Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management
Abstract
1. Introduction
2. Epidemiology, Clinics, Therapy, and Prevention
3. Major GAS Virulence Factors
3.1. GAS Adhesins
3.2. GAS Secreted Factors
4. Major GAS TCS and Stand-Alone Transcriptional Regulators Involved in Virulence
4.1. GAS TCS Involved in Virulence
4.1.1. CovR/S
4.1.2. Ihk/Irr
4.1.3. CiaH/R
4.1.4. FasBCA/X
4.2. GAS Stand-Alone Regulators Involved in Virulence
4.2.1. Multiple Gene Regulator of Group A Streptococci—Mga
4.2.2. RALP Family Stand-Alone Regulators
4.2.3. Rgg/RopB
4.2.4. PerR
5. TCS and Stand-Alone Regulators as Potential Antibacterial Targets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wessels, M.R. Pharyngitis and Scarlet fever. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Fer-retti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 512–525. [Google Scholar]
- Stevens, D.L.; Bryant, A.E. Impetigo, erysipelas and cellulitis. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 526–539. [Google Scholar]
- Stevens, D.L.; Bryant, A.E. Necrotizing soft-tissue infections. N. Engl. J. Med. 2017, 377, 2253–2265. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E. Severe group a streptococcal infections. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 540–560. [Google Scholar]
- Carapetis, J.R.; Beaton, A.; Cunningham, M.W.; Guilherme, L.; Karthikeyan, G.; Mayosi, B.M.; Sable, C.; Steer, A.; Wilson, N.; Wyber, R.; et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Prim. 2016, 2, 1–24. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, B.; Haas, M. Post-streptococcal glomerulonephritis. In Post-Streptococcal Glomerulonephritis; Oxford University Press: Oxford, UK, 2018; pp. 593–612. [Google Scholar]
- Cunningham, M.W. Molecular mimicry, autoimmunity, and Infection: The cross-reactive antigens of group a streptococci and their Sequelae. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Fischetti, V.A. M Protein and other surface proteins on streptococci. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 23–43. [Google Scholar]
- Avire, N.; Whiley, H.; Ross, K. A Review of Streptococcus pyogenes: Public health risk factors, prevention and control. Pathogens 2021, 10, 248. [Google Scholar] [CrossRef]
- Bessen, D.E. Molecular basis of serotyping and the underlying genetic organization of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 74–82. [Google Scholar]
- Lancefield, R.C. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 1962, 89, 307–313. [Google Scholar]
- Efstratiou, A.; Lamagni, T. Epidemiology of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 437–457. [Google Scholar]
- De Crombrugghe, G.; Baroux, N.; Botteaux, A.; Moreland, N.; Williamson, D.A.; Steer, A.C.; Smeesters, P.R. The limitations of the rheumatogenic concept for group a streptococcus: Systematic review and genetic analysis. Clin. Infect. Dis. 2019, 70, 1453–1460. [Google Scholar] [CrossRef]
- Norrby-Teglund, A.; Siemens, N. Is it time to reconsider the group a streptococcal rheumatogenic concept? Clin. Infect. Dis. 2019, 70, 1461–1462. [Google Scholar] [CrossRef]
- Guzman-Cottrill, J.A.; Jaggi, P.; Shulman, S.T. Acute rheumatic fever: Clinical aspects and insights into pathogenesis and prevention. Clin. Appl. Immunol. Rev. 2004, 4, 263–276. [Google Scholar] [CrossRef]
- Gray, L.-A.; D’Antoine, H.A.; Tong, S.; McKinnon, M.; Bessarab, D.; Brown, N.; Reményi, B.; Steer, A.; Syn, G.; Blackwell, J.M.; et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in aboriginal australians provides support for pathogenic molecular mimicry. J. Infect. Dis. 2017, 216, 1460–1470. [Google Scholar] [CrossRef]
- Parks, T.; Network, P.I.R.H.D.G.; Mirabel, M.M.; Kado, J.; Auckland, K.; Nowak, J.; Rautanen, A.; Mentzer, A.J.; Marijon, E.; Jouven, X.; et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat. Commun. 2017, 8, 14946. [Google Scholar] [CrossRef]
- Cunningham, M.W. Post-streptococcal autoimmune sequelae: Rheumatic fever and beyond. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 613–643. [Google Scholar]
- Orefici, G.; Cardona, F.; Cox, C.J.; Cunningham, M.W. Pediatric autoimmune neuropsychiatric disorders asso-ciated with Streptococcal infections (PANDAS). In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 561–592. [Google Scholar]
- Kaplan, E.L. The group A streptococcal upper respiratory tract carrier state: An enigma. J. Pediatr. 1980, 97, 337–345. [Google Scholar] [CrossRef]
- Flores, A.R.; Jewell, B.E.; Yelamanchili, D.; Olsen, R.J.; Musser, J.M. A single amino acid replacement in the sensor kinase lias contributes to a carrier phenotype in Group A Streptococcus. Infect. Immun. 2015, 83, 4237–4246. [Google Scholar] [CrossRef]
- Flores, A.R.; Olsen, R.J.; Cantu, C.; Pallister, K.B.; Guerra, F.E.; Voyich, J.M.; Musser, J.M. Increased pilus production conferred by a naturally occurring mutation alters host-pathogen interaction in favor of carriage in Streptococcus pyogenes. Infect. Immun. 2017, 85, e00949-16. [Google Scholar] [CrossRef]
- Cattoir, V. Mechanisms of Antibiotic Resistance. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 656–692. [Google Scholar]
- Logan, L.K.; McAuley, J.B.; Shulman, S.T. Macrolide treatment failure in streptococcal pharyngitis resulting in acute rheumatic fever. Pediatrics 2012, 129, e798–e802. [Google Scholar] [CrossRef]
- Vyas, H.K.; Proctor, E.-J.; McArthur, J.; Gorman, J.; Sanderson-Smith, M. Current understanding of Group A Streptococcal biofilms. Curr. Drug Targets 2019, 20, 982–993. [Google Scholar] [CrossRef]
- Young, C.; Holder, R.C.; Dubois, L.; Reid, S.D. Streptococcus pyogenes Biofilm. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 366–390. [Google Scholar]
- Podbielski, A.; Beckert, S.; Schattke, R.; Leithäuser, F.; Lestin, F.; Goßler, B.; Kreikemeyer, B. Epidemiology and virulence gene expression of intracellular group A streptococci in tonsils of recurrently infected adults. Int. J. Med Microbiol. 2003, 293, 179–190. [Google Scholar] [CrossRef]
- Brook, I. Treatment Challenges of Group A Beta-hemolytic Streptococcal Pharyngo-Tonsillitis. Int. Arch. Otorhinolaryngol. 2016, 21, 286–296. [Google Scholar] [CrossRef] [PubMed]
- Pichichero, M.E.; Casey, J.R. Systematic review of factors contributing to penicillin treatment failure in Streptococcus pyogenes pharyngitis. Otolaryngol. Neck Surg. 2007, 137, 851–857. [Google Scholar] [CrossRef]
- Southon, S.B.; Beres, S.B.; Kachroo, P.; Saavedra, M.O.; Erlendsdóttir, H.; Haraldsson, G.; Yerramilli, P.; Pruitt, L.; Zhu, L.; Musser, J.M.; et al. Population genomic molecular epidemiological study of macrolide-resistant streptococcus pyogenes in Iceland, 1995 to 2016: Identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-Lactam Susceptibility. J. Clin. Microbiol. 2020, 58, e00638-20. [Google Scholar] [CrossRef]
- Vannice, K.S.; Ricaldi, J.; Nanduri, S.; Fang, F.C.; Lynch, J.B.; Bryson-Cahn, C.; Wright, T.; Duchin, J.; Kay, M.; Chochua, S.; et al. Streptococcus pyogenes pbp2x Mutation Confers Reduced Susceptibility to β-Lactam Antibiotics. Clin. Infect. Dis. 2020, 71, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.B.; Walker, M.J. Update on group A streptococcal vaccine development. Curr. Opin. Infect. Dis. 2020, 33, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B.D.; Huang, Y.; Lapadatescu, M.C.; Larsen, M.J.; Larsen, S.D.; et al. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 3469–3474. [Google Scholar] [CrossRef]
- Xu, Y.; Ma, Y.; Sun, H. A novel approach to develop anti-virulence agents against group A streptococcus. Virulence 2012, 3, 452–453. [Google Scholar] [CrossRef][Green Version]
- Ford, C.A.; Hurford, I.M.; Cassat, J.E. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A mini review. Front. Microbiol. 2021, 11, 632706. [Google Scholar] [CrossRef]
- Wójcik, M.; Eleftheriadis, N.; Zwinderman, M.R.; Dömling, A.S.; Dekker, F.J.; Boersma, Y.L. Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A. Eur. J. Med. Chem. 2019, 161, 93–100. [Google Scholar] [CrossRef]
- Morales, T.G.P.; Ratia, K.; Wang, D.-S.; Gogos, A.; Driver, T.G.; Federle, M.J. A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. J. Biol. Chem. 2018, 293, 931–940. [Google Scholar] [CrossRef]
- LaSarre, B.; Federle, M.J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 2013, 77, 73–111. [Google Scholar] [CrossRef]
- Courtney, H.S.; Hasty, D.L.; Dale, J. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann. Med. 2002, 34, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Kreikemeyer, B.; Klenk, M.; Podbielski, A. The intracellular status of Streptococcus pyogenes: Role of extracellular matrix-binding proteins and their regulation. Int. J. Med Microbiol. 2004, 294, 177–188. [Google Scholar] [CrossRef]
- Courtney, H.S.; Ofek, I.; Simpson, W.A.; Hasty, D.L.; Beachey, E.H. Binding of Streptococcus pyogenes to soluble and insoluble fibronectin. Infect. Immun. 1986, 53, 454–459. [Google Scholar] [CrossRef]
- Okada, N.; Liszewski, M.K.; Atkinson, J.P.; Caparon, M. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci. USA 1995, 92, 2489–2493. [Google Scholar] [CrossRef]
- Frick, I.-M.; Schmidtchen, A.; Sjöbring, U. Interactions between M proteins ofStreptococcus pyogenesand glycosaminoglycans promote bacterial adhesion to host cells. JBIC J. Biol. Inorg. Chem. 2003, 270, 2303–2311. [Google Scholar] [CrossRef] [PubMed]
- Rohde, M.; Cleary, P.P. Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Kreikemeyer, B.; Nakata, M.; Oehmcke, S.; Gschwendtner, C.; Normann, J.; Podbielski, A. Streptococcus pyogenes Collagen Type I-binding Cpa Surface Protein. J. Biol. Chem. 2005, 280, 33228–33239. [Google Scholar] [CrossRef] [PubMed]
- Valentin-Weigand, P.; Grulich-Henn, J.; Chhatwal, G.S.; Muller-Berghaus, G.; Blobel, H.; Preissner, K.T. Media-tion of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect. Immun. 1988, 56, 2851–2855. [Google Scholar] [CrossRef] [PubMed]
- Boel, G.; Jin, H.; Pancholi, V. Inhibition of cell surface export of Group A Streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect. Immun. 2005, 73, 6237–6248. [Google Scholar] [CrossRef] [PubMed]
- Cork, A.J.; Jergic, S.; Hammerschmidt, S.; Kobe, B.; Pancholi, V.; Benesch, J.L.P.; Robinson, C.; Dixon, N.E.; Aquilina, J.A.; Walker, M.J. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J. Biol. Chem. 2009, 284, 17129–17137. [Google Scholar] [CrossRef]
- Linke-Winnebeck, C.; Siemens, N.; Middleditch, M.J.; Kreikemeyer, B.; Baker, E.N. Purification, crystallization and preliminary crystallographic analysis of the adhesion domain of Epf fromStreptococcus pyogenes. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 793–797. [Google Scholar] [CrossRef]
- Linke-Winnebeck, C.; Siemens, N.; Oehmcke, S.; Radjainia, M.; Law, R.H.; Whisstock, J.C.; Baker, E.N.; Kreikemeyer, B. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module. J. Biol. Chem. 2012, 287, 38178–38189. [Google Scholar] [CrossRef] [PubMed]
- Uhlmann, J.; Siemens, N.; Kai-Larsen, Y.; Fiedler, T.; Bergman, P.; Johansson, L.; Norrby-Teglund, A. Phosphoglycerate Kinase—A novel streptococcal factor involved in neutrophil activation and degranulation. J. Infect. Dis. 2016, 214, 1876–1883. [Google Scholar] [CrossRef]
- LaPenta, D.; Rubens, C.; Chi, E.; Cleary, P.P. Group A streptococci efficiently invade human respiratory epithelial cells. Proc. Natl. Acad. Sci. USA 1994, 91, 12115–12119. [Google Scholar] [CrossRef] [PubMed]
- Dombek, P.E.; Cue, D.; Sedgewick, J.; Lam, H.; Ruschkowski, S.; Finlay, B.B.; Cleary, P.P. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 1999, 31, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Thulin, P.; Low, D.E.; Norrby-Teglund, A. Getting under the Skin: The Immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin. Infect. Dis. 2010, 51, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Siemens, N.; Chakrakodi, B.; Shambat, S.M.; Morgan, M.; Bergsten, H.; Hyldegaard, O.; Skrede, S.; Arnell, P.; Madsen, M.B.; Johansson, L.; et al. Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight 2016, 1, e87882. [Google Scholar] [CrossRef] [PubMed]
- Thänert, R.; INFECT Study Group; Itzek, A.; Hoßmann, J.; Hamisch, D.; Madsen, M.; Hyldegaard, O.; Skrede, S.; Bruun, T.; Norrby-Teglund, A.; et al. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Timmer, A.M.; Timmer, J.C.; Pence, M.A.; Hsu, L.-C.; Ghochani, M.; Frey, T.G.; Karin, M.; Salvesen, G.S.; Nizet, V. Streptolysin o promotes Group A Streptococcus immune evasion by accelerated macrophage apoptosis. J. Biol. Chem. 2009, 284, 862–871. [Google Scholar] [CrossRef]
- Shewell, L.K.; Day, C.J.; Jen, F.E.-C.; Haselhorst, T.; Atack, J.M.; Reijneveld, J.F.; Everest-Dass, A.; James, D.B.A.; Boguslawski, K.M.; Brouwer, S.; et al. All major cholesterol-dependent cytolysins use glycans as cellular receptors. Sci. Adv. 2020, 6, eaaz4926. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Caparon, M.G. The NADase-Negative Variant of the Streptococcus pyogenes Toxin NAD + Glycohydrolase Induces JNK1-mediated programmed cellular necrosis. mBio 2016, 7, 02215. [Google Scholar] [CrossRef]
- Keyel, P.A.; Roth, R.; Yokoyama, W.M.; Heuser, J.E.; Salter, R.D. Reduction of Streptolysin O (SLO) pore-forming activity enhances inflammasome activation. Toxins 2013, 5, 1105–1118. [Google Scholar] [CrossRef]
- Nizet, V.; Beall, B.; Bast, D.J.; Datta, V.; Kilburn, L.; Low, D.E.; De Azavedo, J.C.S. Genetic Locus for Streptolysin S Production by Group A Streptococcus. Infect. Immun. 2000, 68, 4245–4254. [Google Scholar] [CrossRef] [PubMed]
- Carr, A.; Sledjeski, D.D.; Podbielski, A.; Boyle, M.D.; Kreikemeyer, B. Similarities between Complement-mediated and Streptolysin S-mediated Hemolysis. J. Biol. Chem. 2001, 276, 41790–41796. [Google Scholar] [CrossRef]
- Higashi, D.L.; Biais, N.; Donahue, D.L.; Mayfield, J.A.; Tessier, C.R.; Rodriguez, K.; Ashfeld, B.L.; Luchetti, J.; Ploplis, V.A.; Castellino, F.J.; et al. Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis. Nat. Microbiol. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed]
- Pinho-Ribeiro, F.A.; Baddal, B.; Haarsma, R.; O’Seaghdha, M.; Yang, N.J.; Blake, K.J.; Portley, M.; Verri, W.; Dale, J.B.; Wessels, M.R.; et al. Blocking neuronal signaling to immune cells treats Streptococcal invasive infection. Cell 2018, 173, 1083–1097.e22. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, S.; Döhrmann, S.; Timmer, A.M.; Dixit, N.; Ghochani, M.; Bhandari, T.; Timmer, J.C.; Sprague, K.; Bubeck-Wardenburg, J.; Simon, S.I.; et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to Group A Streptococcus. Front. Immunol. 2015, 6, 581. [Google Scholar] [CrossRef] [PubMed]
- Shumba, P.; Shambat, S.M.; Siemens, N. The role of streptococcal and staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins 2019, 11, 332. [Google Scholar] [CrossRef]
- Collin, M.; Björck, L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol. Biol. 2017, 1535, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Naegeli, A.; Bratanis, E.; Karlsson, C.; Shannon, O.; Kalluru, R.; Linder, A.; Malmström, J.; Collin, M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J. Exp. Med. 2019, 216, 1615–1629. [Google Scholar] [CrossRef] [PubMed]
- Cleary, P.P.; Prahbu, U.; Dale, J.B.; Wexler, D.E.; Handley, J. Streptococcal C5a peptidase is a highly specific en-dopeptidase. Infect. Immun. 1992, 60, 5219–5223. [Google Scholar] [CrossRef]
- Lynskey, N.N.; Reglinski, M.; Calay, D.; Siggins, M.K.; Mason, J.C.; Botto, M.; Sriskandan, S. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLOS Pathog. 2017, 13, e1006493. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-Grass, C.; Dan-Goor, M.; Maly, A.; Eran, Y.; Kwinn, L.A.; Nizet, V.; Ravins, M.; Jaffe, J.; Peyser, A.; E Moses, A.; et al. Effect of a bacterial pheromone peptide on host chemokine degradation in group A streptococcal necrotising soft-tissue infections. Lancet 2004, 363, 696–703. [Google Scholar] [CrossRef]
- Hidalgo-Grass, C.; Mishalian, I.; Dan-Goor, M.; Belotserkovsky, I.; Eran, Y.; Nizet, V.; Peled, A.; Hanski, E. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 2006, 25, 4628–4637. [Google Scholar] [CrossRef]
- Khil, J.; Im, M.; Heath, A.; Ringdahl, U.; Mundada, L.; Engleberg, N.C.; Fay, W.P. Plasminogen enhances virulence of Group A Streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J. Infect. Dis. 2003, 188, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, P.; Rasmussen, M.; Von Pawel-Rammingen, U.; Björck, L. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology 2004, 150, 1559–1569. [Google Scholar] [CrossRef] [PubMed]
- Raeder, R.; Woischnik, M.; Podbielski, A.; Boyle, M. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties. Res. Microbiol. 1998, 149, 539–548. [Google Scholar] [CrossRef]
- Wexler, D.E.; Chenoweth, D.E.; Cleary, P.P. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA 1985, 82, 8144–8148. [Google Scholar] [CrossRef]
- Allhorn, M.; Olsén, A.; Collin, M. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol. 2008, 8, 3. [Google Scholar] [CrossRef]
- Aziz, R.; Pabst, M.J.; Jeng, A.; Kansal, R.; Low, D.E.; Nizet, V.; Kotb, M. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 2003, 51, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Pinkney, M.; Kapur, V.; Smith, J.; Weller, U.; Palmer, M.; Glanville, M.; Messner, M.; Musser, J.M.; Bhakdi, S.; Ke-hoe, M.A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli ex-pressing recombinant toxin: Cleavage by streptococcal cysteine protease. Infect. Immun. 1995, 63, 2776–2779. [Google Scholar] [CrossRef] [PubMed]
- Collin, M.; Olsén, A. Effect of SpeB and EndoS from Streptococcus pyogenes on Human Immunoglobulins. Infect. Immun. 2001, 69, 7187–7189. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-F.; Lin, Y.-S.; Chuang, W.-J.; Wu, J.-J.; Tsao, N. Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect. Immun. 2008, 76, 1163–1169. [Google Scholar] [CrossRef]
- LaRock, C.; Todd, J.; LaRock, D.L.; Olson, J.; O’Donoghue, A.J.; Robertson, A.; Cooper, M.A.; Hoffman, H.M.; Nizet, V. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 2016, 1, eaah3539. [Google Scholar] [CrossRef]
- Egesten, A.; Olin, A.I.; Linge, H.; Yadav, M.; Mörgelin, M.; Karlsson, A.; Collin, M. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS ONE 2009, 4, e4769. [Google Scholar] [CrossRef] [PubMed]
- Siemens, N.; Snäll, J.; Svensson, M.; Norrby-Teglund, A. Pathogenic mechanisms of streptococcal necrotizing soft tissue infections. Adv. Exp. Med. Biol. 2020, 1294, 127–150. [Google Scholar] [CrossRef]
- Beres, S.; Sylva, G.L.; Barbian, K.D.; Lei, B.; Hoff, J.S.; Mammarella, N.D.; Liu, M.-Y.; Smoot, J.C.; Porcella, S.F.; Parkins, L.D.; et al. Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 2002, 99, 10078–10083. [Google Scholar] [CrossRef]
- Ferretti, J.J.; McShan, W.M.; Ajdic, D.; Savic, D.J.; Savic, G.; Lyon, K.; Primeaux, C.; Sezate, S.; Suvorov, A.N.; Kenton, S.; et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 2001, 98, 4658–4663. [Google Scholar] [CrossRef]
- Smoot, J.C.; Barbian, K.D.; Van Gompel, J.J.; Smoot, L.M.; Chaussee, M.S.; Sylva, G.L.; Sturdevant, D.E.; Ricklefs, S.M.; Porcella, S.F.; Parkins, L.D.; et al. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 2002, 99, 4668–4673. [Google Scholar] [CrossRef] [PubMed]
- Vega, L.A.; Malke, H.; McIver, K.S. Virulence-Related Transcriptional Regulators of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 254–304. [Google Scholar]
- Kreikemeyer, B.; McIver, K.; Podbielski, A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol. 2003, 11, 224–232. [Google Scholar] [CrossRef]
- Gryllos, I.; Levin, J.C.; Wessels, M.R. The CsrR/CsrS two-component system of group A Streptococcus responds to environmental Mg2+. Proc. Natl. Acad. Sci. USA 2003, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed]
- Gryllos, I.; Tran-Winkler, H.J.; Cheng, M.-F.; Chung, H.; Bolcome, R.; Lu, W.; Lehrer, R.I.; Wessels, M.R. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl. Acad. Sci. USA 2008, 105, 16755–16760. [Google Scholar] [CrossRef] [PubMed]
- Graham, M.R.; Smoot, L.M.; Migliaccio, C.A.L.; Virtaneva, K.; Sturdevant, D.E.; Porcella, S.F.; Federle, M.J.; Adams, G.J.; Scott, J.R.; Musser, J.M. Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 13855–13860. [Google Scholar] [CrossRef] [PubMed]
- Bernish, B.; van de Rijn, I. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J. Biol. Chem. 1999, 274, 4786–4793. [Google Scholar] [CrossRef]
- Darmstadt, G.L.; Mentele, L.; Podbielski, A.; Rubens, C.E. Role of Group A Streptococcal virulence factors in adherence to keratinocytes. Infect. Immun. 2000, 68, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Heath, A.; DiRita, V.J.; Barg, N.L.; Engleberg, N.C. A Two-component regulatory system, CsrR-CsrS, represses expression of three streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 1999, 67, 5298–5305. [Google Scholar] [CrossRef] [PubMed]
- Shelburne, S.A.; Olsen, R.J.; Suber, B.; Sahasrabhojane, P.; Sumby, P.; Brennan, R.G.; Musser, J.M. A Combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS Pathog. 2010, 6, e1000817. [Google Scholar] [CrossRef]
- Roberts, S.A.; Scott, J.R. RivR and the small RNA RivX: The missing links between the CovR regulatory cascade and the Mga regulon. Mol. Microbiol. 2007, 66, 1506–1522. [Google Scholar] [CrossRef]
- Treviño, J.; Liu, Z.; Cao, T.N.; Ramirez-Peña, E.; Sumby, P. RivR Is a Negative regulator of virulence factor expression in Group A Streptococcus. Infect. Immun. 2012, 81, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Engleberg, N.C.; Heath, A.; Miller, A.; Rivera, C.; DiRita, V.J. Spontaneous mutations in the CsrRS two-component regulatory system ofstreptococcus pyogenesresult in enhanced virulence in a murine model of skin and soft tissue infection. J. Infect. Dis. 2001, 183, 1043–1054. [Google Scholar] [CrossRef]
- Sumby, P.; Whitney, A.R.; A Graviss, E.; DeLeo, F.; Musser, J.M. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Hollands, A.; Sanderson-Smith, M.L.; Cole, J.N.; Kirk, J.K.; Henningham, A.; McArthur, J.D.; Dinkla, K.; Aziz, R.; Kansal, R.G.; et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 2007, 13, 981–985. [Google Scholar] [CrossRef]
- Cole, J.N.; Barnett, T.; Nizet, V.; Walker, M.J. Molecular insight into invasive group A streptococcal disease. Nat. Rev. Genet. 2011, 9, 724–736. [Google Scholar] [CrossRef]
- Cole, J.N.; Mcarthur, J.D.; Mckay, F.C.; Sanderson-Smith, M.L.; Cork, A.J.; Ranson, M.; Rohde, M.; Itzek, A.; Sun, H.; Ginsburg, D.; et al. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 2006, 20, 1745–1747. [Google Scholar] [CrossRef]
- Kansal, R.G.; McGeer, A.; Low, D.E.; Norrby-Teglund, A.; Kotb, M. Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease, SpeB, among Clonal M1T1 isolates recovered from invasive Group A streptococcal infection cases. Infect. Immun. 2000, 68, 6362–6369. [Google Scholar] [CrossRef]
- Gubba, S.; Low, D.E.; Musser, J.M. Expression and characterization of Group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes. Infect. Immun. 1998, 66, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.F.; Wu, J.J.; Lin, K.Y.; Tsai, P.J.; Lee, S.C.; Jin, Y.T.; Lei, H.Y.; Lin, Y.S. Role of streptococcal pyrogenic exo-toxin B in the mouse model of group A streptococcal infection. Infect. Immun. 1998, 66, 3931–3935. [Google Scholar] [CrossRef] [PubMed]
- Lukomski, S.; Burns, E.H.; Wyde, P.R.; Podbielski, A.; Rurangirwa, J.; Moore-Poveda, D.K.; Musser, J.M. Genetic Inactivation of an Extracellular Cysteine Protease (SpeB) Expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 1998, 66, 771–776. [Google Scholar] [CrossRef]
- Lukomski, S.; Montgomery, C.A.; Rurangirwa, J.; Geske, R.S.; Barrish, J.P.; Adams, G.J.; Musser, J.M. Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect. Immun. 1999, 67, 1779–1788. [Google Scholar] [CrossRef]
- Lukomski, S.; Sreevatsan, S.; Amberg, C.; Reichardt, W.; Woischnik, M.; Podbielski, A.; Musser, J.M. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Investig. 1997, 99, 2574–2580. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, C.D.; Warren, H.B.; Carey, V.J.; Wessels, M.R. Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J. Clin. Investig. 1998, 102, 550–560. [Google Scholar] [CrossRef]
- Ashbaugh, C.D.; Wessels, M.R. Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group a streptococcal infection. Infect. Immun. 2001, 69, 6683–6688. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Hertzén, E.; Johansson, L.; Kansal, R.; Hecht, A.; Dahesh, S.; Janos, M.; Nizet, V.; Kotb, M.; Norrby-Teglund, A. Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS ONE 2012, 7, e35218. [Google Scholar] [CrossRef]
- Voyich, J.M.; Sturdevant, D.E.; Braughton, K.R.; Kobayashi, S.D.; Lei, B.; Virtaneva, K.; Dorward, D.W.; Musser, J.M.; DeLeo, F.R. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 1996–2001. [Google Scholar] [CrossRef]
- Kachroo, P.; Eraso, J.M.; Olsen, R.J.; Zhu, L.; Kubiak, S.L.; Pruitt, L.; Yerramilli, P.; Cantu, C.C.; Saavedra, M.O.; Pensar, J.; et al. New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. mBio 2020, 11, 11. [Google Scholar] [CrossRef]
- Mejia, A.G.; Gámez, G.; Hammerschmidt, S. Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int. J. Med. Microbiol. 2018, 308, 722–737. [Google Scholar] [CrossRef] [PubMed]
- Riani, C.; Standar, K.; Srimuang, S.; Lembke, C.; Kreikemeyer, B.; Podbielski, A. Transcriptome analyses extend understanding of Streptococcus pyogenes regulatory mechanisms and behavior toward immunomodulatory substances. Int. J. Med. Microbiol. 2007, 297, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Tatsuno, I.; Isaka, M.; Okada, R.; Zhang, Y.; Hasegawa, T. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes. BMC Res. Notes 2014, 7, 189. [Google Scholar] [CrossRef] [PubMed]
- Kreikemeyer, B.; Boyle, M.D.P.; Buttaro, B.A.; Heinemann, M.; Podbielski, A. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol. 2001, 39, 392–406. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Peña, E.; Treviño, J.; Liu, Z.; Perez, N.; Sumby, P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol. Microbiol. 2010, 78, 1332–1347. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Treviño, J.; Ramirez-Peña, E.; Sumby, P. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus. Mol. Microbiol. 2012, 86, 140–154. [Google Scholar] [CrossRef]
- Spanier, J.; Jones, S.; Cleary, P. Small DNA deletions creating avirulence in Streptococcus pyogenes. Science 1984, 225, 935–938. [Google Scholar] [CrossRef]
- Caparon, M.G.; Scott, J.R. Identification of a gene that regulates expression of M protein, the major virulence determinant of group A streptococci. Proc. Natl. Acad. Sci. USA 1987, 84, 8677–8681. [Google Scholar] [CrossRef]
- Hondorp, E.R.; McIver, K.S. The Mga virulence regulon: Infection where the grass is greener. Mol. Microbiol. 2007, 66, 1056–1065. [Google Scholar] [CrossRef]
- Caparon, M.G.; Geist, R.T.; Perez-Casal, J.; Scott, J.R. Environmental regulation of virulence in group A streptococci: Transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 1992, 174, 5693–5701. [Google Scholar] [CrossRef]
- McIver, K.; Heath, A.S.; Scott, J.R. Regulation of virulence by environmental signals in group A streptococci: Influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 1995, 63, 4540–4542. [Google Scholar] [CrossRef] [PubMed]
- Podbielski, A.; Peterson, J.A.; Cleary, P. Surface protein-CAT reporter fusions demonstrate differential gene expression in the wr regulon of Streptococcus pyogenes. Mol. Microbiol. 1992, 6, 2253–2265. [Google Scholar] [CrossRef]
- Valdes, K.M.; Sundar, G.S.; Belew, A.T.; Islam, E.; El-Sayed, N.M.; Le Breton, Y.; McIver, K.S. Glucose levels alter the mga virulence regulon in the Group A Streptococcus. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef]
- McIver, K.S.; Myles, R.L. Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol. Microbiol. 2002, 43, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Vahling, C.M.; McIver, K.S. Domains required for transcriptional activation show conservation in the Mga Family of virulence gene regulators. J. Bacteriol. 2006, 188, 863–873. [Google Scholar] [CrossRef]
- Hondorp, E.R.; Hou, S.C.; Hempstead, A.D.; Hause, L.L.; Beckett, D.M.; McIver, K.S. Characterization of the Group A Streptococcus Mga virulence regulator reveals a role for the C-terminal region in oligomerization and transcriptional activation. Mol. Microbiol. 2012, 83, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Hondorp, E.R.; Hou, S.C.; Hause, L.L.; Gera, K.; Lee, C.-E.; McIver, K.S. PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol. Microbiol. 2013, 88, 1176–1193. [Google Scholar] [CrossRef] [PubMed]
- Haanes, E.J.; Cleary, P.P. Identification of a divergent M protein gene and an M protein-related gene family in Streptococcus pyogenes serotype 49. J. Bacteriol. 1989, 171, 6397–6408. [Google Scholar] [CrossRef]
- Bessen, D.E.; Manoharan, A.; Luo, F.; Wertz, J.E.; Robinson, D.A. Evolution of transcription regulatory genes is linked to niche specialization in the bacterial pathogen Streptococcus pyogenes. J. Bacteriol. 2005, 187, 4163–4172. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Courtney, H.S.; Hasty, D.L.; Li, Y.; Chiang, H.C.; Thacker, J.L.; Dale, J.B. Serum opacity factor is a major fibronectin-binding protein and a virulence determinant of M type 2 Streptococcus pyogenes. Mol. Microbiol. 1999, 32, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Jeng, A.; Sakota, V.; Li, Z.; Datta, V.; Beall, B.; Nizet, V. Molecular Genetic Analysis of a Group A Streptococcus Operon Encoding Serum Opacity Factor and a Novel Fibronectin-Binding Protein, SfbX. J. Bacteriol. 2003, 185, 1208–1217. [Google Scholar] [CrossRef] [PubMed]
- Caswell, C.C.; Han, R.; Hovis, K.M.; Ciborowski, P.; Keene, D.R.; Marconi, R.T.; Lukomski, S. The Scl1 protein of M6-type group AStreptococcusbinds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement. Mol. Microbiol. 2008, 67, 584–596. [Google Scholar] [CrossRef]
- Caswell, C.C.; Lukomska, E.; Seo, N.-S.; Höök, M.; Lukomski, S. Scl1-dependent internalization of group A Streptococcus via direct interactions with the α2β1 integrin enhances pathogen survival and re-emergence. Mol. Microbiol. 2007, 64, 1319–1331. [Google Scholar] [CrossRef]
- Kihlberg, B.-M.; Cooney, J.; Caparon, M.G.; Olsén, A.; Björck, L. Biological properties of a Streptococcus pyogenes mutant generated by Tn916 insertion in mga. Microb. Pathog. 1995, 19, 299–315. [Google Scholar] [CrossRef]
- Le Breton, Y.; Belew, A.T.; Freiberg, J.A.; Sundar, G.S.; Islam, E.; Lieberman, J.; Shirtliff, M.E.; Tettelin, H.; El-Sayed, N.M.; McIver, K.S. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog. 2017, 13, e1006584. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Kreikemeyer, B. Genetics, structure, and function of Group A Streptococcal Pili. Front. Microbiol. 2021, 12, 616508. [Google Scholar] [CrossRef]
- Fogg, G.C.; Caparon, M.G. Constitutive expression of fibronectin binding in Streptococcus pyogenes as a result of anaerobic activation of rofA. J. Bacteriol. 1997, 179, 6172–6180. [Google Scholar] [CrossRef]
- Kreikemeyer, B.; Beckert, S.; Braun-Kiewnick, A.; Podbielski, A. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology 2002, 148, 1501–1511. [Google Scholar] [CrossRef]
- Beckert, S.; Kreikemeyer, B.; Podbielski, A. Group A Streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 2001, 69, 534–537. [Google Scholar] [CrossRef]
- Nakata, M.; Köller, T.; Moritz, K.; Ribardo, D.; Jonas, L.; McIver, K.S.; Sumitomo, T.; Terao, Y.; Kawabata, S.; Podbielski, A.; et al. Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in Streptococcus pyogenes Serotype M49. Infect. Immun. 2009, 77, 32–44. [Google Scholar] [CrossRef]
- Kreikemeyer, B.; Nakata, M.; Köller, T.; Hildisch, H.; Kourakos, V.; Standar, K.; Kawabata, S.; Glocker, M.O.; Podbielski, A. The Streptococcus pyogenes Serotype M49 Nra-Ralp3 Transcriptional regulatory network and its control of virulence factor expression from the Novel eno ralp3 epf sagA pathogenicity region. Infect. Immun. 2007, 75, 5698–5710. [Google Scholar] [CrossRef]
- Podbielski, A.; Woischnik, M.; Leonard, B.A.B.; Schmidt, K.-H. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 1999, 31, 1051–1064. [Google Scholar] [CrossRef]
- Siemens, N.; Fiedler, T.; Normann, J.; Klein, J.; Münch, R.; Patenge, N.; Kreikemeyer, B. Effects of the ERES Pathogenicity Region Regulator Ralp3 on Streptococcus pyogenes Serotype M49 virulence factor expression. J. Bacteriol. 2012, 194, 3618–3626. [Google Scholar] [CrossRef]
- Le Breton, Y.; Mistry, P.; Valdes, K.M.; Quigley, J.; Kumar, N.; Tettelin, H.; McIver, K.S. Genome-wide identification of genes required for fitness of Group A Streptococcus in human blood. Infect. Immun. 2013, 81, 862–875. [Google Scholar] [CrossRef]
- Kwinn, L.A.; Khosravi, A.; Aziz, R.K.; Timmer, A.M.; Doran, K.S.; Kotb, M.; Nizet, V. genetic characterization and virulence role of the RALP3/LSA locus upstream of the Streptolysin S Operon in Invasive M1T1 Group A Streptococcus. J. Bacteriol. 2007, 189, 1322–1329. [Google Scholar] [CrossRef]
- Chaussee, M.A.; Callegari, E.A.; Chaussee, M.S. Rgg Regulates Growth Phase-Dependent Expression of Proteins Associated with Secondary Metabolism and Stress in Streptococcus pyogenes. J. Bacteriol. 2004, 186, 7091–7099. [Google Scholar] [CrossRef]
- Chaussee, M.S.; Somerville, G.A.; Reitzer, L.; Musser, J.M. Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J. Bacteriol. 2003, 185, 6016–6024. [Google Scholar] [CrossRef]
- Dmitriev, A.V.; McDowell, E.J.; Kappeler, K.V.; Chaussee, M.A.; Rieck, L.D.; Chaussee, M.S. The Rgg regulator of streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J. Bacteriol. 2006, 188, 7230–7241. [Google Scholar] [CrossRef]
- Do, H.; Makthal, N.; VanderWal, A.R.; Rettel, M.; Savitski, M.M.; Peschek, N.; Papenfort, K.; Olsen, R.J.; Musser, J.M.; Kumaraswami, M. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc. Natl. Acad. Sci. USA 2017, 114, E8498–E8507. [Google Scholar] [CrossRef]
- Hollands, A.; Aziz, R.; Kansal, R.; Kotb, M.; Nizet, V.; Walker, M.J. A naturally occurring mutation in ropB Suppresses SpeB expression and reduces M1T1 Group A Streptococcal systemic virulence. PLoS ONE 2008, 3, e4102. [Google Scholar] [CrossRef]
- Do, H.; Makthal, N.; Vanderwal, A.R.; Saavedra, M.O.; Olsen, R.J.; Musser, J.M.; Kumaraswami, M. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gerlach, D.; Reichardt, W.; Vettermann, S. Extracellular superoxide dismutase fromStreptococcus pyogenestype 12 strain is manganese-dependent. FEMS Microbiol. Lett. 1998, 160, 217–224. [Google Scholar] [CrossRef]
- Brenot, A.; King, K.Y.; Caparon, M.G. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 2004, 55, 221–234. [Google Scholar] [CrossRef]
- King, K.Y.; Horenstein, J.A.; Caparon, M.G. Aerotolerance and Peroxide Resistance in Peroxidase and PerR Mutants of Streptococcus pyogenes. J. Bacteriol. 2000, 182, 5290–5299. [Google Scholar] [CrossRef]
- Tsou, C.-C.; Chiang-Ni, C.; Lin, Y.-S.; Chuang, W.-J.; Lin, M.-T.; Liu, C.-C.; Wu, J.-J. An Iron-Binding Protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against Multiple Stresses. Infect. Immun. 2008, 76, 4038–4045. [Google Scholar] [CrossRef][Green Version]
- Brenot, A.; King, K.Y.; Janowiak, B.; Griffith, O.; Caparon, M.G. Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect. Immun. 2004, 72, 408–413. [Google Scholar] [CrossRef]
- Bsat, N.; Herbig, A.; Casillas-Martinez, L.; Setlow, P.; Helmann, J. Bacillus subtiliscontains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 1998, 29, 189–198. [Google Scholar] [CrossRef]
- Gryllos, I.; Grifantini, R.; Colaprico, A.; Cary, M.E.; Hakansson, A.; Carey, D.W.; Suarez-Chavez, M.; Kalish, L.A.; Mitchell, P.D.; White, G.L.; et al. PerR confers phagocytic killing resistance and allows pharyngeal colonization by Group A Streptococcus. PLoS Pathog. 2008, 4, e1000145. [Google Scholar] [CrossRef]
- Brenot, A.; Weston, B.F.; Caparon, M.G. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol. Microbiol. 2007, 63, 1185–1196. [Google Scholar] [CrossRef]
- VanderWal, A.R.; Makthal, N.; Pinochet-Barros, A.; Helmann, J.D.; Olsen, R.J.; Kumaraswami, M. Iron Efflux by PmtA is critical for oxidative stress resistance and contributes significantly to Group A Streptococcus Virulence. Infect. Immun. 2017, 85, 85. [Google Scholar] [CrossRef]
- Johnson, B.K.; Abramovitch, R.B. Small molecules that sabotage bacterial virulence. Trends Pharmacol. Sci. 2017, 38, 339–362. [Google Scholar] [CrossRef]
- Koppolu, V.; Osaka, I.; Skredenske, J.M.; Kettle, B.; Hefty, P.S.; Li, J.; Egan, S.M. Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF. Infect. Immun. 2013, 81, 4220–4231. [Google Scholar] [CrossRef]
- Shakhnovich, E.A.; Hung, D.T.; Pierson, E.; Lee, K.; Mekalanos, J.J. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl. Acad. Sci. USA 2007, 104, 2372–2377. [Google Scholar] [CrossRef]
- Emanuele, A.A.; Adams, N.E.; Chen, Y.-C.; Maurelli, A.T.; Garcia, G.A. Potential novel antibiotics from HTS targeting the virulence-regulating transcription factor, VirF, from Shigella flexneri. J. Antibiot. 2014, 67, 379–386. [Google Scholar] [CrossRef]
- Hurt, J.K.; McQuade, T.J.; Emanuele, A.; Larsen, M.J.; Garcia, G.A. High-Throughput Screening of the Virulence Regulator VirF. J. Biomol. Screen. 2010, 15, 379–387. [Google Scholar] [CrossRef][Green Version]
- Shambat, S.M.; Siemens, N.; Monk, I.; Mohan, D.B.; Mukundan, S.; Krishnan, K.C.; Prabhakara, S.; Snäll, J.; Kearns, A.; Vandenesch, F.; et al. A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Sci. Rep. 2016, 6, 31360. [Google Scholar] [CrossRef]
- Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.; Otto, M.; Cheung, A.L.; Edwards, B.S.; et al. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance. PLoS Pathog. 2014, 10, e1004174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemens, N.; Lütticken, R. Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021, 10, 776. https://doi.org/10.3390/pathogens10060776
Siemens N, Lütticken R. Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens. 2021; 10(6):776. https://doi.org/10.3390/pathogens10060776
Chicago/Turabian StyleSiemens, Nikolai, and Rudolf Lütticken. 2021. "Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management" Pathogens 10, no. 6: 776. https://doi.org/10.3390/pathogens10060776
APA StyleSiemens, N., & Lütticken, R. (2021). Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens, 10(6), 776. https://doi.org/10.3390/pathogens10060776