Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development
Abstract
:1. Introduction
2. Virulence and Pathogenesis of M. pneumoniae
2.1. Adhesins
2.2. Inflammation Injury
2.2.1. Enzymes and Metabolites
2.2.2. Lipoproteins
2.2.3. Community-Acquired Respiratory Distress Syndrome (CARDS) Toxin
2.2.4. Lipids
2.2.5. Capsules
2.3. Immune Evasion
2.3.1. Molecular Mimicry
2.3.2. IbpM
2.3.3. Antigen Variation
2.3.4. Intracellular Survival
2.3.5. Others
3. Development of Vaccines against M. pneumoniae Infections
3.1. Whole-Cell Vaccines
3.2. Recombinant Protein Subunit Vaccines
3.2.1. P1 Adhesin Protein Vaccine
3.2.2. P30 Vaccine
3.2.3. P116 Vaccine
3.2.4. CARDS Toxin Vaccine
3.2.5. Recombinant Combined Vaccines
3.2.6. Other Vaccines
3.3. DNA Vaccines
3.4. Live Vector Vaccines
4. Summary and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Zhu, Y.G.; Tang, X.D.; Lu, Y.T.; Zhang, J.; Qu, J. Contemporary situation of community-acquired pneumonia in China: A systematic review. J. Transl. Int. Med. 2018, 6, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Meyer Sauteur, P.M.; Jacobs, B.C.; Spuesens, E.B.M.; Jacobs, E.; Nadal, D.; Vink, C.; Rossum, A.M.C. Antibody responses to Mycoplasma pneumoniae: Role in pathogenesis and diagnosis of encephalitis? PLoS Pathog. 2014, 10, e1003983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, S.; Self, W.H.; Wunderink, R.G.; Fakhran, S.; Balk, R.; Bramley, A.M.; Reed, C.; Grijalva, C.G.; Anderson1, E.J.; Courtney, D.M.; et al. Community-acquired pneumonia requiring Hospitalization among US adults. N. Engl. J. Med. 2015, 373, 415–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, L.; Ptacek, T.; Osborne, J.D.; Crabb, D.M.; Simmons, W.L.; Lefkowitz, E.J.; Waites, K.B.; Atkinson, T.P.; Dybvig, K. Comparative genome analysis of Mycoplasma pneumoniae. BMC Genom. 2015, 16, 610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Guo, L.; Dong, X.; Li, X.; Zhou, P.; Ni, Q.; Zhou, X.Y.; Wagner, B.L.; Li, L. Detection of viruses and Mycoplasma pneumoniae in hospitalized patients with severe acute respiratory infection in northern China, 2015–2016. Jpn. J. Infect. Dis. 2018, 71, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kutty, P.K.; Jain, S.; Taylor, T.H.; Bramley, A.M.; Diaz, M.H.; Ampofo, K.; Arnold, S.R.; Williams, D.J.; Edwards, K.M.; McCullers, J.A.; et al. Mycoplasma pneumoniae among children hospitalized with community-acquired pneumonia. Clin. Infect. Dis. 2019, 68, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Li, X.; Liu, Y.; Balish, M.F.; Atkinson, T.P. Mycoplasma pneumoniae from the respiratory tract and beyond. Clin. Microbiol. Rev. 2017, 30, 747–809. [Google Scholar] [CrossRef] [Green Version]
- Søndergaard, M.J.; Friis, M.B.; Hansen, D.S.; Jørgensen, I.M. Clinical manifestations in infants and children with Mycoplasma pneumoniae infection. PLoS ONE 2018, 13, e0195288. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.W.; Yin, J.; Hu, Y.H.; Liu, X.Y.; Feng, X.L.; He, J.X.; Liu, J.; Guo, Y.; Xu, B.P.; Shen, K.L. The epidemiology of paediatric Mycoplasma pneumoniae pneumonia in North China: 2006 to 2016. Epidemiol. Infect. 2019, 147, e192. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Roy, R.D.; Sethi, G.R.; Saigal, S.R. Mycoplasma pneumoniae infection and asthma in children. Trop. Dr. 2019, 49, 117–119. [Google Scholar] [CrossRef]
- Kassisse, E.; García, H.; Prada, L.; Salazar, I.; Kassisse, J. Prevalence of Mycoplasma pneumoniae infection in pediatric patients with acute asthma exacerbation. Arch. Argent. Pediatr. 2018, 116, 179–185. [Google Scholar] [PubMed]
- Esposito, S.; Droghetti, R.; Bosis, S.; Claut, L.; Marchisio, P.; Principi, N. Cytokine secretion in children with acute Mycoplasma pneumoniae infection and wheeze. Pediatr. Pulmonol. 2002, 34, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Narita, M. Pathogenesis of extrapulmonary manifestations of Mycoplasma pneumoniae infection with special reference to pneumonia. J. Infect. Chemother. 2010, 16, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Narita, M. Classification of extrapulmonary manifestations due to Mycoplasma pneumoniae infection on the basis of possible pathogenesis. Front. Microbiol. 2016, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Giavina-Bianchi, P.; Kalil, J. Mycoplasma pneumoniae infection induces asthma onset. J. Allergy Clin. Immunol. 2016, 137, 1024–1025. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Chalker, V.; Bermingham, A.; Harrison, T.; Mant, D.; Harnden, A. Mycoplasma pneumoniae and respiratory virus infections in children with persistent cough in England: A retrospective analysis. Pediatr. Infect. Dis. J. 2011, 30, 1047–1051. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, N.; Shinohara, T.; Oi, R.; Ota, M.; Toriumi, S.; Ogushi, F. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: A case report. J. Thorac. Dis. 2016, 8, E319–E324. [Google Scholar] [CrossRef] [Green Version]
- Meyer Sauteur, P.M.; Theiler, M.; Buettcher, M.; Seiler, M.; Weibel, L.; Berger, C. Frequency and clinical presentation of mucocutaneous disease due to Mycoplasma pneumoniae infection in children with community-acquired pneumonia. JAMA Dermatol. 2019, 156, 144–150. [Google Scholar] [CrossRef]
- Meyer Sauteur, P.M.; Goetschel, P.; Lautenschlager, S. Mycoplasma pneumoniae and mucositis--part of the Stevens-Johnson syndrome spectrum. J. Dtsch. Dermatol. Ges. 2012, 10, 740–746. [Google Scholar]
- Harr, T.; French, L.E. Toxic epidermal necrolysis and Stevens-Johnson syndrome. Orphanet. J. Rare. Dis. 2010, 5, 39. [Google Scholar] [CrossRef] [Green Version]
- Prindaville, B.; Newell, B.D.; Nopper, A.J.; Horii, K.A. Mycoplasma pneumonia—Associated mucocutaneous disease in children: Dilemmas in classification. Pediatr. dermatol. 2014, 31, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, I.; Chaudhry, R.; Chourasia, B.K.; Malhotra, P. Identification of an N-terminal 27 kDa fragment of Mycoplasma pneumoniae P116 protein as specific immunogen in M. pneumoniae infections. BMC Infect. Dis. 2010, 10, 350. [Google Scholar] [CrossRef] [Green Version]
- Drasbek, M.; Nielsen, P.K.; Persson, K.; Birkelund, S.; Christiansen, G. Immune response to Mycoplasma pneumoniae P1 and P116 in patients with atypical pneumonia analyzed by ELISA. BMC Microbiol. 2004, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer Sauteur, P.M.; Unger, W.W.; Nadal, D.; Berger, C.; Vink, C.; van Rossum, A.M. Infection with and carriage of Mycoplasma pneumoniae in children. Front. Microbiol. 2016, 7, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Groot, R.C.A.; Meyer Sauteur, P.M.; Unger, W.W.J.; van Rossum, A.M.C. Things that could be Mycoplasma pneumoniae. J. Infect. 2017, 74, S95–S100. [Google Scholar] [CrossRef]
- Spuesens, E.B.M.; Meyer Sauteur, P.M.; Vink, C.; van Rossum, A.M.C. Mycoplasma pneumoniae infections-does treatment help? J. Infect. 2014, 69, S42–S46. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Qu, J.; Yin, Y.; Eldere, J.V. Overview of antimicrobial options for Mycoplasma pneumoniae pneumonia, focus on macrolide resistance. Clin. Respir. J. 2017, 11, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Khoury, T.; Sviri, S.; Rmeileh, A.A.; Nubani, A.; Abutbul, A.; Hoss, S.; van Heerden, P.V.; Bayya, A.E.; Hidalgo-Grass, C.; Moses, A.E.; et al. Increased rates of intensive care unit admission in patients with Mycoplasma pneumoniae: A retrospective study. Clin. Microbiol. Infect. 2016, 22, 711–714. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.C.; Hsu, W.Y.; Chang, T.H. Macrolide-resistant Mycoplasma pneumoniae infections in pediatric community-acquired pneumonia. Emerg. Infect. Dis. 2020, 26, 1382–1391. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Sheng, Y.; Zhang, L.; Shen, Z.; Chen, Z. More complications occur in macrolide-resistant than in macrolide-sensitive Mycoplasma pneumoniae pneumonia. Antimicrob. Agents Chemother. 2014, 58, 1034–1038. [Google Scholar] [CrossRef] [Green Version]
- Widjaja, M.; Berry, I.J.; Jarocki, V.M.; Padula, M.P.; Dumke, R.; Djordjevic, S.P. Cell surface processing of the P1 adhesin of Mycoplasma pneumoniae identifies novel domains that bind host molecules. Sci. Rep. 2020, 10, 6384. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Prince, O.A.; Sheppard, E.S.; Krause, D.C. Processing is required for a fully functional protein P30 in Mycoplasma pneumoniae gliding and cytadherence. J. Bacteriol. 2011, 193, 5841–5846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, H.Y.; Jordan, J.L.; Kraus, D.C. Domain analysis of protein P30 in Mycoplasma pneumoniae cytadherence and gliding motility. J. Bacteriol. 2011, 193, 1726–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widjaja, M.; Berry, I.J.; Pont, E.J.; Padula, M.P.; Djordjevic, S. P40 and P90 from Mpn142 are targets of multiple processing events on the surface of Mycoplasma pneumoniae. Proteomes 2015, 3, 512–537. [Google Scholar] [CrossRef]
- Jordan, J.L.; Chang, H.Y.; Balish, M.F.; Holt, L.S.; Bose, S.R.; Hasselbring, B.M.; Waldo, R.H.; Krunkosky, T.M.; Krause, D.C. Protein P200 is dispensable for Mycoplasma pneumoniae hemadsorption but not gliding motility or colonization of differentiated bronchial epithelium. Infect. Immun. 2007, 75, 518–522. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, R.; Varshney, A.K.; Malhotra, P. Adhesion proteins of Mycoplasma pneumoniae. Front. Biosci. 2007, 12, 690–699. [Google Scholar] [CrossRef] [Green Version]
- Hasselbring, B.M.; Sheppard, E.S.; Krause, D.C. P65 truncation impacts P30 dynamics during Mycoplasma pneumoniae gliding. J. Bacteriol. 2012, 194, 3000–3007. [Google Scholar] [CrossRef] [Green Version]
- Widjaja, M.; Harvey, K.L.; Hagemann, L.; Berry, I.J.; Jarocki, V.M.; Raymond, B.B.A.; Tacchi, J.L.; Gründe, A.; Steele1, J.R.; Padula, M.P.; et al. Elongation factor Tu is a multifunctional and processed moonlighting protein. Sci. Rep. 2017, 7, 11227. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, S.; Kannan, T.R.; Baseman, J.B. The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infect. Immun. 2008, 76, 3116–3123. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Wang, H.; Wang, J.; Feng, Z.; Wu, M.; Liu, B.; Xin, J.; Xiong, Q.; Liu, M.; Shao, G. Elongation factor thermo unstable (EF-Tu) moonlights as an adhesin on the surface of Mycoplasma hyopneumoniae by binding to fibronectin. Front. Microbiol. 2018, 9, 974. [Google Scholar] [CrossRef]
- Thomas, C.; Jacobs, E.; Dumke, R. Characterization of pyruvate dehydrogenase subunit B and enolase as plasminogen-binding proteins in Mycoplasma pneumoniae. Microbiology 2013, 159, 352–365. [Google Scholar] [CrossRef] [PubMed]
- Dumke, R.; Hausner, M.; Jacobs, E. Role of Mycoplasma pneumoniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in mediating interactions with the human extracellular matrix. Microbiology 2011, 157, 2328–2338. [Google Scholar] [CrossRef] [Green Version]
- Cloward, J.M.; Krause, D.C. Loss of co-chaperone TopJ impacts adhesin P1 presentation and terminal organelle maturation in Mycoplasma pneumoniae. Mol. Microbiol. J. 2011, 81, 528–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, T.; Kida, Y.; Sakamoto, Y.; Kuwano, K. Mpn491, a secreted nuclease of Mycoplasma pneumoniae, plays a critical role in evading killing by neutrophil extracellular traps. Cell Microbiol. 2017, 19, e12666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blötz, C.; Singh, N.; Dumke, R.; Stülke, J. Characterization of an immunoglobulin binding protein (IbpM) from Mycoplasma pneumoniae. Front. Microbiol. 2020, 11, 685. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Liu, M.; Ye, Z.; Tan, T.; Liu, X.; You, X.; Zeng, Y.H.; Wu, Y.M. Insights into the pathogenesis of Mycoplasma pneumoniae. Mol. Med. Rep. 2016, 14, 4030–4036. [Google Scholar] [CrossRef] [Green Version]
- Großhennig, S.; Ischebeck, T.; Gibhardt, J.; Busse, J.; Feussner, I.; Stülke, J. Hydrogen sulfide is a novel potential virulence factor of Mycoplasma pneumoniae: Characterization of the unusual cysteine desulfurase/desulfhydrase HapE. Mol. Microbiol. 2016, 100, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Xue, G.; Zhao, H.; Feng, Y.; Yan, C.; Cui, J.; Sun, H.M. The Mycoplasma pneumoniae HapE alters the cytokine profile and growth of human bronchial epithelial cells. Biosci. Rep. 2019, 39, BSR20182201. [Google Scholar] [CrossRef] [Green Version]
- Maenpuen, S.; Watthaisong, P.; Supon, P.; Sucharitakul, J.; Parsonage, D.; Karplus, P.A.; Claiborne, A.; Chaiyen, P. Kinetic mechanism of L-α-glycerophosphate oxidase from Mycoplasma pneumoniae. FEBS J. 2015, 282, 3043–3059. [Google Scholar] [CrossRef]
- Shimizu, T.; Kimura, Y.; Kida, Y.; Kuwano, K.; Achibana, M.; Hashino, M.; Watarai, M. Cytadherence of Mycoplasma pneumoniae induces inflammatory responses through autophagy and Toll-like receptor 4. Infect. Immun. 2014, 82, 3076–3086. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.Y.; Lim, J.W.; Shimizu, T. Reactive oxygen species mediate Jak2/Stat3 activation and IL-8 expression in pulmonary epithelial cells stimulated with lipid-associated membrane proteins from Mycoplasma pneumoniae. Inflamm. Res. 2012, 61, 493–501. [Google Scholar] [CrossRef]
- Wilson, M.H.; Collier, A.M. Ultrastructural study of Mycoplasma pneumoniae in organ culture. J. Bacteriol. 1976, 125, 332–339. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Kannan, T.R.; Taylor, A.B.; Pakhomova, O.N.; Zhang, Y.; Somarajan, S.R.; Galaleldeen, A.; Holloway, S.P.; Baseman, J.B.; Hart, P.J. Structure of CARDS toxin, a unique ADP-ribosylating and vacuolating cytotoxin from Mycoplasma pneumoniae. Proc. Natl. Acad. Sci. USA 2015, 112, 5165–5170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, T.R.; Krishnan, M.; Ramasamy, M.; Becker, M.; Pakhomova, O.M.; Hart, P.H.; Baseman, J.B. Functional mapping of community-acquired respiratory distress syndrome (CARDS) toxin of Mycoplasma pneumoniae defines regions with ADP-ribosyltransferase, vacuolating and receptor-binding activities. Mol. Microbiol. 2014, 93, 568–581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somarajan, S.R.; Kannan, T.R.; Baseman, J.B. Mycoplasma pneumoniae Mpn133 is a cytotoxic nuclease with a glutamic acid-, lysine- and serine-rich region essential for binding and internalization but not enzymatic activity. Cell. Microbiol. 2010, 12, 1821–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawakita, Y.; Kinoshita, M.; Furukawa, Y.; Tulum, I.; Tahara, Y.O.; Katayama, E.; Namba, K.; Miyata, M. Structural study of MPN387, an essential protein for gliding motility of a human-pathogenic bacterium, Mycoplasma pneumoniae. J. Bacteriol. 2016, 198, 2352–2359. [Google Scholar] [CrossRef] [Green Version]
- Hasselbring, B.M.; Krause, D.C. Proteins P24 and P41 function in the regulation of terminal-organelle development and gliding motility in Mycoplasma pneumoniae. J. Bacteriol. 2007, 189, 7442–7449. [Google Scholar] [CrossRef] [Green Version]
- Nakane, D.; Kenri, T.; Matsuo, L.; Miyata, M. Systematic structural analyses of attachment organelle in Mycoplasma pneumoniae. PLoS Pathog. 2015, 11, e1005299. [Google Scholar] [CrossRef]
- Miyata, M.; Hamaguchi, T. Integrated information and prospects for gliding mechanism of the pathogenic bacterium Mycoplasma pneumoniae. Front. Microbiol. 2016, 7, 960–976. [Google Scholar] [CrossRef] [Green Version]
- Miyata, M.; Ogaki, H. Cytoskeleton of mollicutes. J. Mol. Microbiol. Biotechnol. 2006, 11, 256–264. [Google Scholar] [CrossRef]
- Williams, C.R.; Chen, L.; Driver, A.D.; Arnold, E.A.; Sheppard, E.S.; Locklin, J.; Krause, D.C. Sialylated receptor setting influences Mycoplasma pneumoniae attachment and gliding motility. Mol. Microbiol. 2018, 109, 735–744. [Google Scholar] [CrossRef] [PubMed]
- Krause, D.C.; Balish, M.F. Structure, function, and assembly of the terminal organelle of Mycoplasma pneumoniae. FEMS Microbiol. Lett. 2001, 198, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, R.; Ghosh, A.; Chandolia, A. Pathogenesis of Mycoplasma pneumoniae: An update. Indian J. Med. Microbiol. 2016, 34, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Balish, M.F. Mycoplasma pneumoniae, an underutilized model for bacterial cell biology. J. Bacteriol. 2014, 196, 3675–3682. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.; Hashimoto, A.; Gade, A.; Akbarali, H.I. Interaction between hydrogen sulfide-induced sulfhydration and tyrosine nitration in the KATP channel complex. Am. J. Physiol. Gastrointest. Liver. Physiol. 2015, 308, G532–G539. [Google Scholar] [CrossRef] [Green Version]
- Großhennig, S.; Schmidl, S.R.; Schmeisky, G.; Busse, J.; Stülke, J. Implication of glycerol and phospholipid transporters in Mycoplasma pneumoniae growth and virulence. Infect. Immun. 2013, 81, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Merzbacher, M.; Detsch, C.; Hillen, W.; Stülke, J. Mycoplasma pneumoniae HPr kinase/phosphorylase. Eur. J. Biochem. 2004, 271, 367–374. [Google Scholar] [CrossRef]
- Halbedel, S.; Hames, C.; Stülke, J. Regulation of carbon metabolism in the Mollicutes and its relation to virulence. J. Mol. Microb. Biotech. 2007, 12, 147–154. [Google Scholar] [CrossRef]
- Into, T.; Dohkan, J.; Inomata, M.; Nakashima, M.; Shibata, K.I.; Matsushita, K. Synthesis and characterization of a dipalmitoylated lipopeptide derived from paralogous lipoproteins of Mycoplasma pneumoniae. Infect. Immun. 2007, 75, 2253–2259. [Google Scholar] [CrossRef] [Green Version]
- Hallamaa, K.M.; Browning, G.F.; Tang, S.L. Lipoprotein multigene families in Mycoplasma pneumoniae. J. Bacteriol. 2006, 188, 5393–5399. [Google Scholar] [CrossRef] [Green Version]
- Hallamaa, K.M.; Tang, S.L.; Ficorilli, N.; Browning, G.F. Differential expression of lipoprotein genes in Mycoplasma pneumoniae after contact with human lung epithelial cells, and under oxidative and acidic stress. BMC Microbiol. 2008, 8, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Into, T.; Kiura, K.; Yasuda, M.; Kataoka, H.; Inoue, N.; Hasebe, A.; Takeda, K.; Akira, S.; Shibata, K. Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol. 2004, 6, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Zhao, Y.; Wang, Z.; Hou, Y.; Bi, D.; Sun, J.; Peng, X. Chicken gga-miR-19a targets ZMYND11 and plays an important role in host defense against Mycoplasma gallisepticum (HS strain) infection. Front. Cell. Infect. Microbiol. 2016, 6, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, T.R.; Provenzano, D.; Wright, J.R.; Baseman, J.B. Identification and characterization of human surfactant protein A binding protein of Mycoplasma pneumoniae. Infect. Immun. 2005, 73, 2828–2834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kannan, T.R.; Baseman, J.B. ADP-ribosylating and vacuolating cytotoxin of Mycoplasma pneumoniae represents unique virulence determinant among bacterial pathogens. Proc. Natl. Acad. Sci. USA 2006, 103, 6724–6729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, M.; Kannan, T.R.; Baseman, J.B. Mycoplasma pneumoniae CARDS toxin is internalized via clathrin-mediated endocytosis. PLoS ONE 2013, 8, e62706. [Google Scholar] [CrossRef] [Green Version]
- Saber, S.; Ghanim, A.M.H.; El-Ahwany, E.; El-Kader, E.M.A. Novel complementary antitumour effects of celastrol and metformin by targeting IκBκB, apoptosis and NLRP3 inflammasome activation in diethylnitrosamine-induced hepatocarcinogenesis. Cancer Chemother. Pharmacol. 2020, 85, 331–343. [Google Scholar] [CrossRef]
- Bose, S.; Segovia, J.A.; Somarajan, S.R.; Chang, T.H.; Kannan, T.R.; Baseman, J.B. ADP-ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS toxin regulates inflammasome activity. mBio 2014, 5, e02186-14. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C. Curcumin suppresses IL-1β secretion an prevents inflammation through inhibition of the NLRP3 Inflammasome. J. Immunol. 2018, 200, 2835–2846. [Google Scholar] [CrossRef] [Green Version]
- Hardy, R.D.; Coalson, J.J.; Peters, J.; Chaparro, A.; Techasaensiri, C.; Cantwell, A.M.; Kannan, T.R.; Baseman, J.B.; Dube, P.H. Analysis of pulmonary inflammation and function in the mouse and baboon after exposure to Mycoplasma pneumoniae CARDS toxin. PLoS ONE 2009, 4, e7562. [Google Scholar] [CrossRef]
- Medina, J.L.; Coalson, J.J.; Brooks, E.G.; Winter, V.T.; Chaparro, A.; Principe, M.F.; Kannan, T.R.; Baseman, J.B.; Dube, P.H. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lymphocytic inflammation. Am. J. Respir. Cell. Mol. Biol. 2012, 46, 815–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maselli, D.J.; Medina, J.L.; Brooks, E.G.; Coalson, J.J.; Kannan, T.R.; Winter, V.T.; Principe, M.; Cagle, M.P.; Baseman, J.B.; Dube, P.H.; et al. The immunopathologic effects of Mycoplasma pneumoniae and community-acquired respiratory distress syndrome toxin: A primate model. Am. J. Respir. Cell. Mol. Biol. 2018, 58, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Kida, Y.; Kuwano, K. Cytoadherence-dependent induction of inflammatory responses by Mycoplasma pneumoniae. Immunology 2011, 133, 51–61. [Google Scholar] [CrossRef]
- Fang, X.; Liu, X.; Meng, C.; Fu, Y.; Wang, X.; Li, B.; Tu, F.; Zhao, F.; Ren, S. Breed-linked polymorphisms of porcine toll-like receptor 2 (TLR2) and TLR4 and the primary investigation on their relationship with prevention against Mycoplasma pneumoniae and bacterial LPS challenge. Immunogenetics 2013, 65, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Allen, P.Z.; Prescott, B. Immunochemical studies on a Mycoplasma pneumoniae polysaccharide fraction: Cross-reactions with type 23 and 32 antipneumococcal rabbit sera. Infect. Immun. 1978, 20, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Brunner, H. Protective efficacy of Mycoplasma pneumoniae polysaccharides. Isr. J. Med. Sci. 1981, 17, 678–681. [Google Scholar]
- Simmons, W.L.; Daubenspeck, J.M.; Osborne, J.D.; Balish, M.F.; Waites, K.B.; Dybvig, K. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. Microbiology 2013, 159, 737–747. [Google Scholar] [CrossRef] [Green Version]
- Root-Bernstein, R.; Fairweather, D. Complexities in the relationship between infection and autoimmunity. Current allergy and asthma reports. Curr. Allergy. Asthma. Rep. 2014, 14, 407. [Google Scholar] [CrossRef] [Green Version]
- Sfriso, P.; Ghirardello, A.; Botsios, C.; Tonon, M.; Zen, M.; Bassi, N.; Bassetto, F.; Doria, A. Infections and autoimmunity: The multifaceted relationship. J. Leukoc. Biol. 2010, 87, 385–395. [Google Scholar] [CrossRef]
- Saraya, T.; Kurai, D.; Nakagaki, K.; Sasaki, Y.; Niwa, S.; Tsukagoshi, H.; Nunokawa, H.; Ohkuma, K.; Tsujimoto, N.; Hirao, S.; et al. Novel aspects on the pathogenesis of Mycoplasma pneumoniae pneumonia and therapeutic implications. Front. Microbiol. 2014, 5, 410. [Google Scholar] [CrossRef]
- Dallo, S.F.; Chavoya, A.; Baseman, J.B. Characterization of the gene for a 30-kilodalton adhesion-related protein of Mycoplasma pneumoniae. Infect. Immun. 1990, 58, 4163–4165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenri, T.; Taniguchi, R.; Sasaki, Y.; Okazaki, N.; Narita, M.; Izumikawa, K.; Umetsu, M.; Sasaki, T. Identification of a new variable sequence in the P1 cytadhesin gene of Mycoplasma pneumoniae: Evidence for the generation of antigenic variation by DNA recombination between repetitive sequences. Infect. Immun. 1999, 67, 4557–4562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spuesens, E.B.M.; Hartwig, N.G.; van Rossum, A.M.C.; Vink, C. Sequence variation within the P1 gene of Mycoplasma pneumoniae. J. Clin. Microbiol. 2011, 49, 3723–3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sluijter, M.; Spuesens, E.B.M.; Hartwig, N.G.; van Rossum, A.M.C.; Vink, C. The Mycoplasma pneumoniae MPN490 and Mycoplasma genitalium MG339 genes encode recA homologs that promote homologous DNA strand exchange. Infect. Immun. 2009, 77, 4905–4911. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Cao, B.; Li, J.; Song, S.; Tao, X.; Yi, Y.; He, L.; Zhang, J. Sequence analysis of the P1 adhesin gene of Mycoplasma pneumoniae in clinical isolates collected in Beijing in 2008 to 2009. J. Clin. Microbiol. 2011, 49, 3000–3003. [Google Scholar] [CrossRef] [Green Version]
- Nakane, D.; Adan-Kubo, J.; Kenri, T.; Miyata, M. Isolation and characterization of P1 adhesin, a leg protein of the gliding bacterium Mycoplasma pneumoniae. J. Bacteriol. 2011, 193, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Schmidl, S.R.; Gronau, K.; Hames, C.; Busse, J.; Becher, D.; Hecker, M.; Stülke, J. The stability of cytadherence proteins in Mycoplasma pneumoniae requires activity of the protein kinase PrkC. Infect. Immun. 2010, 78, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Yavlovich, A.; Tarshis, M.; Rottem, S. Internalization and intracellular survival of Mycoplasma pneumoniae by non-phagocytic cells. FEMS Microbiol. Lett. 2004, 233, 241–246. [Google Scholar] [CrossRef]
- Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Bio. Med. 2014, 66, 75–87. [Google Scholar] [CrossRef]
- Linchevski, I.; Klement, E.; Nir-Paz, R. Mycoplasma pneumoniae vaccine protective efficacy and adverse reactions--systematic review and meta-analysis. Vaccine 2009, 27, 2437–2446. [Google Scholar] [CrossRef]
- Cimolai, N.; Cheong, A.C.; Morrison, B.J.; Taylor, G.P. Mycoplasma pneumoniae reinfection and vaccination: Protective oral vaccination and harmful immunoreactivity after re-infection and parenteral immunization. Vaccine 1996, 14, 1479–1483. [Google Scholar] [CrossRef]
- Mogabgab, W.J. Protective effects of inactive Mycoplasma pneumoniae vaccine in military personnel, 1964–1966. Am. Rev. Respir. Dis. 1968, 97, 359–365. [Google Scholar] [PubMed]
- Brown, R.C.; Hendley, J.O.; Gwaltney, J.M., Jr. Mycoplasma pneumoniae vaccine: Antigenicity of buffered antigens in volunteers. Infect. Immun. 1972, 5, 657–661. [Google Scholar] [CrossRef] [Green Version]
- Mogabgab, W.J. Protective efficacy of killed Mycoplasma pneumoniae vaccine measured in large-scale studies in a military population. Am. Rev. Respir. Dis. 1973, 108, 899–908. [Google Scholar]
- Wenzel, R.P.; Craven, R.B.; Davies, J.A.; Hendley, J.O.; Hamory, B.H.; Gwaltney, J.M., Jr. Field trial of an inactivated Mycoplasma pneumoniae vaccine. I. vaccine efficacy. J. Infect. Dis. 1976, 134, 571–576. [Google Scholar] [CrossRef]
- Wenzel, R.P.; Craven, R.B.; Davies, J.A.; Hendley, J.O.; Hamory, B.H.; Gwaltney, J.M., Jr. Protective efficacy of an inactivated Mycoplasma pneumoniae vaccine. J. Infect. Dis. 1977, 136, S204–S207. [Google Scholar] [CrossRef] [PubMed]
- Couch, R.B.; Cate, T.R.; Chanock, R.M. Infection with artificially propagated Eaton agent (Mycoplasma pneumoniae) Implications for development of attenuated vaccine for cold agglutinin-positive pneumonia. JAMA 1964, 187, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.E.; Senterfit, L.B.; Chanock, R.M.; Smith, C.B.; Purcell, R.H. An inactivated Mycoplasma pneumoniae vaccine. JAMA 1965, 194, 248–252. [Google Scholar] [CrossRef]
- Smith, C.B.; Chanock, R.M.; Friedewald, W.T.; Alford, R.H. Mycoplasma pneumoniae infections in volunteers. Ann. N. Y. Acad. Sci. 1967, 143, 471–483. [Google Scholar] [CrossRef]
- Smith, C.B.; Friedewald, W.T.; Chanock, R.M. Inactivated Mycoplasma pneumoniae vaccine. Evaluation in volunteers. JAMA 1967, 199, 353–358. [Google Scholar] [CrossRef]
- Fernald, G.W.; Clyde, W.A. Protective effect of vaccines in experimental Mycoplasma pneumoniae disease. Infect. Immun. 1970, 1, 559–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szczepanek, S.M.; Majumder, S.; Sheppard, E.S.; Liao, X.; Rood, D.; Tulman, E.R.; Wyand, S.; Krause, D.C.; Silbart, L.K.; Geary, S.J. Vaccination of BALB/c mice with an avirulent Mycoplasma pneumoniae P30 mutant results in disease exacerbation upon challenge with a virulent strain. Infect. Immun. 2012, 80, 1007–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barile, M.F.; Chandler, D.K.; Yoshida, H.; Grabowski, M.W.; Harasawa, R.; Ahmed, O.A. Hamster challenge potency assay for evaluation of Mycoplasma pneumoniae vaccines. Isr. J. Med. Sci. 1981, 17, 682–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barile, M.F. Immunization against Mycoplasma pneumoniae disease: A review. Isr. J. Med. Sci. 1984, 20, 912–915. [Google Scholar] [PubMed]
- Barile, M.F.; Bove, J.M.; Bradbury, J.M. Current status on control of mycoplasmal diseases of man, animals, plants and insects. Bull. Inst. Pasteur 1985, 83, 339–373. [Google Scholar]
- Metzgar, D.P.; Woodhour, A.F.; Vella, P.P.; Weibel, R.E.; Stokes, J., Jr.; Drake, M.E.; Tytell, A.A.; Hilleman, M.R. Respiratory virus vaccines II Mycoplasma pneumoniae (Eaton agent) vaccines. Am. Rev. Respir. Dis. 1966, 94, 1–9. [Google Scholar]
- Tamiya, S.; Yoshikawa, E.; Ogura, M.; Kuroda, E.; Suzuki, K.; Yoshioka, Y. Vaccination using inactivated Mycoplasma pneumoniae induces detrimental infiltration of neutrophils after subsequent infection in mice. Vaccine 2020, 38, 4979–4987. [Google Scholar] [CrossRef]
- Cimolai, N.; Mah, D.G.; Taylor, G.P.; Morrison, B.J. Bases for the early immune response after rechallenge or component vaccination in an animal model of acute Mycoplasma pneumoniae pneumonitis. Vaccine 1995, 13, 305–309. [Google Scholar] [CrossRef]
- Chu, H.W.; Breed, R.; Rino, J.G.; Harbeck, R.J.; Sills, M.R.; Martin, R.J. Repeated respiratory Mycoplasma pneumoniae infections in mice: Effect of host genetic background. Microbes Infect. 2008, 8, 1764–1772. [Google Scholar] [CrossRef]
- Yayoshi, M.; Araake, M.; Hayatsu, E.; Takezawa, T.; Yoshioka, M. Immunogenicity and protective effect of hemolysis mutants of Mycoplasma pneumoniae. Microbiol. Immunol. 1985, 29, 1029–1037. [Google Scholar] [CrossRef]
- Greenberg, H.; Helms, C.M.; Brunner, H.; Chanock, R.M. Asymptomatic infection of adult volunteers with a temperature sensitive mutant of Mycoplasma pneumoniae. Proc. Natl. Acad. Sci. USA 1974, 51, 4015–4019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, H.; Greenberg, H.; James, W.D.; Horswood, R.L.; Chanock, R.M. Decreased virulence and protective effect of genetically stable temperature-sensitive mutants of Mycoplasma pneumoniae. Ann. N. Y. Acad. Sci. 2010, 225, 436–452. [Google Scholar] [CrossRef]
- Qiu, L.; Wang, L.; Tan, L.; Li, M.; Wu, C.; Li, L.; Zheng, Z.; Jiang, H.; Sun, Q.; Zhang, T. Molecular characterization of genomic DNA in Mycoplasma pneumoniae strains isolated from serious Mycoplasma pneumonia cases in 2016, Yunnan, China. Infect. Genet. Evol. 2018, 58, 125–134. [Google Scholar] [CrossRef]
- Fan, L.; Li, D.; Zhang, L.; Hao, C.; Sun, H.; Shao, X.; Xu, J.; Chen, Z. Pediatric clinical features of Mycoplasma pneumoniae infection are associated with bacterial P1 genotype. Exp. Ther. Med. 2017, 14, 1892–1898. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xue, G.; Yan, C.; Li, S.; Zhao, H.; Feng, Y.; Wang, L. Changes in molecular characteristics of Mycoplasma pneumoniae in clinical specimens from children in Beijing between 2003 and 2015. PLoS ONE 2017, 12, e0170253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, G.; Cao, L.; Wang, L.; Zhao, H.; Feng, Y.; Ma, L.; Sun, H. Evaluation of P1 adhesin epitopes for the serodiagnosis of Mycoplasma pneumoniae infections. FEMS Microbiol. Lett. 2013, 340, 86–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meng, Y.; Wang, W.; Lv, D.D.; An, Q.; Lu, W.; Wang, X.; Tang, G. The effect of platycodin D on the expression of cytoadherence proteins P1 and P30 in Mycoplasma pneumoniae models. Environ. Toxicol. Pharmacol. 2017, 49, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Rodman, J.B.; Krivec, U.; Praprotnik, M.; Mrvič, T.; Kogoj, R.; Keše, D. Clinical characteristics of infections caused by Mycoplasma pneumoniae P1 genotypes in children. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1265–1272. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wu, Y.; Chen, S.; Yu, M.; Zeng, Y.; You, X. Protective immune responses in mice induced by intramuscular and intranasal immunization with a Mycoplasma pneumoniae P1C DNA vaccine. Can. J. Microbiol. 2012, 58, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Varshney, A.K.; Chaudhry, R.; Kabra, S.K.; Malhotra, P. Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae. Clin. Vaccine Immunol. 2008, 15, 215–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rathore, J.S.; Wang, Y. Protective role of Th17 cells in pulmonary infection. Vaccine 2016, 34, 1504–1514. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sundrud, M.S.; Skepner, J.; Yamagata, T. Targeting Th17 cells in autoimmune diseases. Trends Pharmacol. Sci. 2014, 35, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Hausner, M.; Schamberger, A.; Naumann, W.; Jacobs, E.; Dumke, R. Development of protective anti-Mycoplasma pneumoniae antibodies after immunization of guinea pigs with the combination of a P1-P30 chimeric recombinant protein and chitosan. Microb. Pathog. 2013, 64, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Seymour, L.M.; Deutscher, A.T.; Jenkins, C.; Kuit, T.A.; Falconer, L.; Minion, F.C.; Crossett, B.; Padula, M.; Dixon, N.E.; Djordijevic, S.P.; et al. A processed multidomain Mycoplasma hyopneumoniae adhesin binds fibronectin, plasminogen, and swine respiratory cilia. J. Biol. Chem. 2010, 285, 33971–33978. [Google Scholar] [CrossRef] [Green Version]
- Svenstrup, H.F.; Nielsen, P.K.; Drasbek, M.; Birkelund, S.; Christiansen, G. Adhesion and inhibition assay of Mycoplasma genitalium and M. pneumoniae by immunofluorescence microscopy. J. Med. Microbiol. 2002, 51, 361–373. [Google Scholar] [CrossRef] [Green Version]
- Duffy, M.F.; Walker, I.D.; Browning, G.F. The immunoreactive 116 kDa surface protein of Mycoplasma pneumoniae is encoded in an operon. Microbiology 1997, 143, 3391–3402. [Google Scholar] [CrossRef] [Green Version]
- Medina, J.L.; Brooks, E.G.; Chaparro, A.; Dube, P.H. Mycoplasma pneumoniae CARDS toxin elicits a functional IgE response in Balb/c mice. PLoS ONE 2017, 12, e0172447. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Qi, Y.; Gao, J.; Pan, Y.; Li, S.; Li, J.; Chen, H.; Li, S.; Li, Y.; Wang, M. Designing, expression and immunological characterization of a chimeric protein of Mycoplasma pneumonia. Protein Pept. Lett. 2016, 23, 592–596. [Google Scholar] [CrossRef]
- Meyer Sauteur, P.M.; de Bruijn, A.C.J.M.; Graça, C.; Tio-Gillen, A.P.; Estevão, S.C.; Hoogenboezem, T.; Hendriks, R.W.; Berger, C.; Jacobs, B.C.; van Rossum, A.; et al. Antibodies to protein but not glycolipid structures are important for host defense against Mycoplasma pneumoniae. Infect. Immun. 2019, 87, e00663-18. [Google Scholar] [CrossRef] [Green Version]
- Prugnaud, J.L. DNA vaccines. Ann. Pharm. Fr. 2003, 61, 219–233. [Google Scholar]
- Abdulhaqq, S.A.; Weiner, D.B. DNA vaccines: Developing new strategies to enhance immune responses. Immunol. Res. 2008, 42, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Galli, V.; Simionatto, S.; Marchioro, S.B.; Fisch, A.; Gomes, C.K.; Conceição, F.R. Immunisation of mice with Mycoplasma hyopneumoniae antigens P37, P42, P46 and P95 delivered as recombinant subunit or DNA vaccines. Vaccine 2008, 31, 135–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghaffarifar, F. Plasmid DNA vaccines: Where are we now? Drugs Today 2018, 54, 315–333. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, S.; Hu, S.; Yu, M.J.; Zeng, Y.H.; You, X.; Xiao, J.; Wu, Y. Protective efficacy of a Mycoplasma pneumoniae P1C DNA vaccine fused with the B subunit of Escherichia coli heat-labile enterotoxin. Can. J. Microbiol. 2012, 58, 802–810. [Google Scholar] [CrossRef] [PubMed]
- Schaffner, W. Direct transfer of cloned genes from bacteria to mammalian cells. Proc. Natl. Acad. Sci. USA 1980, 77, 2163–2167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, C.; Ma, J.; Dong, Q.; Liu, Q. Live bacterial vaccine vector and delivery strategies of heterologous antigen: A review. Immunol. Lett. 2018, 197, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Shimoji, Y.; Oishi, E.; Muneta, Y.; Nosaka, H.; Mori, Y. Vaccine efficacy of the attenuated Erysipelothrix rhusiopathiae YS-19 expressing a recombinant protein of Mycoplasma hyopneumoniae P97 adhesin against mycoplasmal pneumonia of swine. Vaccine 2003, 21, 532–537. [Google Scholar] [CrossRef]
- Tan, T.S.; Syed Hassan, S.; Yap, W.B. Expression of surface-bound nonstructural 1 (NS1) protein of influenza virus A H5N1 on Lactobacillus casei strain C1. Lett. Appl. Microbiol. 2017, 64, 446–451. [Google Scholar] [CrossRef]
- Gorain, C.; Singh, A.; Bhattacharyya, S.; Kundu, A.; Lahiri, A.; Gupta, S.; Mallick, A. Mucosal delivery of live Lactococcus lactis expressing functionally active JlpA antigen induces potent local immune response and prevent enteric colonization of Campylobacter jejuni in chickens. Vaccine 2020, 38, 1630–1642. [Google Scholar] [CrossRef]
- Hwang, I.Y.; Koh, E.; Wong, A.; March, H.C.; Bentley, W.E.; Lee, Y.S.; Chang, M.W. Engineered probiotic Escherichia coli can eliminate and prevent Pseudomonas aeruginosa gut infection in animal models. Nat. Commun. 2017, 8, 5028. [Google Scholar] [CrossRef] [Green Version]
- Harms, J.S.; Durward, M.A.; Magnani, D.M.; Splitter, G.A. Evaluation of recombinant invasive, non-pathogenic Escherichia coli as a vaccine vector against the intracellular pathogen. J. Immune Based Ther. Vaccines 2009, 7, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Chen, D.; Cui, Z.; Zhang, X.; Zhou, Y.; Guo, X.; Li, H.; Zhang, Y. Oral vaccination of tilapia against Streptococcus agalactiae using Bacillus subtilis spores expressing Sip. Fish Shellfish Immun. 2019, 86, 999–1008. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.G.; Hao, Y.; Wang, L. A Bacillus-based Coxsackie virus A16 mucosal vaccine induces strong neutralizing antibody responses. Cent. Eur. J. Immunol. 2019, 44, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.K.; Kang, M.L.; Jung, M.H.; Cha, S.B.; Lee, W.J.; Kim, J.M.; Kim, G.H.; Yoo, H.S. Induction of protective immune responses against challenge of Actinobacillus pleuropneumoniae by oral administration with Saccharomyces cerevisiae expressing Apx toxins in pigs. Vet. Immunol. Immunopathol. 2013, 151, 132–139. [Google Scholar] [CrossRef]
- Bolhassani, A.; Muller, M.; Roohvand, F.; Motevalli, F.; Agi, E.; Shokri, M.; Rad, M.M.; Hosseinzadeh, S. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic. Leishmania. Hum. Vaccin. Immunother. 2014, 10, 3499–3508. [Google Scholar] [CrossRef] [Green Version]
- Senevirathne, A.; Hewawaduge, C.; Lee, J.H. Live vaccine consisting of attenuated Salmonella secreting and delivering Brucella ribosomal protein L7/L12 induces humoral and cellular immune responses and protects mice against virulent Brucella abortus 544 challenge. Vet. Res. 2020, 51, 6. [Google Scholar] [CrossRef] [Green Version]
- Ding, K.; Shang, K.; Yu, Z.H.; Yu, C.; Jia, Y.Y.; He, L.; Liao, C.S.; Li, J.; Zhang, C.J.; Li, Y.J.; et al. Recombinant-attenuated Salmonella pullorum strain expressing the hemagglutinin-neuraminidase protein of Newcastle disease virus (NDV) protects chickens against NDV and Salmonella pullorum challenge. J. Vet. Sci. 2018, 19, 232–241. [Google Scholar] [CrossRef]
- Jiang, M.; Liu, S.; Su, L.; Zhang, X.; Li, Y.; Tang, T.; Wang, C. Intranasal vaccination with Listeria ivanovii as vector of Mycobacterium tuberculosis antigens promotes specific lung-localized cellular and humoral immune responses. Sci. Rep. 2020, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Mahdy, S.E.; Sijing, L.; Lin, S.; Zhang, X.; Chen, H.; Pei, X.; Wang, C. Development of a recombinant vaccine against foot and mouth disease utilizing mutant attenuated Listeria ivanovii strain as a live vector. J. Virol. Methods 2019, 273, 113722. [Google Scholar] [CrossRef]
- Pérez, P.; Marín, M.Q.; Lázaro-Frías, A.; Oya, N.J.D.; Blázquez, A.B.; Romero, E.E.; Sorzano, C.O.; Ortego, J.; Saiz, J.C.; Esteban, M.; et al. A vaccine based on a modified vaccinia virus ankara vector expressing Zika virus structural proteins controls Zika virus replication in mice. Sci. Rep. 2018, 8, 17385. [Google Scholar] [CrossRef]
- Gerlach, T.; Elbahesh, H.; Saletti, G.; Rimmelzwaan, G. Recombinant influenza A viruses as vaccine vectors. Expert Rev. Vaccines 2019, 18, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Chowdhury, M.Y.; Kim, J.H.; Kim, T.H.; Pathinayake, P.; Koo, W.S.; Park, M.E.; Yoon, J.E.; Roh, J.B.; Hong, S.P.; et al. Mucosally administered Lactobacillus-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) induce broadly protective immune responses against divergent influenza subtypes. Vet. Microbiol. 2015, 179, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.M.; Darrieux, M.; Silva, D.A.; Leite, L.C.C.; Ferreira, J.M.C., Jr.; Ho, P.L.; Miyaji, E.N.; Oliveira, M.L.S. Characterization of protective mucosal and systemic immune responses elicited by pneumococcal surface protein PspA and PspC nasal vaccines against a respiratory pneumococcal challenge in mice. Clin. Vaccine Immunol. 2009, 16, 636–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Guo, Z.; MacDonald, N.E. Vaccine preventable community-acquired pneumonia in hospitalized children in northwest China. Pediatr. Infect. Dis. J. 2011, 30, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Lahiry, A.; Fan, Y.; Stimple, S.D.; Raith, M.; Wood, D.W. Inteins as tools for tagless and traceless protein purification. J. Chem. Technol. Biotechnol. 2018, 93, 1827–1835. [Google Scholar] [CrossRef]
- Yu, H.; Karunakaran, K.P.; Jiang, X.; Brunham, R.C. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis. Expert Rev. Vaccines. 2016, 15, 977–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitch, W.M.; Peterson, E.M.; de la Maza, L.M. Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development. Mol. Biol. Evol. 1993, 10, 892–913. [Google Scholar]
- Pal, S.; Theodor, I.; Peterson, E.M.; de la Maza, L.M. Immunization with the Chlamydia trachomatis mouse pneumonitis major outer membrane protein can elicit a protective immune response against a genital challenge. Infect. Immun. 2001, 69, 6240–6247. [Google Scholar] [CrossRef] [Green Version]
- Dumke, R.; Jacobs, E. Antibody response to Mycoplasma pneumoniae: Protection of host and influence on outbreaks? Front. Microbiol. 2016, 7, 39. [Google Scholar] [CrossRef]
- Kim, D.; Quinn, J.; Pinsky, B.; Shah, N.H.; Brown, I. Rates of co-infection between SARS-CoV-2 and other respiratory pathogens. JAMA 2020, 323, 2085–2086. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Xing, Y.; Shi, L.; Li, W.; Gao, Y.; Pan, S.; Wang, Y.; Wang, W.; Xing, Q. Coinfection and other clinical characteristics of COVID-19 in children. Pediatrics 2020, 146, e20200961. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.E.; Lim, K.G.E.; Chong, V.C.L.; Chan, S.S.W.; Ong, K.H.; Kuperan, P. COVID-19 and Mycoplasma pneumoniae coinfection. Am. J. Hematol. 2020, 95, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.; McKitish, K.; Shah, P.S. Association of mortality and recent Mycoplasma pneumoniae infection in COVID-19 patients. J. Med. Virol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.; Huang, C.G.; Yang, C.T.; Hu, H.C. Concomitant infection with COVID-19 and Mycoplasma pneumoniae. Biomed. J. 2020, 43, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Zha, L.; Shen, J.; Tefsen, B.; Wang, Y.; Lu, W.; Xu, Q. Clinical features and outcomes of adult COVID-19 patients co-infected with Mycoplasma pneumoniae. J. Infect. 2020, 81, e12–e15. [Google Scholar] [CrossRef]
- Gayam, V.; Konala, V.M.; Naramala, S.; Garlapati, P.R.; Merghani, M.A.; Regmi, N.; Balla, M.; Adapa, S. Presenting characteristics, comorbidities, and outcomes of patients coinfected with COVID-19 and Mycoplasma pneumoniae in the USA. J. Med. Virol. 2020, 92, 2181–2187. [Google Scholar] [CrossRef]
Pathogenic Mechanism | Virulence Factor | Gene Annotation | Reference |
---|---|---|---|
Adherence | P1 | MPN141 | [31] |
P30 | MPN453 | [32,33] | |
P40 (Protein C) | MPN142 | [34] | |
P90 (Protein B) | MPN142 | [34] | |
P200 | MPN567 | [35] | |
Hypothetical protein HMW1-3 (high molecular weight) | MPN447/310/452 | [36] | |
P116 | MPN213 | [36] | |
P65 | MPN309 | [37] | |
Elongation factor thermo unstable (EF-Tu) | MPN665 | [38,39,40] | |
Pyruvate dehydrogenase subunit B | MPN392 | [41] | |
Glycolytic enzymes enolase | MPN606 | [41,42] | |
TopJ | MPN119 | [43] | |
Immune evasion | Nuclease | MPN491 | [44] |
Immunoglobin binding protein (IbpM) | MPN400 | [45] | |
Inflammation injury | H2O2 | / | [46] |
Reactive oxygen species (ROS) | / | [46] | |
H2S | / | [47] | |
HapE enzyme | MPN487 | [47,48] | |
Oxidase GlpO | MPN051 | [49] | |
Membrane lipids | / | [50] | |
Membrane lipoproteins | / | [51] | |
Capsular materials | / | [52] | |
Cytotoxicity | Community-Acquired Respiratory Distress Syndrome (CARDS) toxin | MPN372 | [53,54] |
Cytotoxic nuclease | MPN133 | [55] | |
Gliding motility | P65 | MPN309 | [37] |
P30 | MPN453 | [32] | |
Hypothetical protein MPN387 | MPN387 | [56] | |
P24 | MPN312 | [57] | |
P41 | MPN311 | [57] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Li, S.; Zhu, C.; Zhou, R.; Leung, P.H.M. Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens 2021, 10, 119. https://doi.org/10.3390/pathogens10020119
Jiang Z, Li S, Zhu C, Zhou R, Leung PHM. Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens. 2021; 10(2):119. https://doi.org/10.3390/pathogens10020119
Chicago/Turabian StyleJiang, Zhulin, Shuihong Li, Cuiming Zhu, Runjie Zhou, and Polly H. M. Leung. 2021. "Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development" Pathogens 10, no. 2: 119. https://doi.org/10.3390/pathogens10020119
APA StyleJiang, Z., Li, S., Zhu, C., Zhou, R., & Leung, P. H. M. (2021). Mycoplasma pneumoniae Infections: Pathogenesis and Vaccine Development. Pathogens, 10(2), 119. https://doi.org/10.3390/pathogens10020119