149. [Google Scholar] [CrossRef]
- Rifatbegović, M.; Maksimović, Z.; Hulaj, B. Mycoplasma ovipneumoniae Associated with Severe Respiratory Disease in Goats. Vet. Rec. 2011, 168, 565. [Google Scholar] [CrossRef]
- Lindström, L.; Tauni, F.A.; Vargmar, K. Bronchopneumonia in Swedish Lambs: A Study of Pathological Changes and Bacteriological Agents. Acta Vet. Scand. 2018, 60, 54. [Google Scholar] [CrossRef] [Green Version]
- Deeney, A.S.; Collins, R.; Ridley, A.M. Identification of Mycoplasma Species and Related Organisms from Ruminants in England and Wales during 2005–2019. BMC Vet. Res. 2021, 17, 325. [Google Scholar] [CrossRef]
- Cheng, C.; Jun, Q.; Qingling, M.; Zhengxiang, H.; Yu, M.; Xuepeng, C.; Zibing, C.; Jinsheng, Z.; Zaichao, Z.; Kuojun, C.; et al. Serological and Molecular Survey of Sheep Infected with Mycoplasma ovipneumoniae in Xinjiang, China. Trop. Anim. Health Prod. 2015, 47, 1641–1647. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Du, Y.Z.; Song, Y.P.; Zhou, P.; Chu, Y.F.; Wu, J.Y. Investigation of the Prevalence of Mycoplasma ovipneumoniae in Southern Xinjiang, China. J. Vet. Res. 2021, 65, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Maksimović, Z.; De la Fe, C.; Rifatbegović, M. Presence of Mycoplasmas in the Respiratory System of Small Ruminants Managed under an Extensive Production System. Turkish J. Vet. Anim. Sci. 2013, 37, 352–354. [Google Scholar] [CrossRef]
- Mousel, M.R.; White, S.N.; Herndon, M.K.; Herndon, D.R.; Taylor, J.B.; Becker, G.M.; Murdoch, B.M. Genes Involved in Immune, Gene Translation and Chromatin Organization Pathways Associated with Mycoplasma ovipneumoniae Presence in Nasal Secretions of Domestic Sheep. PLoS ONE 2021, 16, e0247209. [Google Scholar] [CrossRef] [PubMed]
- Fernández, S.; Galapero, J.; Rey, J.; Pérez, C.J.; Ramos, A.; Rosales, R.; Ayling, R.; Alonso, J.M.; Gómez, L. Investigations into the seasonal presence of Mycoplasma species in fattening lambs. Vet. J. 2016, 212, 80–82. [Google Scholar] [CrossRef] [PubMed]
- Herväs, J.; Méndez, A.; Gómez-Villamandos, J.C.; Villalba, E.; Díaz, E.; Cano, T.; Carrasco, L.; Padró, J.M.; Fernández, A.; Sierra, M.A. Etiologic and Pathologic Study of Respiratory Disease in Lambs from Intensive Breeding Facilities in Southern Spain. Zentralbl. Veterinarmed. B 1996, 43, 221–231. [Google Scholar]
- Kusiluka, L.J.; Kambarage, D.; Harrison, L.J.; Daborn, C.; Matthewman, R. Causes of Morbidity and Mortality in Goats in Morogoro District, Tanzania: The Influence of Management. Small Rumin. Res. 1998, 29, 167–172. [Google Scholar] [CrossRef]
- Ayling, R.D.; Nicholas, R.A.J. Mycoplasma Respiratory Infections. In Diseases of Sheep; Aitken, I.D., Ed.; Blackwell Publishing: Oxford, UK, 2007; pp. 231–235. ISBN 978-1-405-13414-9. [Google Scholar]
- Jones, G. The Pathogenicity of Some Ovine or Caprine Mycoplasmas in the Lactating Mammary Gland of Sheep and Goats. J. Comp. Pathol. 1985, 95, 305–318. [Google Scholar] [CrossRef]
- Goltz, J.P.; Rosendal, S.; McCraw, B.M.; Ruhnke, H.L. Experimental Studies on the Pathogenicity of Mycoplasma ovipneumoniae and Mycoplasma arginini for the Respiratory Tract of Goats. Can. J. Vet. Res. 1986, 50, 59–67. [Google Scholar]
- Mohan, K.; Obwolo, M.J.; Hill, F.W.G. Mycoplasma ovipneumoniae Infection in Zimbabwean Goats and Sheep. J. Comp. Pathol. 1992, 107, 73–79. [Google Scholar] [CrossRef]
- Martrenchar, A.; Bouchel, D.; Zoyem, N. Isolation and Experimental Studies of Mycoplasma Mycoides Subsp. Mycoides LC and Mycoplasma ovipneumoniae in Goats in Northern Cameroon. Small Rumin. Res. 1995, 16, 179–184. [Google Scholar] [CrossRef]
- Jones, G.E.; Gilmour, J.S.; Rae, A. Endobronchial Inoculation of Sheep with Pneumonic Lung-Tissue Suspensions and with the Bacteria and Mycoplasmas Isolated from Them. J. Comp. Pathol. 1978, 88, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Gilmour, J.S.; Jones, G.E.; Rae, A.G. Experimental Studies of Chronic Pneumonia of Sheep. Comp. Immunol. Microbiol. Infect. Dis. 1979, 1, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.; Jones, K.; Jacobson, B.T.; Schearer, J.; Adams, N.; Thornton, I.; Mosdal, C.; Jones, S.; Jutila, M.; Rynda-Apple, A.; et al. Experimental Infection of Specific-Pathogen-Free Domestic Lambs with Mycoplasma ovipneumoniae Causes Asymptomatic Colonization of the Upper Airways That Is Resistant to Antibiotic Treatment. Vet. Microbiol. 2022, 265, 109334. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Cassirer, E.F.; Highland, M.A.; Wolff, P.; Justice-Allen, A.; Mansfield, K.; Davis, M.A.; Foreyt, W. Bighorn Sheep Pneumonia: Sorting out the Cause of a Polymicrobial Disease. Prev. Vet. Med. 2013, 108, 85–93. [Google Scholar] [CrossRef]
- Cassirer, E.F.; Manlove, K.R.; Almberg, E.S.; Kamath, P.L.; Cox, M.; Wolff, P.; Roug, A.; Shannon, J.; Robinson, R.; Harris, R.B.; et al. Pneumonia in Bighorn Sheep: Risk and Resilience. J. Wildl. Manag. 2018, 82, 32–45. [Google Scholar] [CrossRef]
- Weyand, L.K.; Cassirer, E.F.; Kaufman, G.E.; Besser, T.E. Mycoplasma ovipneumoniae Strain Associated with Pneumonia Outbreaks in North American Bighorn Sheep. In Proceedings of the 20th Biennial Symposium of the Northern Wild Sheep and Goat Council, Moscow, Idaho and Pullman, Washington, DC, USA, 9–12 May 2016; pp. 89–97. [Google Scholar]
- Besser, T.E.; Cassirer, E.F.; Potter, K.A.; Lahmers, K.; Oaks, J.L.; Shanthalingam, S.; Srikumaran, S.; Foreyt, W.J. Epizootic Pneumonia of Bighorn Sheep Following Experimental Exposure to Mycoplasma ovipneumoniae. PLoS ONE 2014, 9, e110039. [Google Scholar] [CrossRef]
- Wolfe, L.L.; Diamond, B.; Spraker, T.R.; Sirochman, M.A.; Walsh, D.P.; Machin, C.M.; Bade, D.J.; Miller, M.W. A Bighorn Sheep Die-off in Southern Colorado Involving a Pasteurellaceae Strain That May Have Originated from Syntopic Cattle. J. Wildl. Dis. 2010, 46, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tang, C.; Wang, Y.; Zhang, H.; Yue, H. Genome Sequence of Mycoplasma ovipneumoniae Strain SC01. J. Bacteriol. 2011, 193, 5018. [Google Scholar] [CrossRef] [Green Version]
- Niang, M.; Rosenbusch, R.F.; Lopez-Virella, J.; Kaeberle, M.L. Expression of Functions by Normal Sheep Alveolar Macrophages and Their Alteration by Interaction with Mycoplasma ovipneumoniae. Vet. Microbiol. 1997, 58, 31–43. [Google Scholar] [CrossRef]
- Niang, M.; Rosenbusch, R.F.; Andrews, J.J.; Lopez-Virella, J.; Kaeberle, M.L. Occurrence of Autoantibodies to Cilia in Lambs with a “Coughing Syndrome”. Vet. Immunol. Immunopathol. 1998, 64, 191–205. [Google Scholar] [CrossRef]
- Miles, R.J.; Taylor, R.R.; Varsani, H. Oxygen Upake and H2O2 Production by Fermentative Mycoplasma Spp. J. Med. Microbiol. 1991, 34, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Niang, M.; Rosenbusch, R.F.; Debey, M.C.; Niyo, Y.; Andrews, J.J.; Kaeberle, M.L. Field Isolates of Mycoplasma ovipneumoniae Exhibit Distinct Cytopathic Effects in Ovine Tracheal Organ Cultures. J. Vet. Med. Ser. A Physiol. Pathol. Clin. Med. 1998, 45, 29–40. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, W.; Ajuwape, A.T.P.; Rosenbusch, R.F. Global Suppression of Mitogen-Activated Ovine Peripheral Blood Mononuclear Cells by Surface Protein Activity from Mycoplasma ovipneumoniae. Vet. Immunol. Immunopathol. 2010, 136, 116–121. [Google Scholar] [CrossRef]
- Niang, M.; Rosenbusch, R.F.; Andrews, J.J.; Kaeberle, M.L. Demonstration of a Capsule on Mycoplasma ovipneumoniae. Am. J. Vet. Res. 1998, 59, 557–562. [Google Scholar] [PubMed]
- Einarsdottir, T.; Gunnarsson, E.; Hjartardottir, S. Icelandic Ovine Mycoplasma ovipneumoniae Are Variable Bacteria That Induce Limited Immune Responses in Vitro and in Vivo. J. Med. Microbiol. 2018, 67, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Song, F.; Li, Y.; Xue, D.; Deng, G.; Li, M.; Liu, X.; Wang, Y. Capsular Polysaccharide Is a Main Component of Mycoplasma ovipneumoniae in the Pathogen-Induced Toll-Like Receptor-Mediated Inflammatory Responses in Sheep Airway Epithelial Cells. Mediat. Inflamm. 2017, 2017, 9891673. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Song, F.; Li, Y.; Xue, D.; Zhao, N.; Zhang, J.; Deng, G.; Li, M.; Liu, X.; Wang, Y. Capsular Polysaccharide of Mycoplasma ovipneumoniae Induces Sheep Airway Epithelial Cell Apoptosis via ROS-Dependent JNK/P38 MAPK Pathways. Oxid. Med. Cell. Longev. 2017, 2017, 6175841. [Google Scholar] [CrossRef] [Green Version]
- McAuliffe, L.; Ellis, R.J.; Miles, K.; Ayling, R.D.; Nicholas, R.A.J. Biofilm Formation by Mycoplasma Species and Its Role in Environmental Persistence and Survival. Microbiology 2006, 152, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Glew, M.D.; Papazisi, L.; Poumarat, F.; Bergonier, D.; Rosengarten, R.; Citti, C. Characterization of a Multigene Family Undergoing High-Frequency DNA Rearrangements and Coding for Abundant Variable Surface Proteins in Mycoplasma agalactiae. Infect. Immun. 2000, 68, 4539–4548. [Google Scholar] [CrossRef] [Green Version]
- Wise, K.S.; Foecking, M.F.; Röske, K.; Lee, Y.J.; Lee, Y.M.; Madan, A.; Calcutt, M.J. Distinctive Repertoire of Contingency Genes Conferring Mutation-Based Phase Variation and Combinatorial Expression of Surface Lipoproteins in Mycoplasma capricolum Subsp. Capricolum of the Mycoplasma mycoides Phylogenetic Cluster. J. Bacteriol. 2006, 188, 4926–4941. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Miles, R.J.; Nicholas, R.A.J.; Kelly, D.P.; Wood, A.P. Isolation and Immunological Detection of Mycoplasma ovipneumoniae in Sheep with Atypical Pneumonia, and Lack of a Role for Mycoplasma arginini. Res. Vet. Sci. 2008, 84, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Volokhov, D.V.; Simonyan, V.; Davidson, M.K.; Chizhikov, V.E. RNA Polymerase Beta Subunit (RpoB) Gene and the 16S-23S RRNA Intergenic Transcribed Spacer Region (ITS) as Complementary Molecular Markers in Addition to the 16S RRNA Gene for Phylogenetic Analysis and Identification of the Species of the Family Mycoplasm. Mol. Phylogenet. Evol. 2012, 62, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, B.; Uhlén, M.; Johansson, K.E. Phylogeny of Some Mycoplasmas from Ruminants Based on 16S RRNA Sequences and Definition of a New Cluster within the Hominis Group. Int. J. Syst. Bacteriol. 1996, 46, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ma, C.J.; Liu, X.M.; Zhao, D.; Xu, Q.C.; Wang, Y.J. Molecular Cloning of HSP70 in Mycoplasma ovipneumoniae and Comparison with That of Other Mycoplasmas. Genet. Mol. Res. 2011, 10, 834–848. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Han, X.; Yue, H.; Tang, C. Molecular Characterization of the Heat Shock Protein 70 Gene in Mycoplasma ovipneumoniae. Vet. J. 2013, 198, 299–301. [Google Scholar] [CrossRef]
- Citti, C.; Dordet-Frisoni, E.; Nouvel, L.X.; Kuo, C.H.; Baranowski, E. Horizontal Gene Transfers in Mycoplasmas (Mollicutes). Curr. Issues Mol. Biol. 2018, 29, 3–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Huang, H.B.; Cheng, C.; Wang, R.C.; Zheng, J.Q.; Hao, Y.Q.; Zhang, W.G. Complete Genome Sequence of Mycoplasma ovipneumoniae Strain NM2010, Which Was Isolated from a Sheep in China. J. Integr. Agric. 2014, 13, 2562–2563. [Google Scholar] [CrossRef]
- Bridgeman, B.J.; Gupta, S.K.; Murray, A.; Dukkipati, V.S.R.; Altermann, E.; Wedlock, D.N. Draft Genome Sequence of a New Zealand Isolate of Mycoplasma ovipneumoniae. Microbiol. Resour. Announc. 2020, 9, e01375-19. [Google Scholar] [CrossRef] [Green Version]
- Genome List—Genome—NCBI. Available online: https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/2772/ (accessed on 12 November 2022).
- Mesomycoplasma Ovipneumoniae (ID 2772)—Genome—NCBI. Available online: https://www.ncbi.nlm.nih.gov/genome/?term=mycoplasma+ovipneumoniae (accessed on 12 November 2022).
- Ionas, G.; Norman, N.G.; Clarke, J.K.; Marshall, R.B. A Study of the Heterogeneity of Isolates of Mycoplasma ovipneumoniae from Sheep in New Zealand. Vet. Microbiol. 1991, 29, 339–347. [Google Scholar] [CrossRef]
- Harvey, M.E.; Morrical, D.G.; Rosenbusch, R.F. Sheep Flock Infections with Mycoplasma ovipneumoniae Involve Multiple Strains. Small Rumin. Res. 2007, 73, 287–290. [Google Scholar] [CrossRef]
- Mew, A.J.; Ionas, G.; Clarke, J.K.; Robinson, A.J.; Marshall, R.B. Comparison of Mycoplasma ovipneumoniae Isolates Using Bacterial Restriction Endonuclease DNA Analysis and SDS-PAGE. Vet. Microbiol. 1985, 10, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Chu, Y.; Gao, P.; Zhao, P.; He, Y.; Yan, G.; Lu, Z. Molecular Typing and Immunoblotting of 17 Mycoplasma ovipneumoniae Isolates from China. Wei Sheng Wu Xue Bao 2011, 51, 1421–1426. [Google Scholar] [PubMed]
- Miles, R.J.; Nicholas, R.A.J. Identification by Culture, PCR, and Immunohistochemistry of Mycoplasmas and Their Molecular Typing in Sheep and Lamb Lungs with Pneumonia in Eastern Turkey. Trop. Anim. Health Prod. 2013, 45, 1525–1531. [Google Scholar] [CrossRef] [Green Version]
- Cassirer, E.F.; Manlove, K.R.; Plowright, R.K.; Besser, T.E. Evidence for Strain-Specific Immunity to Pneumonia in Bighorn Sheep. J. Wildl. Manag. 2017, 81, 133–143. [Google Scholar] [CrossRef] [Green Version]
- Kamath, P.L.; Manlove, K.; Cassirer, E.F.; Cross, P.C.; Besser, T.E. Genetic Structure of Mycoplasma ovipneumoniae Informs Pathogen Spillover Dynamics between Domestic and Wild Caprinae in the Western United States. Sci. Rep. 2019, 9, 15318. [Google Scholar] [CrossRef] [Green Version]
- Jiang, F.; He, J.; Navarro-Alvarez, N.; Xu, J.; Li, X.; Li, P.; Wu, W. Elongation Factor Tu and Heat Shock Protein 70 Are Membrane-Associated Proteins from Mycoplasma ovipneumoniae Capable of Inducing Strong Immune Response in Mice. PLoS ONE 2016, 11, e0161170. [Google Scholar] [CrossRef] [Green Version]
- Dupuy, V.; Verdier, A.; Thiaucourt, F.; Manso-Silván, L. A Large-Scale Genomic Approach Affords Unprecedented Resolution for the Molecular Epidemiology and Evolutionary History of Contagious Caprine Pleuropneumonia. Vet. Res. 2015, 46, 74. [Google Scholar] [CrossRef] [Green Version]
- Miles, R.J.; Nicholas, R.A. Introduction. In Methods in Molecular Biology, Mycoplasmas Protocols; Miles, R.J., Nicholas, R.A.J., Eds.; Humana Press: Totowa, NJ, USA, 1998; Volume 104, pp. 1–5. ISBN 0896035255. [Google Scholar]
- Oaks, J.L.; Besser, T.; Cassirer, F.; Baszler, T.V.; Yamada, C. Diagnosis of Mycoplasma ovipneumoniae in Bighorn Sheep. In Proceedings of the 17th Biennial Symposium Northern Wild Sheep and Goat Council, Hood River, OR, USA, 7–11 June 2010; pp. 65–66. [Google Scholar]
- Weiser, G.C.; Drew, M.L.; Frances Cassirer, E.; Ward, A.C.S. Detection of Mycoplasma ovipneumoniae and M. arginini in Bighorn Sheep Using Enrichment Culture Coupled with Genus- and Species-Specific Polymerase Chain Reaction. J. Wildl. Dis. 2012, 48, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.S.; Beddow, J.G.; Manso-Silván, L.; Maglennon, G.A.; Rycroft, A.N. Selective Medium for Culture of Mycoplasma hyopneumoniae. Vet. Microbiol. 2016, 195, 158–164. [Google Scholar] [CrossRef]
- Nicholas, R.; Baker, S. Recovery of Mycoplasmas from Animals. In Methods in Molecular Biology, Mycoplasmas Protocols; Miles, R.J., Nicholas, R.A.J., Eds.; Humana Press: Totowa, NJ, USA, 1998; Volume 104, pp. 37–43. ISBN 0896035255. [Google Scholar]
- Patel, H.; Mackintosh, D.; Ayling, R.D.; Nicholas, R.A.J.; Fielder, M.D. A Novel Medium Devoid of Ruminant Peptone for High Yield Growth of Mycoplasma ovipneumoniae. Vet. Microbiol. 2008, 127, 309–314. [Google Scholar] [CrossRef]
- Atlas, R.M. Handbook of Microbiological Media; CRC Press Taylor and Francis Group: Boca Raton, FL, USA, 2010; ISBN 9780429130496. [Google Scholar]
- Tully, J.G. Culture Medium Formulation for Primary Isolation and Maintenance of Mollicutes. In Molecular and Diagnostic Procedures in Mycoplasmology, Molecular Characterization; Razin, S., Tully, J.G., Eds.; Academic Press: San Diego, CA, USA, 1995; Volume 1, pp. 33–39. ISBN 9780080536781. [Google Scholar]
- Ackerman, M.G.; Schneider, D.A.; Baker, K.N.K.; Besser, T.E. Comparison of Three Methods of Enumeration for Mycoplasma ovipneumoniae. J. Microbiol. Methods 2019, 165, 105700. [Google Scholar] [CrossRef] [PubMed]
- Lefèvre, P.C.; Jones, G.E.; Ojo, M.O. Pulmonary Mycoplasmoses Of Small Ruminants. Rev. Sci. Technol. 1987, 6, 713–799. [Google Scholar]
- Jennings-Gaines, J.E.; Edwards, W.H.; Wood, M.E.; Fox, K.A.; Wolfe, L.L.; Miller, M.W.; Killion, H.J. An Improved Method for Culturing Mycoplasma ovipneumoniae from Field Samples. In Proceedings of the 20th Biennial Symposium of the Northern Wild Sheep and Goat Council, Moscow, Idaho and Pullman, Washington, DC, USA, 9–12 May 2016; pp. 83–88. [Google Scholar]
- Thiaucourt, F.; Bölske, G.; Leneguersh, B.; Smith, D.; Wesonga, H. Diagnosis and Control of Contagious Caprine Pleuropneumonia. Rev. Sci. Technol. 1996, 15, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Haziroglu, R.; Diker, K.S.; Turkarslan, J.; Gulbahar, M.Y. Detection of Mycoplasma ovipneumoniae and Pasteurella Haemolytica Antigens by an Immunoperoxidase Technique in Pneumonic Ovine Lungs. Vet. Pathol. 1996, 33, 74–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAuliffe, L.; Hatchell, F.M.; Ayling, R.D.; King, A.I.M.; Nicholas, R.A.J. Detection of Mycoplasma ovipneumoniae in Pasteurella-Vaccinated Sheep Flocks with Respiratory Disease in England. Vet. Rec. 2003, 153, 687–688. [Google Scholar] [CrossRef]
- Yang, F.; Han, X.; Tang, C.; Yue, H. A Hsp70 Gene-Based PCR for Detection of Mycoplasma ovipneumoniae. J. Anim. Vet. Adv. 2013, 12, 1495–1497. [Google Scholar]
- McAuliffe, L.; Ellis, R.J.; Lawes, J.R.; Ayling, R.D.; Nicholas, R.A.J. 16S rDNA PCR and Denaturing Gradient Gel Electrophoresis; a Single Generic Test for Detecting and Differentiating Mycoplasma Species. J. Med. Microbiol. 2005, 54, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Dao, X.; Rodriguez-Palacios, A.; Feng, X.; Tang, C.; Yang, X.; Yue, H. A Real-Time PCR for Detection and Quantification of Mycoplasma ovipneumoniae. J. Vet. Med. Sci. 2014, 76, 1631–1634. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, P.K.; Shanthalingam, S.; Dassanayake, R.P.; Subramaniam, R.; Herndon, C.N.; Knowles, D.P.; Rurangirwa, F.R.; Foreyt, W.; Wayman, G.; Marciel, A.M.; et al. Transmission of Mannheimia haemolytica from Domestic Sheep (Ovis aries) to Bighorn Sheep (Ovis canadensis): Unequivocal Demonstration with Green Fluorescent Protein-Tagged Organisms. J. Wildl. Dis. 2010, 46, 706–717. [Google Scholar] [CrossRef]
- Noll, L.W.; Highland, M.A.; Hamill, V.A.; Tsui, W.; Porter, E.P.; Lu, N.; Sebhatu, T.; Brown, S.; Herndon, D.R.; Grossman, P.C.; et al. Development of a Real-time PCR Assay for Detection and Differentiation of Mycoplasma ovipneumoniae and a Novel Respiratory-associated Mycoplasma Species in Domestic Sheep and Goats. Transbound. Emerg. Dis. 2022, 69, 1460–1468. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, J.; Zhu, M.; Xu, M.; Shi, F. Loop-Mediated Isothermal Amplification-Lateral-Flow Dipstick (LAMP-LFD) to Detect Mycoplasma ovipneumoniae. World, J. Microbiol. Biotechnol. 2019, 35, 31. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Zhang, L.; Jiang, F.; Wang, B.; Lv, T.; Zeng, Z.; Wu, W.; Sun, S. MnO2 Microsphere Absorbing Cy5-Labeled Single Strand DNA Probe Serving as Powerful Biosensor for Effective Detection of Mycoplasma ovipneumoniae. Sens. Actuators B Chem. 2017, 244, 1138–1144. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.; Sun, X.; Liu, L.; Hao, X.; Wang, J.; Yuan, W. Development and Validation of the Isothermal Recombinase Polymerase Amplification Assays for Rapid Detection of Mycoplasma ovipneumoniae in Sheep. BMC Vet. Res. 2020, 16, 172. [Google Scholar] [CrossRef]
- Spergser, J.; Hess, C.; Loncaric, I.; Ramírez, A.S. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Is a Superior Diagnostic Tool for the Identification and Differentiation of Mycoplasmas Isolated from Animals. J. Clin. Microbiol. 2019, 57, e00316-19. [Google Scholar] [CrossRef]
- Mitchell, S.L.; Simner, P.J. Next-Generation Sequencing in Clinical Microbiology: Are We There Yet? Clin. Lab. Med. 2019, 39, 405–418. [Google Scholar] [CrossRef]
- Giangaspero, M.; Nicholas, R.A.J.; Hlusek, M.; Bonfini, B.; Osawa, T.; Orusa, R.; Tatami, S.; Takagi, E.; Moriya, H.; Okura, N.; et al. Seroepidemiological Survey of Sheep Flocks from Northern Japan for Mycoplasma ovipneumoniae and Mycoplasma agalactiae. Trop. Anim. Health Prod. 2012, 44, 395–398. [Google Scholar] [CrossRef]
- Zarnke, R.L.; Røsendal, S. Serologic Survey for Mycoplasma ovipneumoniae in Free-Ranging Dall Sheep (Ovis Dalli) in Alaska. J. Wildl. Dis. 1989, 25, 612–613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, G.; Zhao, J.M.; Hou, G.Y.; Zhou, H.L. Seroprevalence and Molecular Detection of Mycoplasma ovipneumoniae in Goats in Tropical China. Trop. Anim. Health Prod. 2014, 46, 1491–1495. [Google Scholar] [CrossRef] [PubMed]
- Niang, M.; Rosenbusch, R.F.; Lopez-Virella, J.; Kaeberle, M.L. Differential Serologic Response to Mycoplasma ovipneumoniae and Mycoplasma arginini in Lambs Affected with Chronic Respiratory Disease. J. Vet. Diagn. Investig. 1999, 11, 34–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirkell, D.; Spooner, R.K.; Jones, G.E.; Russell, W.C.; Voice, M.W. Cross-Reacting Antigens between Mycoplasma ovipneumoniae and Other Spices of Mycoplasma of Animal Origin, Shown by ELISA and Immunoblotting with Reference Antisera. Vet. Microbiol. 1991, 26, 249–261. [Google Scholar] [CrossRef]
- Hannan, P.C.T. Guidelines and Recommendations for Antimicrobial Minimum Inhibitory Concentration (MIC) Testing against Veterinary Mycoplasma Species. Vet. Res. 2000, 31, 373–395. [Google Scholar] [CrossRef] [Green Version]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma Spp. Microbiol. Spectr. 2018, 6, 6.4.07. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Casebolt, D.; Hill, N. Use of intra-nasal antibiotics as an aid to clearing Mycoplasma ovipneumoniae carriage by domestic sheep. In Proceedings of the 21st Biennial Symposium of the Northern Wild Sheep and Goat Council, Whitefish, MT, USA, 21–24 May 2018; p. 118. [Google Scholar]
- Naccari, V.; Giofre, F.; Naccari, F. Tulathromycin in the Treatment of Respiratory Infections in Sheep. Int. J. Anim. Veter. Adv. 2015, 7, 34–39. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, CLSI Supplement M100, 30th ed.; CLSI: Wayne, PA, USA, 2020; ISBN 978168440669. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing. MIC Distributions and Epidemiological Cut-off Value (ECOFF) Setting. Available online: https://www.eucast.org/eucastsops/ (accessed on 12 November 2022).
- World Organization for Animal Health, OIE List of Antimicrobials of Veterinary Importance 2021. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 12 November 2022).
- Dudek, K.; Sevimli, U.; Migliore, S.; Jafarizadeh, A.; Loria, G.R.; Nicholas, R.A.J. Vaccines for Mycoplasma Diseases of Small Ruminants: A Neglected Area of Research. Pathogens 2022, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.C.; Lahmers, K.K.; Barrington, G.M.; Parish, S.M.; Kilzer, K.; Baker, K.; Besser, T.E. Safety and Immunogenicity of a Mycoplasma ovipneumoniae Bacterin for Domestic Sheep (Ovis aries). PLoS ONE 2014, 9, e95698. [Google Scholar] [CrossRef]
Animal | Geographic Location | Genus | Subfamily | Family | Ref. |
---|---|---|---|---|---|
Dall sheep (Ovis dalli dalli) | Toronto, Canada | Ovis | Caprinae | Bovidae | [9] |
Bighorn sheep (Ovis canadensis canadensis) | Idaho, Oregon, Washington, USA | Ovis | Caprinae | Bovidae | [10] |
Norwegian muskox (Ovibos moschatus) | Norway, Europe | Ovibos | Caprinae | Bovidae | [11] |
Mountain goat (Oreamnos americanus) | Nevada, USA | Oreamnos | Caprinae | Bovidae | [14] |
Desert Bighorn Sheep (Ovis canadensis nelsoni) | California, USA | Ovis | Caprinae | Bovidae | [15] |
Moose (Alces alces) | Alaska, USA | Alces | Capreolinae | Cervidae | [12] |
Caribou (Rangifer tarandus) | Alaska, USA | Rangifer | Capreolinae | Cervidae | [12] |
Mule deer (Odocoileus hemionus) | Arizona, USA | Odocoileus | Capreolinae | Cervidae | [12] |
White-tailed deer (Odocoileus virginianus) | Midwest region of the United States | Odocoileus | Capreolinae | Cervidae | [12] |
Barren-ground caribou (Rangifer tarandus granti) | Alaska, USA | Rangifer | Capreolinae | Cervidae | [13] |
M. ovipneumoniae Strain | SC01 (Goat, China) | TC 4 (Goat, China) | NM2010 (Sheep, China) | 90 (Sheep, New Zealand) | 14811 (Sheep, France) | ATCC 29419 | Type Strain Y98 | 274 (Goat, B&H) |
---|---|---|---|---|---|---|---|---|
Accession No. | NZ_ AFHO01000010.1 | NZ_ JOTH01000001.1 | NZ_ JAKV01000001.1 | NZ_ VZDP01000002.1 | NZ_ JFAD00000000.1 | NZ_ AGRE01000050.1 | NZ_ KV765937.1 | NZ_ CP079199.1 |
Genome size (bp) | 1,020,601 | 996,705 | 1,084,159 | 1,031,345 | 1,071,500 | 1,020,200 | 1,038,480 | 1,081,404 |
GC content (%) | 28.85 | 30.2 | 29.14 | 29 | 29.2 | 29.2 | 29.5 | 28.8 |
Number of genes (total) | 750 | 792 | 772 | 771 | 769 | 788 | 817 | 778 |
Total number of CDSs | 715 | 757 | 737 | 722 | 734 | 752 | 782 | 743 |
CDSs (with protein) | 693 | 720 | 715 | 697 | 716 | 709 | 717 | 735 |
RNA genes | 35 | 35 | 35 | 49 | 35 | 36 | 35 | 35 |
rRNAs | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
tRNAs | 30 | 30 | 30 | 44 | 30 | 31 | 30 | 30 |
Other RNA | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Pseudogenes | 22 | 37 | 22 | 25 | 18 | 43 | 65 | 27 |
Antimicrobial Agent | Animal (Number of Isolates Tested) | Geographical Origin and Year of Isolation | MIC Range (μg/mL) | Ref. | |
---|---|---|---|---|---|
Fluoroquinolones | Enrofloxacin | Sheep (28) | France, 2007–2018 | ≤0.0625–0.125 | [19] |
Sheep (12) | BH, 2009 | <0.03–0.125 | [25] | ||
Sheep (4) | UK, 2010 | <0.12 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.03–4.00 | [2] | ||
Goat (28) | France, 2012–2017 | ≤0.0625–0.25 | [19] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | <0.03–0.5 | [25] | ||
Ciprofloxacin | Sheep (12) | BH, 2009 | <0.03 | ||
Sheep (27) | UK, 2003–2004 | <0.12–2 | [2] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | <0.03–0.5 | [25] | ||
Norfloxacin | Sheep (12) | BH, 2009 | <0.03–0.25 | ||
Sheep (27) | UK, 2003–2004 | <0.12–32 | [2] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | 0.0625–8 | [25] | ||
Danofloxacin | Sheep (4) | UK, 2010 | <0.12 | [8] | |
Sheep (27) | UK, 2003–2004 | <0.06–8 | [2] | ||
Marbofloxacin | Sheep (4) | UK, 2010 | <0.12 | [8] | |
Aminoglycosides | Gentamicin | Sheep (12) | BH, 2009 | 0.25–8 | [25] |
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | 0.125–2 | |||
Spectinomycin | Sheep (28) | France, 2007–2018 | 2–8 | [19] | |
Sheep (12) | BH, 2009 | 0.5–4 | [25] | ||
Sheep (4) | UK, 2010 | 1–2 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.5–64 | [2] | ||
Goat (28) | France, 2012–2017 | 2–4 | [19] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | 0.5–128 | [25] | ||
Streptomycin | Sheep (40) | New Zealand, 1975 | 6.2–>100 | [24] | |
Tetracycline | Oxytetracycline | Sheep (28) | France, 2007–2018 | ≤0.0625–4 | [19] |
Sheep (12) | BH, 2009 | 0.125–0.25 | [25] | ||
Sheep (4) | UK, 2010 | <0.12 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.06–8 | [2] | ||
Sheep (40) | New Zealand, 1975 | 0.25–1.5 | [24] | ||
Goat (28) | France, 2012–2017 | ≤0.0625–1 | [19] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | 0.0625–32 | [25] | ||
Macrolide | Tylosin | Sheep (12) | BH, 2009 | <0.03–0.25 | |
Sheep (4) | UK, 2010 | <0.12–0.25 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.06–>64 | [2] | ||
Sheep (40) | New Zealand, 1975 | 0.1–6.2 | [24] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | <0.03–128 | [25] | ||
Erythromycin | Sheep (4) | UK, 2010 | 0.25–1 | [8] | |
Sheep (27) | UK, 2003–2004 | 8–32 | [2] | ||
Sheep (40) | New Zealand, 1975 | 62–>1000 | [24] | ||
Tilmicosin | Sheep (28) | France, 2007–2018 | 2–32 | [19] | |
Sheep (4) | UK, 2010 | 1–2 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.25–>64 | [2] | ||
Goats (28) | France, 2012–2017 | 2–≥16 | [19] | ||
Tulathromycin | Sheep (4) | UK, 2010 | 0.5 | [8] | |
Phenicol | Florfenicol | Sheep (28) | France, 2007–2018 | 2–8 | [19] |
Sheep (12) | BH, 2009 | 0.5–4 | [25] | ||
Sheep (4) | UK, 2010 | 2–<32 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.5–16 | [2] | ||
Goat (28) | France, 2012–2017 | 2–8 | [19] | ||
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | <0.03–8 | [25] | ||
Chloramphenicol | Sheep (4) | UK, 2010 | 8 | [8] | |
Sheep (27) | UK, 2003–2004 | 1–32 | [2] | ||
Sheep (40) | New Zealand, 1975 | 1.5–100 | [24] | ||
Pleuromutilin | Tiamulin | Sheep (12) | BH, 2009 | 0.125–0.5 | [25] |
Goat (12) | BH, 2010, 2011, 2015; Republic of Kosovo, 2008 | <0.03–0.5 | |||
Lincosamide | Clindamycin | Sheep (27) | UK, 2003–2004 | <0.12–2 | [2] |
Lincomycin | Sheep (28) | France, 2007–2018 | 1–4 | [19] | |
Sheep (4) | UK, 2010 | 0.5 | [8] | ||
Sheep (27) | UK, 2003–2004 | 0.25–8.00 | [2] | ||
Goat (28) | France, 2012–2017 | 1–≥16 | [19] | ||
Aminocoumarins | Novobiocin | Sheep (40) | New Zealand, 1975 | 1.5–25 | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maksimović, Z.; Rifatbegović, M.; Loria, G.R.; Nicholas, R.A.J. Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens 2022, 11, 1477. https://doi.org/10.3390/pathogens11121477
Maksimović Z, Rifatbegović M, Loria GR, Nicholas RAJ. Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens. 2022; 11(12):1477. https://doi.org/10.3390/pathogens11121477
Chicago/Turabian StyleMaksimović, Zinka, Maid Rifatbegović, Guido Ruggero Loria, and Robin A. J. Nicholas. 2022. "Mycoplasma ovipneumoniae: A Most Variable Pathogen" Pathogens 11, no. 12: 1477. https://doi.org/10.3390/pathogens11121477
APA StyleMaksimović, Z., Rifatbegović, M., Loria, G. R., & Nicholas, R. A. J. (2022). Mycoplasma ovipneumoniae: A Most Variable Pathogen. Pathogens, 11(12), 1477. https://doi.org/10.3390/pathogens11121477