Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland
Abstract
:1. Introduction
2. Results
2.1. Prevalence of Anaplasma spp.
2.2. Agreement between Spleen and Liver Samples
2.3. 16S rDNA Anaplasma phagocytophilum
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Molecular Methods
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woldehiwet, Z. The natural history of Anaplasma phagocytophilum. Vet. Parasitol. 2010, 167, 108–122. [Google Scholar] [CrossRef]
- Gordon, W.S.; Brownlee, A.; Wilson, D.R.; MacLeod, J. Tick-borne fever (a hitherto undescribed disease of sheep). J. Comp. Pathol. 1932, 45, 301–307. [Google Scholar] [CrossRef]
- Chen, S.M.; Bakken, J.S.; Walker, D.H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 1994, 32, 589–595. [Google Scholar] [CrossRef] [Green Version]
- Stuen, S.; Granquist, E.G.; Silaghi, C. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front. Cell Infect. Microbiol. 2013, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Razanske, I.; Rosef, O.; Radzijevskaja, J.; Bratchikov, M.; Griciuviene, L.; Paulauskas, A. Prevalence and co-infection with tick-borne Anaplasma phagocytophilum and Babesia spp. In red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in Southern Norway. Int. J. Parasitol. Parasites Wildl. 2019, 8, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, A.; Handeland, K.; Stuen, S.; Schouls, L.; van de Pol, I.; Meen, R.T.; Kristiansen, B.E. Ehrlichiosis in a moose calf in Norway. J. Wildl. Dis. 2001, 37, 201–203. [Google Scholar] [CrossRef] [Green Version]
- Stuen, S.; Pettersen, K.S.; Granquist, E.G.; Bergström, K.; Bown, K.J.; Birtles, R.J. Anaplasma phagocytophilum variants in sympatric red deer (Cervus elaphus) and sheep in southern Norway. Ticks Tick Borne Dis. 2013, 4, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Tylewska-Wierzbanowska, S.; Chmielewski, T. Zoonozy przenoszone przez kleszcze na terenie Polski. Post. Mikrobiol. 2010, 49, 191–197. (In Polish) [Google Scholar]
- Rikihisa, Y. Mechanisms of obligatory intracellular infection with Anaplasma phagocytophilum. Clin. Microbiol. Rev. 2011, 24, 469–489. [Google Scholar] [CrossRef] [Green Version]
- Karbowiak, G.; Biernat, B.; Stańczak, J.; Werszko, J.; Wróblewski, P.; Szewczyk, T.; Sytykiewicz, H. The role of particular ticks developmental stages in the circulation of tick-borne pathogens in Central Europe. 4. Anaplasmataceae. Ann. Parasitol. 2016, 62, 267–284. [Google Scholar] [CrossRef]
- Wirtgen, M.; Nahayo, A.; Linden, A.; Losson, B.; Garigliany, M.; Desmecht, D. Detection of Anaplasma phagocytophilum in Dermacentor reticulatus ticks. Vet. Rec. 2011, 168, 195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaarsma, R.I.; Sprong, H.; Takumi, K.; Kazimirova, M.; Silaghi, C.; Mysterud, A.; Rudolf, I.; Beck, R.; Földvári, G.; Tomassone, L.; et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit. Vectors 2019, 12, 328. [Google Scholar] [CrossRef] [PubMed]
- Granick, J.L.; Armstrong, P.J.; Bender, J.B. Anaplasma phagocytophilum infection in dogs: 34 cases (2000–2007). J. Am. Vet. Med. Assoc. 2009, 234, 1559–1565. [Google Scholar] [CrossRef] [PubMed]
- Michalik, J.; Stańczak, J.; Cieniuch, S.; Racewicz, M.; Sikora, B.; Dabert, M. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerg. Infect. Dis. 2012, 18, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Dzięgiel, B.; Adaszek, Ł.; Kalinowski, M.; Winiarczyk, S. Equine granulocytic anaplasmosis. Res. Vet. Sci. 2013, 95, 316–320. [Google Scholar] [CrossRef]
- Matei, I.A.; D’Amico, G.; Ionică, A.M.; Kalmár, Z.; Corduneanu, A.; Sándor, A.D.; Fiţ, N.; Bogdan, L.; Gherman, C.M.; Mihalca, A.D. New records for Anaplasma phagocytophilum infection in small mammal species. Parasit Vectors 2018, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, T.; Werszko, J.; Myczka, A.W.; Laskowski, Z.; Karbowiak, G. Molecular detection of Anaplasma phagocytophilum in wild carnivores in north-eastern Poland. Parasit Vectors 2019, 12, 465. [Google Scholar] [CrossRef] [Green Version]
- Silaghi, C.; Fröhlich, J.; Reindl, H.; Hamel, D.; Rehbein, S. Anaplasma phagocytophilum and Babesia Species of Sympatric Roe Deer (Capreolus capreolus), Fallow Deer (Dama dama), Sika Deer (Cervus nippon) and Red Deer (Cervus elaphus) in Germany. Pathogens 2020, 9, 968. [Google Scholar] [CrossRef]
- Myczka, A.W.; Szewczyk, T.; Laskowski, Z. The Occurrence of Zoonotic Anaplasma phagocytophilum Strains, in the Spleen and Liver of Wild Boars from North-West and Central Parts of Poland. Acta Parasitol. 2021, 66, 1082–1085. [Google Scholar] [CrossRef]
- Burbaitė, L.; Csányi, S. Roe deer population and harvest changes in Europe. Est. J. Eco. 2009, 58, 169–180. [Google Scholar] [CrossRef]
- Burbaitė, L.; Csányi, S. Red deer population and harvest changes in Europe. Acta Zool. Litu. 2010, 20, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Massei, G.; Kindberg, J.; Licoppe, A.; Gačić, D.; Šprem, N.; Kamler, J.; Baubet, E.; Hohmann, U.; Monaco, A.; Ozoliņš, J.; et al. Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Manag. Sci. 2015, 71, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Statistic Poland. Statistical Yearbook of Forest; Statistic Poland: Warsaw, Poland, 2020; p. 28.
- Wawrzyniak, P. Population dynamics, its impact upon the habitat and necessity of managament the moose (Alces alces) population in Poland. In Proceedings of the Conference “Zarządzanie Populacjami Zwierząt”, Warsaw, Poland, 5 August 2016; Łowiec Polski: Warsaw, Poland, 2016; pp. 17–27. (In Polish). [Google Scholar]
- Daszkiewicz, T.; Hnatyk, N.; Dąbrowski, D.; Janiszewski, P.; Gugołek, A.; Kubiak, D.; Śmiecińska, K.; Winarski, R.; Koba-Kowalczyk, M. A comparison of the quality of the Longissimus lumborum muscle from wild and farm-raised fallow deer (Dama dama L.). Small Rumin. Res. 2015, 129, 77–83. [Google Scholar] [CrossRef]
- Kudrnáčová, E.; Bartoň, L.; Bureš, D.; Hoffman, L.C. Carcass and meat characteristics from farm-raised and wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Sci. 2018, 141, 9–27. [Google Scholar] [CrossRef]
- Kuba, J.; Landete-Castillejos, T.; Udała, J. Red deer farming: Breeding practice, trends and potential in Poland-A Review. Ann. Anim. Sci. 2015, 15, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Hornok, S.; Sugár, L.; Fernández de Mera, I.G.; de la Fuente, J.; Horváth, G.; Kovács, T.; Micsutka, A.; Gönczi, E.; Flaisz, B.; Takács, N.; et al. Tick- and fly-borne bacteria in ungulates: The prevalence of Anaplasma phagocytophilum, haemoplasmas and rickettsiae in water buffalo and deer species in Central Europe, Hungary. BMC Vet. Res. 2018, 14, 98. [Google Scholar] [CrossRef] [PubMed]
- Rymaszewska, A. Genotyping of Anaplasma phagocytophilum strains from Poland for selected genes. Folia Biol. 2014, 62, 37–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stigum, V.M.; Jaarsma, R.I.; Sprong, H.; Rolandsen, C.M.; Mysterud, A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors 2019, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- Petrovec, M.; Sixl, W.; Schweiger, R.; Mikulasek, S.; Elke, L.; Wüst, G.; Marth, E.; Strasek, K.; Stünzner, D.; Avsic-Zupanc, T. Infections of wild animals with Anaplasma phagocytophila in Austria and the Czech Republic. Ann. N. Y. Acad. Sci. 2003, 990, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Dugat, T.; Zanella, G.; Véran, L.; Lesage, C.; Girault, G.; Durand, B.; Lagrée, A.C.; Boulouis, H.J.; Haddad, N. Multiple-locus variable-number tandem repeat analysis potentially reveals the existence of two groups of Anaplasma phagocytophilum circulating in cattle in France with different wild reservoirs. Parasit Vectors 2016, 9, 596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kauffmann, M.; Rehbein, S.; Hamel, D.; Lutz, W.; Heddergott, M.; Pfister, K.; Silaghi, C. Anaplasma phagocytophilum and Babesia spp. In roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol. Cell Probes. 2017, 31, 46–54. [Google Scholar] [CrossRef]
- Veronesi, F.; Galuppi, R.; Tampieri, M.P.; Bonoli, C.; Mammoli, R.; Piergili Fioretti, D. Prevalence of Anaplasma phagocytophilum in fallow deer (Dama dama) and feeding ticks from an Italy preserve. Res. Vet. Sci. 2011, 90, 40–43. [Google Scholar] [CrossRef] [PubMed]
- García-Pérez, A.L.; Oporto, B.; Espí, A.; del Cerro, A.; Barral, M.; Povedano, I.; Barandika, J.F.; Hurtado, A. Anaplasmataceae in wild ungulates and carnivores in northern Spain. Ticks Tick Borne Dis. 2016, 7, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Cao, J.M.; Adaszek, Ł.; Dzięgiel, B.; Paniagua, J.; Caballero-Gómez, J.; Winiarczyk, S.; Winiarczyk, D.; Cano-Terriza, D.; García-Bocanegra, I. Prevalence of selected tick-borne pathogens in wild ungulates and ticks in southern Spain. Transbound Emerg. Dis. 2021. [Google Scholar] [CrossRef] [PubMed]
- Masuzawa, T.; Uchishima, Y.; Fukui, T.; Okamoto, Y.; Muto, M.; Koizumi, N.; Yamada, A. Detection of Anaplasma phagocytophilum from Wild Boars and Deer in Japan. Jpn. J. Infect. Dis. 2011, 64, 333–336. [Google Scholar]
- Matsuo, K.; Moribe, J.; Abe, N. Molecular Detection and Characterization of Anaplasma Species in Wild Deer and Boars in Gifu Prefecture, Japan. Jpn. J. Infect. Dis. 2017, 70, 354–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michalik, J.; Stańczak, J.; Racewicz, M.; Cieniuch, S.; Sikora, B.; Szubert-Kruszyńska, A.; Grochowalska, R. Molecular evidence of Anaplasma phagocytophilum infection in wild cervids and feeding Ixodes ricinus ticks from west-central Poland. Clin. Microbiol. Infect. 2009, 2, 81–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adaszek, Ł.; Klimiuk, P.; Skrzypczak, M.; Górna, M.; Zietek, J.; Winiarczyk, S. The identification of Anaplasma spp. Isolated from fallow deer (Dama dama) on a free-range farm in eastern Poland. Pol. J. Vet. Sci. 2012, 15, 393–394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karbowiak, G.; Víchová, B.; Werszko, J.; Demiaszkiewicz, A.W.; Pyziel, A.M.; Sytykiewicz, H.; Szewczyk, T.; Pet’ko, B. The infection of reintroduced ruminants-Bison bonasus and Alces alces-with Anaplasma phagocytophilum in northern Poland. Acta Parasitol. 2015, 60, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Teodorowski, O.; Radzki, R.; Kalinowski, M.; Winiarczyk, S.; Garcia Bocanegra, I.; Winiarczyk, D.; Adaszek, Ł. Molecular detection of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) in eastern Poland. Ann. Agric. Environ. Med. 2020, 27, 702–705. [Google Scholar] [CrossRef]
- Skotarczak, B.; Adamska, M.; Sawczuk, M.; Maciejewska, A.; Wodecka, B.; Rymaszewska, A. Coexistence of tick-borne pathogens in game animals and ticks in western Poland. Vet. Med. 2008, 53, 668–675. [Google Scholar] [CrossRef] [Green Version]
- Hapunik, J.; Víchová, B.; Karbowiak, G.; Wita, I.; Bogdaszewski, M.; Pet’ko, B. Wild and farm breeding cervids infections with Anaplasma phagocytophilum. Ann. Agric. Environ. Med. 2011, 18, 73–77. [Google Scholar]
- Yang, J.; Liu, Z.; Niu, Q.; Luo, J.; Wang, X.; Yin, H. Molecular detection of Anaplasma phagocytophilum in wild cervids and hares in China. J. Wildl. Dis. 2017, 53, 420–423. [Google Scholar] [CrossRef]
- Remesar, S.; Díaz, P.; Prieto, A.; García-Dios, D.; Fernández, G.; López, C.M.; Panadero, R.; Díez-Baños, P.; Morrondo, P. Prevalence and molecular characterization of Anaplasma phagocytophilum in roe deer (Capreolus capreolus) from Spain. Ticks Tick Borne Dis. 2020, 11, 101351. [Google Scholar] [CrossRef] [PubMed]
- Adamska, M. The role of different species of wild ungulates and Ixodes ricinus ticks in the circulation of genetic variants of Anaplasma phagocytophilum in a forest biotope in north-western Poland. Ticks Tick Borne Dis. 2020, 11, 101465. [Google Scholar] [CrossRef] [PubMed]
- Kazimírová, M.; Hamšíková, Z.; Špitalská, E.; Minichová, L.; Mahríková, L.; Caban, R.; Sprong, H.; Fonville, M.; Schnittger, L.; Kocianová, E. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors 2018, 11, 495. [Google Scholar] [CrossRef]
- Silaghi, C.; Hamel, D.; Thiel, C.; Pfister, K.; Passos, L.M.; Rehbein, S. Genetic variants of Anaplasma phagocytophilum in wild caprine and cervid ungulates from the Alps in Tyrol, Austria. Vector Borne Zoonotic Dis. 2011, 11, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Ball, M.C.; Lankester, M.W.; Mahoney, S.P. Factors affecting the distribution and transmission of Elaphostrongylus rangiferi (Protostrongylidae) in caribou (Rangifer tarandus caribou) of Newfoundland, Canada. Can. J. Zool. 2011, 79, 1265–1277. [Google Scholar] [CrossRef] [Green Version]
- Altman, D.G.; Machin, D.; Bryantm, T.N.; Gardner, M.J. Statistics with Confidence, 2nd ed.; BMJ Books: Bristol, UK, 2000. [Google Scholar]
- Gwet, K.L. Computing inter-rater reliability and its variance in the presence of high agreement. Br. J. Math. Stat. Psychol. 2008, 61 Pt 1, 29–48. [Google Scholar] [CrossRef] [Green Version]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [Green Version]
Species | Young 1 | Adults | p-Value | ||
---|---|---|---|---|---|
No. of Positive Animals/No. of All Young Animals | Prevalence (CI 95%) | No. of Positive Animals/No. of All Adult Animals | Prevalence (CI 95%) | ||
Red deer (n = 90) | 22/33 | 66.7 (49.6, 80.2) | 28/57 | 49.1 (36.6, 61.7) | 0.104 |
Roe deer (n = 70) | 8/14 | 57.1 (32.6, 78.6) | 31/56 | 55.4 (42.4, 67.6) | 0.904 |
Fallow deer (n = 36) | 0/5 | 0 (0, 43.4) | 0/31 | 0 (0, 11.0) | >0.999 |
Moose (n = 11) | 2/5 | 40.0 (11.8, 76.9) | 0/6 | 0 (0, 39.0) | 0.182 |
Overall (n = 207) | 32/57 | 56.1 (43.3, 68.2) | 59/150 | 39.3 (31.9, 47.3) | 0.030 * |
Species | Females | Males | p-Value | ||
---|---|---|---|---|---|
No. of Positive Animals/No. of Females | Prevalence (CI 95%) | No. of Positive Animals/No. of Males | Prevalence (CI 95%) | ||
Red deer (n = 57) | 23/49 | 46.9 (33.7, 60.6) | 5/8 | 62.5 (30.6, 86.3) | 0.470 |
Roe deer (n = 56) | 25/49 | 51.0 (37.5, 64.4) | 6/7 | 85.7 (48.7, 97.4) | 0.117 |
Fallow deer (n = 31) | 0/9 | 0 (0, 29.9) | 0/22 | 0 (0, 14.9) | >0.999 |
Moose (n = 6) | 0/3 | 0 (0, 56.2) | 0/3 | 0 (0, 56.2) | >0.999 |
Overall (n = 150) | 48/110 | 43.6 (34.7, 53.0) | 11/40 | 27.5 (16.1, 42.8) | 0.069 |
Continent | Host | Country | GenBank No. | |
---|---|---|---|---|
EUROPE | Red fox (Vulpes vulpes) | Switzerland | KX180948.1 | |
Poland | MH328211.1 | |||
Dog (Canis lupus familiaris) | Croatia | KY114936.1 | ||
Germany | JX173651.1 | |||
Sheep (Ovis aries) | Norway | CP015376.1 | ||
Red deer (Cervus elaphus) | Slovenia | KM215243.1 | ||
Roe deer (Capreolus capreolus) | Spain | MN170723.1 | ||
Tick (Ixodes ricinus) | Estonia | MW922755.1 | ||
Belarus | HQ629915.1 | |||
Austria | JX173652.1 | |||
European badger (Meles meles) | Poland | MH328211 | ||
Wild boar (Sus scrofa) | Poland | MT510541.1 | ||
Bank vole (Clethrionomys glareolus) | United Kingdom | AY082656.1 | ||
European hedgehog (Erinaceus europaeus) | Germany | FN390878.1 | ||
Human (Homo sapiens) | Austria | KT454992.1 | ||
Belgium | KM259921.1 | |||
AFRICA | Dog (Canis lupus familiaris) | Republic of South Africa (RSA) | MK814406.1 | |
Natal multimammate mouse (Mastomys natalensis) | RSA | MK814411.1 | ||
NORTH AMERICA | Tick (Ixodes pacificus) | United States of America (USA) | KP276588.1 | |
Llama (Lama glama) | USA | AF241532.1 | ||
Horse (Equus ferus caballus) | USA | AF172166.1 | ||
Coyote (Canis latrans) | USA | AF170728.1 | ||
Human (Homo sapiens) | USA | AF093788.1 | ||
ASIA | Tick | Ixodes persulcatus | Russia (Irkutsk region) | HM366584.1 |
Ixodes ricinus | Turkey | FJ172530.1 | ||
Haemaphysalis longicornis | China | KF569908 | ||
South Korea | GU064898 | |||
Northern red-backed vole (Myodes rutilus) | Russia (Sverdlovsk region) | HQ630622.1 | ||
Dog (Canis lupus familiaris) | Iraq | MN453475.1 | ||
Japan | LC334014.1 | |||
Raccoon dog (Nyctereutes procyonoides) | South Korea | KY458557.1 | ||
Black-striped field mouse (Apodemus agrarius) | South Korea | KR611719.1 | ||
China | GQ412337 | |||
DQ342324 | ||||
Cat (Felis catus) | South Korea | KR021165.1 | ||
Cow (Bos taurus taurus) | Turkey | KP745629.1 | ||
Goat (Capra hircus) | China | KF569909.1 | ||
Human (Homo sapiens) | South Korea | KP306520.1 |
GenBank No. | Host | Sample | Isolation Source | GenBank No. | Region of Origin |
---|---|---|---|---|---|
MZ314415 | Red deer | J23 | Spleen | MZ314415 | Pisz Forest |
MZ317900 | Red deer | J28 | Spleen | MZ317900 | Pisz Forest |
MZ317903 | Red deer | J75 | Liver | MZ317903 | Pisz Forest |
MZ317901 | Red deer | J80 | Liver | MZ317901 | Pisz Forest |
MZ314416 | Red deer | J70 | Spleen | MZ314416 | Pisz Forest |
MZ317902 | Moose | L9 | Liver | MZ317902 | Warsaw Urban Forest |
MZ317897 | Moose | L6 | Spleen | MZ317897 | Warsaw Urban Forest |
MZ314417 | Roe deer | S63 | Spleen | MZ314417 | Strobawa–Turawa Forest |
MZ317898 | Roe deer | S36 | Spleen | MZ317898 | Bolimów Forest |
MZ317904 | Roe deer | S24 | Liver | MZ317904 | Pisz Forest |
MZ317899 | Roe deer | S42 | Spleen | MZ317899 | Pisz Forest |
MZ319389 | Roe deer | S7 | Liver | MZ319389 | Pisz Forest |
MZ319390 | Roe deer | S8 | Spleen | MZ319390 | Pisz Forest |
Species | Adults 1 | Young 1 | Total | |
---|---|---|---|---|
Males | Females | |||
Red deer | 8 (0) | 49 (15) | 33 (0) | 90 (15) |
Fallow deer | 22 (20) | 9 (2) | 5 (5) | 36 (27) |
Roe deer | 7 | 49 | 14 | 70 |
Moose | 3 | 3 | 5 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myczka, A.W.; Steiner-Bogdaszewska, Ż.; Filip-Hutsch, K.; Oloś, G.; Czopowicz, M.; Laskowski, Z. Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland. Pathogens 2021, 10, 1190. https://doi.org/10.3390/pathogens10091190
Myczka AW, Steiner-Bogdaszewska Ż, Filip-Hutsch K, Oloś G, Czopowicz M, Laskowski Z. Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland. Pathogens. 2021; 10(9):1190. https://doi.org/10.3390/pathogens10091190
Chicago/Turabian StyleMyczka, Anna W., Żaneta Steiner-Bogdaszewska, Katarzyna Filip-Hutsch, Grzegorz Oloś, Michał Czopowicz, and Zdzisław Laskowski. 2021. "Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland" Pathogens 10, no. 9: 1190. https://doi.org/10.3390/pathogens10091190
APA StyleMyczka, A. W., Steiner-Bogdaszewska, Ż., Filip-Hutsch, K., Oloś, G., Czopowicz, M., & Laskowski, Z. (2021). Detection of Anaplasma phagocytophilum in Wild and Farmed Cervids in Poland. Pathogens, 10(9), 1190. https://doi.org/10.3390/pathogens10091190