New Corynebacterium Species with the Potential to Produce Diphtheria Toxin
Abstract
:1. Introduction
2. The Structure of Diphtheria Toxin
3. The Mechanism of DT Toxicity
4. Nontoxigenic Toxin Gene-Bearing Strains
5. Corynebacterium silvaticum
6. Corynebacterium rouxii
7. Corynebacterium belfantii
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Plotkin, S.A.; Orenstein, W.A.; Offit, P.A. Plotkin’s Vaccines, 7th ed.; Elsevier: Philadelphia, PA, USA, 2017; pp. 262–263. [Google Scholar]
- Genus Corynebacterium. Available online: https://www.bacterio.net/genus/corynebacterium (accessed on 17 August 2022).
- Sharma, N.C.; Efstratiou, A.; Mokrousov, I.; Mutreja, A.; Das, B.; Ramamurthy, T. Diphtheria. Nat. Rev. Dis. Primers 2019, 5, 81. [Google Scholar] [CrossRef] [PubMed]
- Trost, E.; Blom, J.; Soares Sde, C.; Huang, I.H.; Al-Dilaimi, A.; Schröder, J.; Jaenicke, S.; Dorella, F.A.; Rocha, F.S.; Miyoshi, A.; et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J. Bacteriol. 2012, 194, 3199–3215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sangal, V.; Hoskisson, P.A. Evolution, epidemiology and diversity of Corynebacterium diphtheriae: New perspectives on an old foe. Infect. Genet. Evol. 2016, 43, 364–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilbert, R.; Stewart, F.C. Corynebacterium ulcerans: A pathogenic microorganism resembling C. diphtheriae. J. Lab. Clin. Med. 1926, 12, 756–761. [Google Scholar]
- Hacker, E.; Antunes, C.A.; Mattos-Guaraldi, A.L.; Burkovski, A.; Tauch, A. Corynebacterium ulcerans an emerging human pathogen. Future Microbiol. 2016, 11, 1191–1208. [Google Scholar] [CrossRef]
- Zakikhany, K.; Efstratiou, A. Diphtheria in Europe: Current problems and new challenges. Future Microbiol. 2012, 7, 595–607. [Google Scholar] [CrossRef]
- Berger, A.; Dangel, A.; Peters, M.; Mühldorfer, K.; Braune, S.; Eisenberg, T.; Szentiks, C.A.; Rau, J.; Konrad, R.; Hörmansdorfer, S.; et al. Tox-positive Corynebacterium ulcerans in hedgehogs, Germany. Emerg. Microbes Infect. 2019, 8, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Baird, G.J.; Fontaine, M.C. Corynebacterium pseudotuberculosis and its role in ovine caseous lymphadenitis. J. Comp. Pathol. 2007, 137, 179–210. [Google Scholar] [CrossRef]
- Fu, M.; Su, H.; Su, Z.; Yin, Z.; Jin, J.; Wang, L.; Zhang, Q.; Xu, X. Transcriptome analysis of Corynebacterium pseudotuberculosis-infected spleen of dairy goats. Microb. Pathog. 2020, 147, 104370. [Google Scholar] [CrossRef]
- Dorella, F.A.; Pacheco, L.G.; Oliveira, S.C.; Miyoshi, A.; Azevedo, V. Corynebacterium pseudotuberculosis: Microbiology, biochemical properties, pathogenesis and molecular studies of virulence. Vet. Res. 2006, 37, 201–218. [Google Scholar] [CrossRef] [Green Version]
- Stefańska, H.; Rzewuska, M.; Binek, M. Corynebacterium pseudotuberculosis—pathogenic processes in animals. Post Microbiol. 2007, 46, 101–112. [Google Scholar]
- Riegel, P.; Ruimy, R.; de Briel, D.; Prévost, G.; Jehl, F.; Christen, R.; Monteil, H. Taxonomy of Corynebacterium diphtheriae and related taxa, with recognition of Corynebacterium ulcerans sp. nov. nom. rev. FEMS Microbiol. Lett. 1995, 126, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Brodzik, K.; Krysztopa-Grzybowska, K.; Polak, M.; Lach, J.; Strapagiel, D.; Zasada, A.A. Analysis of the Amino Acid Sequence Variation of the 67–72p Protein and the Structural Pili Proteins of Corynebacterium diphtheriae for their Suitability as Potential Vaccine Antigens. Pol. J. Microbiol. 2019, 68, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canário Viana, M.V.; Profeta, R.; Cerqueira, J.C.; Wattam, A.R.; Barh, D.; Silva, A.; Azevedo, V. Evidence of episodic positive selection in Corynebacterium diphtheriae complex of species and its implementations in identification of drug and vaccine targets. PeerJ 2022, 10, e12662. [Google Scholar] [CrossRef]
- Dazas, M.; Badell, E.; Carmi-Leroy, A.; Criscuolo, A.; Brisse, S. Taxonomic status of Corynebacterium diphtheriae biovar Belfanti and proposal of Corynebacterium belfantii sp. nov. Int. J. Syst. Evol. Microbiol. 2018, 68, 3826–3831. [Google Scholar] [CrossRef] [PubMed]
- Laird, W.; Groman, N. Orientation of the Tox Gene in the Prophage of Corynebacteriophage Beta. J. Virol. 1976, 19, 228–231. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, L.; Bjorn, M.J.; Horn, G.; Fong, D.; Buck, G.A.; Collier, R.J.; Kaplan, D.A. Nucleotide Sequence of the Structural Gene for Diphtheria Toxin Carried by Corynebacteriophage Beta. Proc. Natl. Acad. Sci. USA 1983, 80, 6853–6857. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Schiering, N.; Zeng, H.; Ringe, D.; Murphy, J.R. Iron, DtxR, and the Regulation of Diphtheria Toxin Expression. Mol. Microbiol. 1994, 14, 191–197. [Google Scholar] [CrossRef]
- Parveen, S.; Bishai, W.R.; Murphy, J.R. Corynebacterium diphtheriae: Diphtheria Toxin, the tox Operon, and Its Regulation by Fe2+ Activation of apo-DtxR. Microbiol. Spectr. 2019, 7. [Google Scholar] [CrossRef]
- Boyd, J.; Oza, M.N.; Murphy, J.R. Molecular Cloning and DNA Sequence Analysis of a Diphtheria Tox Iron-Dependent Regulatory Element (DtxR) from Corynebacterium Diphtheriae. Proc. Natl. Acad. Sci. USA 1990, 87, 5968–5972. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, M.P.; Holmes, R.K. Characterization of a Defective Diphtheria Toxin Repressor (DtxR) Allele and Analysis of DtxR Transcription in Wild-Type and Mutant Strains of Corynebacterium Diphtheriae. Infect. Immun. 1991, 59, 3903–3908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappenheimer, A.M.; Johnson, S.J. Studies in Diphtheria Toxin Production. I: The Effect of Iron and Copper. Br. J. Exp. Pathol. 1936, 17, 335–341. [Google Scholar]
- Tao, X.; Murphy, J.R. Binding of the Metalloregulatory Protein DtxR to the Diphtheria Tox Operator Requires a Divalent Heavy Metal Ion and Protects the Palindromic Sequence from DNase I Digestion. J. Biol. Chem. 1992, 267, 21761–21764. [Google Scholar] [CrossRef]
- Drazin, R.; Kandel, J.; Collier, R.J. Structure and Activity of Diphtheria Toxin. J. Biol. Chem. 1971, 246, 1504–1510. [Google Scholar] [CrossRef]
- Gill, D.M.; Pappenheimer, A.M. Structure-Activity Relationships in Diphtheria Toxin. J. Biol. Chem. 1971, 246, 1492–1495. [Google Scholar] [CrossRef]
- Sandvig, K.; Olsnes, S. Rapid Entry of Nicked Diphtheria Toxin into Cells at Low PH. Characterization of the Entry Process and Effects of Low PH on the Toxin Molecule. J. Biol. Chem. 1981, 256, 9068–9076. [Google Scholar] [CrossRef]
- Choe, S.; Bennett, M.J.; Fujii, G.; Curmi, P.M.G.; Kantardjieff, K.A.; Collier, R.J.; Eisenberg, D. The Crystal Structure of Diphtheria Toxin. Nature 1992, 357, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Gill, D.M.; Dinius, L.L. Observations on the Structure of Diphtheria Toxin. J. Biol. Chem. 1971, 246, 1485–1491. [Google Scholar] [CrossRef]
- Collier, R.J. Understanding the Mode of Action of Diphtheria Toxin: A Perspective on Progress during the 20th Century. Toxicon 2001, 39, 1793–1803. [Google Scholar] [CrossRef]
- Lacy, D.B.; Stevens, R.C. Unraveling the Structures and Modes of Action of Bacterial Toxins. Curr. Opin. Struct. Biol. 1998, 8, 778–784. [Google Scholar] [CrossRef]
- Odumosu, O.; Nicholas, D.; Yano, H.; Langridge, W. AB Toxins: A Paradigm Switch from Deadly to Desirable. Toxins 2010, 2, 1612–1645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collier, R.J.; Westbrook, E.M.; McKay, D.B.; Eisenberg, D. X-ray Grade Crystals of Diphtheria Toxin. J. Biol. Chem. 1982, 257, 5283–5285. [Google Scholar] [CrossRef]
- Carroll, S.F.; Barbieri, J.T.; Collier, R.J. Dimeric Form of Diphtheria Toxin: Purification and Characterization. Biochemistry 1986, 25, 2425–2430. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J. Diphtheria Toxin: Mode of Action and Structure. Bacteriol. Rev. 1975, 39, 54–85. [Google Scholar] [CrossRef]
- Pappenheimer, A.M.; Harper, A.A.; Moynihan, M.; Brockes, J.P. Diphtheria Toxin and Related Proteins: Effect of Route of Injection on Toxicity and the Determination of Cytotoxicity for Various Cultured Cells. J. Infect. Dis. 1982, 145, 94–102. [Google Scholar] [CrossRef]
- Bacha, P.; Murphy, J.R.; Reichlin, S. Thyrotropin-Releasing Hormone-Diphtheria Toxin-Related Polypeptide Conjugates. Potential Role of the Hydrophobic Domain in Toxin Entry. J. Biol. Chem. 1983, 258, 1565–1570. [Google Scholar] [CrossRef]
- Honjo, T.; Nishizuka, Y.; Hayaishi, O. Diphtheria Toxin-Dependent Adenosine Diphosphate Ribosylation of Aminoacyl Transferase II and Inhibition of Protein Synthesis. J. Biol. Chem. 1968, 243, 3553–3555. [Google Scholar] [CrossRef]
- Van Ness, B.G.; Howard, J.B.; Bodley, J.W. ADP-Ribosylation of Elongation Factor 2 by Diphtheria Toxin. Isolation and Properties of the Novel Ribosyl-Amino Acid and Its Hydrolysis Products. J. Biol. Chem. 1980, 255, 10717–10720. [Google Scholar] [CrossRef]
- Holbourn, K.P.; Shone, C.C.; Acharya, K.R. A Family of Killer Toxins: Exploring the Mechanism of ADP-Ribosylating Toxins. FEBS J. 2006, 273, 4579–4593. [Google Scholar] [CrossRef]
- Draper, R.K.; Simon, M.I. The Entry of Diphtheria Toxin into the Mammalian Cell Cytoplasm: Evidence for Lysosomal Involvement. J. Cell Biol. 1980, 87, 849–854. [Google Scholar] [CrossRef]
- Naglich, J.G.; Metherall, J.E.; Russell, D.W.; Eidels, L. Expression Cloning of a Diphtheria Toxin Receptor: Identity with a Heparin-Binding EGF-like Growth Factor Precursor. Cell 1992, 69, 1051–1061. [Google Scholar] [CrossRef]
- D’Silva, P.R.; Lala, A.K. Organization of Diphtheria Toxin in Membranes. J. Biol. Chem. 2000, 275, 11771–11777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, N.C.; Aktories, K.; Barbieri, J.T. Novel Bacterial ADP-Ribosylating Toxins: Structure and Function. Nat. Rev. Microbiol. 2014, 12, 599–611. [Google Scholar] [CrossRef] [PubMed]
- Yamaizumi, M.; Mekada, E.; Uchida, T.; Okada, Y. One Molecule of Diphtheria Toxin Fragment a Introduced into a Cell Can Kill the Cell. Cell 1978, 15, 245–250. [Google Scholar] [CrossRef]
- Mekada, E.; Kohno, K.; Ishiura, M.; Uchida, T.; Okada, Y. Methylamine Facilitates Demonstration of Specific Uptake of Diphtheria Toxin by CHO Cell and Toxin-Resistant CHO Cell Mutants. Biochem. Biophys. Res. Commun. 1982, 109, 792–799. [Google Scholar] [CrossRef]
- Zakikhany, K.; Neal, S.; Efstratiou, A. Emergence and molecular characterisation of non-toxigenic tox gene-bearing Corynebacterium diphtheriae biovar mitis in the United Kingdom, 2003-2012. Euro Surveill. 2014, 19, 20819. [Google Scholar] [CrossRef] [Green Version]
- Grosse-Kock, S.; Kolodkina, V.; Schwalbe, E.; Blom, J.; Burkovski, A.; Hoskisson, P.A.; Brisse, S.; Smith, D.; Sutcliffe, I.C.; Titov, L.; et al. Genomic analysis of endemic clones of toxigenic and non-toxigenic Corynebacterium diphtheriae in Belarus during and after the major epidemic in 1990s. BMC Genom. 2017, 18, 873. [Google Scholar] [CrossRef] [Green Version]
- Mel’nikov, V.G.; Kombarova, S.; Borisova, O.; Volozhantsev, N.V.; Verevkin, V.V.; Volkovoĭ, K.I.; Mazurova, I.K. Kharakteristika netoksigennykh shtammov Corynebacterium diphtheriae, nesushchikh gen difteriĭnogo toksina [Corynebacterium diphtheriae nontoxigenic strain carrying the gene of diphtheria toxin]. Zh. Mikrobiol. Epidemiol. Immunobiol. 2004, 1, 3–7. [Google Scholar]
- Gower, C.M.; Scobie, A.; Fry, N.K.; Litt, D.J.; Cameron, J.C.; Chand, M.A.; Brown, C.; Collins, S.; White, J.M.; Ramsay, M.E.; et al. The changing epidemiology of diphtheria in the United Kingdom, 2009 to 2017. Euro Surveill. 2020, 25, 1900462. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.M.; Waller, J.L.; Aneke, J.S.; Weigand, M.R.; Diaz, M.; Bowden, K.E.; Simon, A.K.; Peng, Y.; Xiaoli, L.; Cassiday, P.K.; et al. Detection and Characterization of Diphtheria Toxin Gene-Bearing Corynebacterium Species through a New Real-Time PCR Assay. J. Clin. Microbiol. 2020, 58, e00639-20. [Google Scholar] [CrossRef]
- Doyle, C.J.; Mazins, A.; Graham, R.M.; Fang, N.X.; Smith, H.V.; Jennison, A.V. Sequence Analysis of Toxin Gene-Bearing Corynebacterium diphtheriae Strains, Australia. Emerg. Infect. Dis. 2017, 23, 105–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajka, U.; Wiatrzyk, A.; Mosiej, E.; Formińska, K.; Zasada, A.A. Changes in MLST profiles and biotypes of Corynebacterium diphtheriae isolates from the diphtheria outbreak period to the period of invasive infections caused by nontoxigenic strains in Poland (1950-2016). BMC Infect. Dis. 2018, 18, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangel, A.; Berger, A.; Konrad, R.; Bischoff, H.; Sing, A. Geographically Diverse Clusters of Nontoxigenic Corynebacterium diphtheriae Infection, Germany, 2016–2017. Emerg. Infect. Dis. 2018, 24, 1239–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farfour, E.; Badell, E.; Zasada, A.; Hotzel, H.; Tomaso, H.; Guillot, S.; Guiso, N. Characterization and comparison of invasive Corynebacterium diphtheriae isolates from France and Poland. J. Clin. Microbiol. 2012, 50, 173–175. [Google Scholar] [CrossRef]
- Gubler, J.; Huber-Schneider, C.; Gruner, E.; Altwegg, M. An outbreak of nontoxigenic Corynebacterium diphtheriae infection: Single bacterial clone causing invasive infection among Swiss drug users. Clin. Infect. Dis. 1998, 27, 1295–1298. [Google Scholar] [CrossRef] [Green Version]
- Reacher, M.; Ramsay, M.; White, J.; de Zoysa, A.; Efstratiou, A.; Mann, G.; Mackay, A.; George, R.C. Nontoxigenic Corynebacterium diphtheriae: An emerging pathogen in England and Wales? Emerg. Infect. Dis. 2000, 6, 640–645. [Google Scholar] [CrossRef] [Green Version]
- von Hunolstein, C.; Alfarone, G.; Scopetti, F.; Pataracchia, M.; La Valle, R.; Franchi, F.; Pacciani, L.; Manera, A.; Giammanco, A.; Farinelli, S.; et al. Molecular epidemiology and characteristics of Corynebacterium diphtheriae and Corynebacterium ulcerans strains isolated in Italy during the 1990s. J. Med. Microbiol. 2003, 52, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Zasada, A.A.; Baczewska-Rej, M.; Wardak, S. An increase in non-toxigenic Corynebacterium diphtheriae infections in Poland--molecular epidemiology and antimicrobial susceptibility of strains isolated from past outbreaks and those currently circulating in Poland. Int. J. Infect. Dis. 2010, 14, e907-12. [Google Scholar] [CrossRef] [Green Version]
- Zasada, A.A. Nontoxigenic highly pathogenic clone of Corynebacterium diphtheriae, Poland, 2004–2012. Emerg. Infect. Dis. 2013, 19, 1870–1872. [Google Scholar] [CrossRef]
- Lowe, C.F.; Bernard, K.A.; Romney, M.G. Cutaneous diphtheria in the urban poor population of Vancouver, British Columbia, Canada: A 10-year review. J. Clin. Microbiol. 2011, 49, 2664–2666. [Google Scholar] [CrossRef] [Green Version]
- Romney, M.G.; Roscoe, D.L.; Bernard, K.; Lai, S.; Efstratiou, A.; Clarke, A.M. Emergence of an invasive clone of nontoxigenic Corynebacterium diphtheriae in the urban poor population of Vancouver, Canada. J. Clin. Microbiol. 2006, 44, 1625–1629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasada, A.A.; Rzeczkowska, M. Nontoxigenic Corynebacterium diphtheriae Infections, Europe. Emerg. Infect. Dis. 2019, 25, 1437–1438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasada, A.A.; Zaleska, M.; Podlasin, R.B.; Seferynska, I. The first case of septicemia due to nontoxigenic Corynebacterium diphtheriae in Poland: Case report. Ann. Clin. Microbiol. Antimicrob. 2005, 5, 4–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FitzGerald, R.P.; Rosser, A.J.; Perera, D.N. Non-toxigenic penicillin-resistant cutaneous C. diphtheriae infection: A case report and review of the literature. J. Infect. Public Health 2015, 8, 98–100. [Google Scholar] [CrossRef]
- Meinel, D.M.; Kuehl, R.; Zbinden, R.; Boskova, V.; Garzoni, C.; Fadini, D.; Dolina, M.; Blümel, B.; Weibel, T.; Tschudin-Sutter, S.; et al. Outbreak investigation for toxigenic Corynebacterium diphtheriae wound infections in refugees from Northeast Africa and Syria in Switzerland and Germany by whole genome sequencing. Clin. Microbiol. Infect. 2016, 22, 1003.e1–1003.e8. [Google Scholar] [CrossRef]
- Freeman, V.J. Studies on the virulence of bacteriophage-infected strains of Corynebacterium diphtheriae. J. Bacteriol. 1951, 61, 675–688. [Google Scholar] [CrossRef] [Green Version]
- Dinu, S.; Damian, M.; Badell, E.; Dragomirescu, C.C.; Guiso, N. New diphtheria toxin repressor types depicted in a Romanian collection of Corynebacterium diphtheriae isolates. J. Basic Microbiol. 2014, 54, 1136–1139. [Google Scholar] [CrossRef]
- Contzen, M.; Sting, R.; Blazey, B.; Rau, J. Corynebacterium ulcerans from diseased wild boars. Zoonoses Public Health 2011, 58, 479–488. [Google Scholar] [CrossRef]
- Eisenberg, T.; Kutzer, P.; Peters, M.; Sing, A.; Contzen, M.; Rau, J. Nontoxigenic tox-bearing Corynebacterium ulcerans infection among game animals, Germany. Emerg. Infect. Dis. 2014, 20, 448–452. [Google Scholar] [CrossRef]
- Rau, J.; Blazey, B.; Contzen, M.; Sting, R. Corynebacterium ulcerans-Infektion bei einem Reh (Capreolus capreolus) [Corynebacterium ulcerans infection in roe deer (Capreolus capreolus)]. Berl. Munch. Tierarztl. Wochenschr. 2012, 125, 159–162. [Google Scholar]
- Rau, J.; Eisenberg, T.; Peters, M.; Berger, A.; Kutzer, P.; Lassnig, H.; Hotzel, H.; Sing, A.; Sting, R.; Contzen, M. Reliable differentiation of a non-toxigenic tox gene-bearing Corynebacterium ulcerans variant frequently isolated from game animals using MALDI-TOF MS. Vet. Microbiol. 2019, 237, 108399. [Google Scholar] [CrossRef] [PubMed]
- Dangel, A.; Berger, A.; Konrad, R.; Sing, A. NGS-based phylogeny of diphtheria-related pathogenicity factors in different Corynebacterium spp. implies species-specific virulence transmission. BMC Microbiol. 2019, 19, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangel, A.; Berger, A.; Rau, J.; Eisenberg, T.; Kämpfer, P.; Margos, G.; Contzen, M.; Busse, H.J.; Konrad, R.; Peters, M.; et al. Corynebacterium silvaticum sp. nov., a unique group of NTTB corynebacteria in wild boar and roe deer. Int. J. Syst. Evol. Microbiol. 2020, 70, 3614–3624. [Google Scholar] [CrossRef] [PubMed]
- Möller, J.; Busch, A.; Berens, C.; Hotzel, H.; Burkovski, A. Newly Isolated Animal Pathogen Corynebacterium silvaticum Is Cytotoxic to Human Epithelial Cells. Int. J. Mol. Sci. 2021, 22, 3549. [Google Scholar] [CrossRef]
- Möller, J.; Schorlemmer, S.; Hofmann, J.; Burkovski, A. Cellular and Extracellular Proteome of the Animal Pathogen Corynebacterium silvaticum, a Close Relative of Zoonotic Corynebacterium ulcerans and Corynebacterium pseudotuberculosis. Proteomes 2020, 8, 19. [Google Scholar] [CrossRef]
- Viana, M.V.C.; Profeta, R.; da Silva, A.L.; Hurtado, R.; Cerqueira, J.C.; Ribeiro, B.F.S.; Almeida, M.O.; Morais-Rodrigues, F.; Soares, S.C.; Oliveira, M.; et al. Taxonomic classification of strain PO100/5 shows a broader geographic distribution and genetic markers of the recently described Corynebacterium silvaticum. PLoS ONE 2020, 15, e0244210. [Google Scholar] [CrossRef]
- Möller, J.; Musella, L.; Melnikov, V.; Geißdörfer, W.; Burkovski, A.; Sangal, V. Phylogenomic characterisation of a novel corynebacterial species pathogenic to animals. Antonie Van Leeuwenhoek 2020, 113, 1225–1239. [Google Scholar] [CrossRef]
- Ramos, C.P.; Dorneles, E.M.; Haas, D.J.; Veschi, J.L.; Loureiro, D.; Portela, R.D.; Azevedo, V.; Heinemann, M.B.; Lage, A.P. Molecular characterization of Corynebacterium pseudotuberculosis, C. silvaticum, and C. auriscanis by ERIC-PCR. Ciência Rural 2022, 52, e2021032. [Google Scholar] [CrossRef]
- Dover, L.G.; Thompson, A.R.; Sutcliffe, I.C.; Sangal, V. Phylogenomic Reappraisal of Fatty Acid Biosynthesis, Mycolic Acid Biosynthesis and Clinical Relevance Among Members of the Genus Corynebacterium. Front. Microbiol. 2021, 12, 802532. [Google Scholar] [CrossRef]
- Hall, A.J.; Cassiday, P.K.; Bernard, K.A.; Bolt, F.; Steigerwalt, A.G.; Bixler, D.; Pawloski, L.C.; Whitney, A.M.; Iwaki, M.; Baldwin, A.; et al. Novel Corynebacterium diphtheriae in Domestic Cats. Emerg. Infect. Dis. 2010, 16, 688–691. [Google Scholar] [CrossRef]
- Badell, E.; Hennart, M.; Rodrigues, C.; Passet, V.; Dazas, M.; Panunzi, L.; Bouchez, V.; Carmi-Leroy, A.; Toubiana, J.; Brisse, S. Corynebacterium rouxii sp. nov., a novel member of the diphtheriae species complex. Res. Microbiol. 2020, 171, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Schlez, K.; Eisenberg, T.; Rau, J.; Dubielzig, S.; Kornmayer, M.; Wolf, G.; Berger, A.; Dangel, A.; Hoffmann, C.; Ewers, C.; et al. Corynebacterium rouxii, a recently described member of the C. diphtheriae group isolated from three dogs with ulcerative skin lesions. Antonie van Leeuwenhoek 2021, 114, 1361–1371. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Laboratory Manual for the Diagnosis of Diphtheria and Other Related Infections; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Tagini, F.; Pillonel, T.; Croxatto, A.; Bertelli, C.; Koutsokera, A.; Lovis, A.; Greub, G. Distinct Genomic Features Characterize Two Clades of Corynebacterium diphtheriae: Proposal of Corynebacterium diphtheriae Subsp. diphtheriae Subsp. nov. and Corynebacterium diphtheriae Subsp. lausannense Subsp. nov. Front. Microbiol. 2018, 9, 1743. [Google Scholar] [CrossRef] [PubMed]
- Bolt, F.; Cassiday, P.; Tondella, M.L.; Dezoysa, A.; Efstratiou, A.; Sing, A.; Zasada, A.; Bernard, K.; Guiso, N.; Badell, E.; et al. Multilocus sequence typing identifies evidence for recombination and two distinct lineages of Corynebacterium diphtheriae. J. Clin. Microbiol. 2010, 48, 4177–4185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezjak, V. Differentiation of Corynebacterium diphtheriae of the mitis type found in diphtheria and ozaena. I. Biochemical properties. Antonie Van Leeuwenhoek 1954, 20, 269–272. [Google Scholar] [CrossRef]
- Farfour, E.; Badell, E.; Dinu, S.; Guillot, S.; Guiso, N. Microbiological changes and diversity in autochthonous non-toxigenic Corynebacterium diphtheriae isolated in France. Clin. Microbiol. Infect. 2013, 19, 980–987. [Google Scholar] [CrossRef] [Green Version]
- Sangal, V.; Burkovski, A.; Hunt, A.C.; Edwards, B.; Blom, J.; Hoskisson, P.A. A lack of genetic basis for biovar differentiation in clinically important Corynebacterium diphtheriae from whole genome sequencing. Infect. Genet. Evol. 2014, 21, 54–57. [Google Scholar] [CrossRef]
- Pivot, D.; Fanton, A.; Badell-Ocando, E.; Benouachkou, M.; Astruc, K.; Huet, F.; Amoureux, L.; Neuwirth, C.; Criscuolo, A.; Aho, S.; et al. Carriage of a Single Strain of Nontoxigenic Corynebacterium diphtheriae bv. Belfanti (Corynebacterium belfantii) in Four Patients with Cystic Fibrosis. J. Clin. Microbiol. 2019, 57, e00042-19. [Google Scholar] [CrossRef] [Green Version]
- Benamrouche, N.; Hasnaoui, S.; Badell, E.; Guettou, B.; Lazri, M.; Guiso, N.; Rahal, K. Microbiological and molecular characterization of Corynebacterium diphtheriae isolated in Algeria between 1992 and 2015. Clin. Microbiol. Infect. 2016, 22, 1005.e1–1005.e7. [Google Scholar] [CrossRef]
- Hoefer, A.; Pampaka, D.; Herrera-León, S.; Peiró, S.; Varona, S.; López-Perea, N.; Masa-Calles, J.; Herrera-León, L. Molecular and Epidemiological Characterization of Toxigenic and Nontoxigenic Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, and Corynebacterium ulcerans Isolates Identified in Spain from 2014 to 2019. J. Clin. Microbiol. 2021, 59, e02410-20. [Google Scholar] [CrossRef]
- Sing, A.; Konrad, R.; Meinel, D.M.; Mauder, N.; Schwabe, I.; Sting, R. Corynebacterium diphtheriae in a free-roaming red fox: Case report and historical review on diphtheria in animals. Infection 2016, 44, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Corboz, L.; Thoma, R.; Braun, U.; Zbinden, R. Isolierung von of Corynebacterium diphtheriae subsp. belfanti bei einer Kuh mit chronisch-aktiver Dermatitis [Isolation of Corynebacterium diphtheriae subsp. belfanti from a cow with chronic active dermatitis]. Schweiz. Arch. Tierheilkd. 1996, 138, 596–599. [Google Scholar] [PubMed]
- Pimenta, F.P.; Matias, G.A.; Pereira, G.A.; Camello, T.C.; Alves, G.B.; Rosa, A.C.; Hirata, R., Jr.; Mattos-Guaraldi, A.L. A PCR for dtxR gene: Application to diagnosis of non-toxigenic and toxigenic Corynebacterium diphtheriae. Mol. Cell Probes 2008, 22, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Wang, S.; Zhao, S.; Zhou, Y.; Pan, X. Whole genome sequence of a non-toxigenic Corynebacterium diphtheriae strain from a hospital in southeastern China. BMC Genom. Data 2021, 22, 42. [Google Scholar] [CrossRef]
C. diphtheriae Biovar | Blood Agar | Hoyle’s Tellurite Agar | Lipophilism | Nitrate Reduction | Ability to Utilize Glycogen |
---|---|---|---|---|---|
Gravis | non-hemolytic | dull, grey/black, opaque colonies, 1.5–2.0 mm in diameter, matt surface, friable, tending to break into small segments when touched with a straight wire | − | + | + |
Mitis | colonies may exhibit a small zone of β-haemolysis | grey/black, opaque colonies, 1.5–2.0 mm in diameter, entire edge and glossy smooth surface; size variation is common | − | + | − |
Intermedius | colonies exhibit a small zone of β-haemolysis | small, grey/black, shiny surface, discrete, translucent colonies, 0.5–1.0 mm in diameter | + | + | − |
Belfanti | colonies may exhibit a small zone of β-haemolysis | grey/black, opaque colonies, 1.5–2.0 mm in diameter, entire edge and glossy smooth surface, size variation is common | − | − | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prygiel, M.; Polak, M.; Mosiej, E.; Wdowiak, K.; Formińska, K.; Zasada, A.A. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens 2022, 11, 1264. https://doi.org/10.3390/pathogens11111264
Prygiel M, Polak M, Mosiej E, Wdowiak K, Formińska K, Zasada AA. New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens. 2022; 11(11):1264. https://doi.org/10.3390/pathogens11111264
Chicago/Turabian StylePrygiel, Marta, Maciej Polak, Ewa Mosiej, Karol Wdowiak, Kamila Formińska, and Aleksandra Anna Zasada. 2022. "New Corynebacterium Species with the Potential to Produce Diphtheria Toxin" Pathogens 11, no. 11: 1264. https://doi.org/10.3390/pathogens11111264
APA StylePrygiel, M., Polak, M., Mosiej, E., Wdowiak, K., Formińska, K., & Zasada, A. A. (2022). New Corynebacterium Species with the Potential to Produce Diphtheria Toxin. Pathogens, 11(11), 1264. https://doi.org/10.3390/pathogens11111264