Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization
Abstract
:1. Introduction
2. Case Report
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethical Approval
References
- Suciu, M.; Serban, O.; Iacob, G.; Lucan, C.; Badea, R. Severe Acute Epididymo-Orchitis Complicated with Abscess and Testicular Necrosis—Case Report. Ultrasound Int. Open 2017, 3, E45–E47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, S.; Wagh, D.D.; Kashikar, S.; Lonkar, Y. A case of acute epididymo-orchitis due to Pseudomonas aeruginosa presenting as ARDS in an immunocompetent host. Asian Pac. J. Trop. Biomed. 2011, 1, 83–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CLSI. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria, 3rd ed.; CLSI Guideline M45; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Zaidenstein, R.; Sadik, C.; Lerner, L.; Valinsky, L.; Kopelowitz, J.; Yishai, R.; Agmon, V.; Parsons, M.; Bopp, C.; Weinberger, M. Clinical characteristics and molecular subtyping of Vibrio vulnificus illnesses, Israel. Emerg. Infect. Dis. 2008, 14, 1875–1882. [Google Scholar] [CrossRef] [PubMed]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, C.S.; Handley, K.M.; Wrighton, K.C.; Frischkorn, K.R.; Thomas, B.C.; Banfield, J.F. Short-read assembly of full-length 16S amplicons reveals bacterial diversity in subsurface sediments. PLoS ONE 2013, 8, e56018. [Google Scholar] [CrossRef] [Green Version]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-H.; Ha, S.-M.; Kwon, S.; Lim, J.; Kim, Y.; Seo, H.; Chun, J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017, 67, 1613–1617. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [Green Version]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Kabiri, M.; Barkat, A.; El Ajaje, H.; Allali, N.; Dafiri, R.; Lamdouar-Bouazzaoui, N. Neonatal epididymo-orchitis caused by Pseudomonas aeruginosa: A case report. Cases J. 2010, 3, 44. [Google Scholar] [CrossRef]
- Rajagopal, A.S. Pseudomonas orchitis in puberty. Int. J. STD AIDS 2004, 15, 707–708. [Google Scholar] [CrossRef] [PubMed]
- Kashiwagi, B.; Okugi, H.; Morita, T.; Kato, Y.; Shibata, Y.; Yamanaka, H. Acute epididymo-orchitis with abscess formation due to Pseudomonas aeruginosa: Report of 3 cases. Hinyokika Kiyo. 2000, 46, 915–918. [Google Scholar] [PubMed]
- Papadakis, K.A.; Sriram, P.M.; Smythe, C.M. Acute epididymo-orchitis due to Pseudomonas aeruginosa. Eur. J. Clin. Microbiol. Infect. Dis. 1997, 16, 476–477. [Google Scholar] [CrossRef] [PubMed]
- Roland, P.S.; Stroman, D.W. Microbiology of acute otitis externa. Laryngoscope 2002, 112, 1166–1177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, L.L.; Dajcs, J.J.; McLean, C.H.; Bartell, J.G.; Stroman, D.W. Pseudomonas otitidis sp. nov., isolated from patients with otic infections. Int. J. Syst. Evol. Microbiol. 2006, 56 Pt 4, 709–714. [Google Scholar] [CrossRef] [Green Version]
- Saber, F.M.A.; Abdelhafez, A.A.; Hassan, E.A.; Ramadan, E.M. Characterization of fluorescent pseudomonads isolates and their efficiency on the growth promotion of tomato plant. Ann. Agric. Sci. 2015, 60, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Singh, D.; Kesavan, A.K.; Kaur, R. Molecular characterization and antimicrobial susceptibility of bacterial isolates present in tap water of public toilets. Int. Health 2020, 12, 472–483. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Sasaki, M.; Aoki, K.; Nagasawa, T.; Murakami, H.; Ishii, M.; Shibuya, K.; Morita, T.; Ishii, Y.; Tateda, K. Complete whole-genome sequence of the novel Pseudomonas species strain TUM18999, isolated from a patient with a burn wound in Japan. J. Glob. Antimicrob. Resist. 2021, 24, 395–397. [Google Scholar] [CrossRef]
- Thaller, M.C.; Borgianni, L.; Di Lallo, G.; Chong, Y.; Lee, K.; Dajcs, J.; Stroman, D.; Rossolini, G.M. Metallo-beta-lactamase production by Pseudomonas otitidis: A species-related trait. Antimicrob. Agents Chemother. 2011, 55, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borgianni, L.; De Luca, F.; Thaller, M.C.; Chong, Y.; Rossolini, G.M.; Docquier, J.-D. Biochemical characterization of the POM-1 metallo-β-lactamase from Pseudomonas otitidis. Antimicrob. Agents Chemother. 2015, 59, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Vieira, T.R.; Sambrano, G.E.; Da Silva, N.M.V.; Vasconcelos, P.C.; De Oliveira, E.F.C.; De Oliveira, C.J.B.; Cibulski, S.P.; Cardoso, M. In-depth genomic characterization of a meropenem-nonsusceptible pseudomonas otitidis strain contaminating chicken carcass. Acta Sci. Vet. 2020, 48, 1743–1748. [Google Scholar] [CrossRef]
- Naguib, M.M.; Khairalla, A.S.; El-Gendy, A.O.; Elkhatib, W.F. Isolation and characterization of mercury-resistant bacteria from wastewater sources in Egypt. Can. J. Microbiol. 2019, 65, 308–321. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.H.-Y.; Chan, E.W.C.; Chen, S. Isolation of carbapenem-resistant Pseudomonas spp. from food. J. Glob. Antimicrob. Resist. 2015, 3, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, V.; Kumar, A. Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int. Biodeterior. Biodegrad. 2011, 65, 961–971. [Google Scholar] [CrossRef]
- Ibrahim, A.; Elsalam, H. Biodegradation of Anionic Surfactants (SDS) by Bacteria Isolated from Waste Water in Taif Governate. Annu. Res. Rev. Biol. 2018, 26, 1–13. [Google Scholar] [CrossRef]
- Dasgupta, D.; Ghosh, R.; Sengupta, T.K. Biofilm-mediated enhanced crude oil degradation by newly isolated pseudomonas species. ISRN Biotechnol. 2013, 2013, 250749. [Google Scholar] [CrossRef] [Green Version]
- Motoshima, M.; Yanagihara, K.; Fukushima, K.; Matsuda, J.; Sugahara, K.; Hirakata, Y.; Yamada, Y.; Kohno, S.; Kamihira, S. Rapid and accurate detection of Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis targeting gyrB gene. Diagn. Microbiol. Infect. Dis. 2007, 58, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, S.K.; Seo, Y.H.; Kim, M.S.; Kim, H.S.; Yong, D.; Jeong, S.H.; Lee, K.; Chong, Y. Two non-otic cases of POM-1 metallo-β-lactamase-producing Pseudomonas otitidis infection: Necrotizing fasciitis and pan-peritonitis. J. Glob. Antimicrob. Resist. 2016, 7, 157–158. [Google Scholar] [CrossRef]
- Caixinha, A.L.; Valsamidis, A.N.; Chen, M.; Lindberg, M. Pseudomonas otitidis bacteraemia in a patient with COPD and recurrent pneumonia: Case report and literature review. BMC Infect. Dis. 2021, 21, 868. [Google Scholar] [CrossRef]
- Febbraro, F.; Rodio, D.M.; Puggioni, G.; Antonelli, G.; Pietropaolo, V.; Trancassini, M. MALDI-TOF MS Versus VITEK(®)2: Comparison of Systems for the Identification of Microorganisms Responsible for Bacteremia. Curr. Microbiol. 2016, 73, 843–850. [Google Scholar] [CrossRef]
- Garza-González, E.; Bocanegra-Ibarias, P.; Dinh, A.; Morfín-Otero, R.; Camacho-Ortiz, A.; Rojas-Larios, F.; Rodríguez-Zulueta, P.; Arias, C.A. Species identification of Enterococcus spp.: Whole genome sequencing compared to three biochemical test-based systems and two Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) systems. J. Clin. Lab. Anal. 2020, 34, e23348. [Google Scholar] [CrossRef] [PubMed]
- Le Terrier, C.; Masseron, A.; Uwaezuoke, N.S.; Edwin, C.P.; Ekuma, A.E.; Olugbeminiyi, F.; Shettima, S.; Ushie, S.; Poirel, L.; Nordmann, P. Wide spread of carbapenemase-producing bacterial isolates in a Nigerian environment. J. Glob. Antimicrob. Resist. 2020, 21, 321–323. [Google Scholar] [CrossRef] [PubMed]
- BioMérieux, Inc. List of Expanded V3.2 Database—FDA 510(k) Cleared Organisms. Available online: https://go.biomerieux.com/vitek-v3-downloads (accessed on 1 November 2022).
Antibiotic | MIC (μg/mL) | Interpretation * | Antibiotic | MIC (μg/mL) | Interpretation * |
---|---|---|---|---|---|
Ampicillin/Sulbactam | ≥32 | Resistant | Amikacin | ≤2 | Susceptible |
Piperacillin/Tazobactam | 16 | Susceptible | Gentamicin | ≤1 | Susceptible |
Ceftazidime | 4 | Susceptible | Tobramycin | ≤1 | Susceptible |
Cefepime | ≤1 | Susceptible | Ciprofloxacin | 0.5 | Susceptible |
Imipenem | 0.5 | Susceptible | Levofloxacin | 0.25 | Susceptible |
Meropenem | 4 | Resistant | Minocycline | 4 | Susceptible |
Aztreonam | 16 | Intermediate | Trimethoprim/sulfamethoxazole | ≤20 | Susceptible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqurashi, M.; Alsaedy, A.; Alalwan, B.; Alzayer, M.; Alswaji, A.; Okdah, L.; Doumith, M.; Zowawi, H.; Aljohani, S.; Alghoribi, M. Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization. Pathogens 2022, 11, 1475. https://doi.org/10.3390/pathogens11121475
Alqurashi M, Alsaedy A, Alalwan B, Alzayer M, Alswaji A, Okdah L, Doumith M, Zowawi H, Aljohani S, Alghoribi M. Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization. Pathogens. 2022; 11(12):1475. https://doi.org/10.3390/pathogens11121475
Chicago/Turabian StyleAlqurashi, Moayad, Abdulrahman Alsaedy, Bassam Alalwan, Maha Alzayer, Abdulrahman Alswaji, Liliane Okdah, Michel Doumith, Hosam Zowawi, Sameera Aljohani, and Majed Alghoribi. 2022. "Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization" Pathogens 11, no. 12: 1475. https://doi.org/10.3390/pathogens11121475
APA StyleAlqurashi, M., Alsaedy, A., Alalwan, B., Alzayer, M., Alswaji, A., Okdah, L., Doumith, M., Zowawi, H., Aljohani, S., & Alghoribi, M. (2022). Epididymo-Orchitis Caused by POM-1 Metallo-β-Lactamase-Producing Pseudomonas otitidis in an Immunocompetent Patient: Case Report and Molecular Characterization. Pathogens, 11(12), 1475. https://doi.org/10.3390/pathogens11121475