Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores
Abstract
:1. Introduction
2. Results
2.1. Anthelmintic Efficacy
2.2. Dynamics of Strongyle Egg Output
2.3. Variations in the Hematic Parameters
2.4. Combined Analysis of the Results Obtained during the Two Years
3. Discussion
4. Materials and Methods
4.1. Saprophytic Filamentous Fungi
4.2. Sheep
4.3. Experimental Design
4.4. Coprological Analyses
4.5. Blood Examinations
4.6. Statistical Analyses
4.7. Institutional Collaboration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Welfare and Ethics
References
- Khadijah, S.; Kahn, L.; Walkden-Brown, S.; Bailey, J.; Bowers, S. Soil moisture influences the development of Haemonchus contortus and Trichostrongylus colubriformis to third stage larvae. Vet. Parasitol. 2013, 196, 161–171. [Google Scholar] [CrossRef]
- Charlier, J.; Morgan, E.; Rinaldi, L.; van Dijk, J.; Demeler, J.; Höglund, J.; Hertzberg, H.; Van Ranst, B.; Hendrickx, G.; Vercruysse, J.; et al. Practices to optimise gastrointestinal nematode control on sheep, goat and cattle farms in Europe using targeted (selective) treatments. Vet. Rec. 2014, 175, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Furgasa, W.; Abunna, F.; Yimer, L.; Haile, G. Review on anthelmintic resistance against gastrointestinal nematodes of small ruminants: Its status and future perspective in Ethiopia. J. Vet. Sci. Ani Husb. 2018, 6, 407. [Google Scholar]
- van den Pol-van Dasselaar, A.; Hennessy, D.; Isselstein, J. Grazing of Dairy Cows in Europe—An in-depth analysis based on the perception of grassland experts. Sustainability 2020, 12, 1098. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.; Rao, T.K.S.; Varghese, A.; Rathor, V.S. Internal parasite management in grazing livestock. J. Parasit. Dis. 2012, 37, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Hoste, H.; Jackson, F.; Athanasiadou, S.; Thamsborg, S.M.; Hoskin, S.O. The effects of tannin-rich plants on parasitic nematodes in ruminants. Trends Parasitol. 2006, 22, 253–261. [Google Scholar] [CrossRef]
- Soli, F.; Terrill, T.; Shaik, S.; Getz, W.; Miller, J.; Vanguru, M.; Burke, J. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats. Vet. Parasitol. 2010, 168, 93–96. [Google Scholar] [CrossRef]
- Burke, J.M.; Miller, J.E. Sustainable Approaches to Parasite Control in Ruminant Livestock. Vet. Clin. N. Am. Food Anim. Pr. 2020, 36, 89–107. [Google Scholar] [CrossRef]
- Sagüés, M.F.; Fusé, L.A.; Fernández, A.S.; Iglesias, L.E.; Moreno, F.C.; Saumell, C.A. Efficacy of an energy block containing Duddingtonia flagrans in the control of gastrointestinal nematodes of sheep. Parasitol. Res. 2011, 109, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.-Z.; Wang, F.-H.; Wang, K.-Y.; Liu, J.-L.; Wang, B.-B.; Xu, Q.; Xue, Y.-J.; Wang, F.; Zhang, C.; Fang, W.-X.; et al. In vitro predatory activity of Arthrobotrys oligospora and after passing through gastrointestinal tract of small ruminants on infective larvae of trichostrongylides. Exp. Parasitol. 2017, 177, 104–111. [Google Scholar] [CrossRef] [PubMed]
- MendozCe-Gives, P.; López-Arellano, M.E.; Aguilar-Marcelino, L.; Olazarán-Jenkins, S.; Reyes-Guerrero, D.; Ramírez-Várgas, G.; Vega-Murillo, V.E. The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions. Dose/Response assessment. Vet. Parasitol. 2018, 263, 66–72. [Google Scholar] [CrossRef]
- Canhão-Dias, M.; Paz-Silva, A.; de Carvalho, L.M. The efficacy of predatory fungi on the control of gastrointestinal parasites in domestic and wild animals—A systematic review. Vet. Parasitol. 2020, 283, 109173. [Google Scholar] [CrossRef]
- Gómez-Rincón, C.; Uriarte, J.; Valderrábano, J. Efficiency of Duddingtonia flagrans against Trichostrongyle infections of sheep on mountain pastures. Vet. Parasitol. 2006, 141, 84–90. [Google Scholar] [CrossRef]
- Marcelino, L.A.; Mendoza-De-Gives, P.; Torres-Hernández, G.; López-Arellano, M.; Becerril-Pérez, C.; Orihuela, A.; Torres-Acosta, J.F.D.J.; Olmedo-Juárez, A. Consumption of nutritional pellets with Duddingtonia flagrans fungal chlamydospores reduces infective nematode larvae of Haemonchus contortus in faeces of Saint Croix lambs. J. Helminthol. 2016, 91, 665–671. [Google Scholar] [CrossRef]
- Healey, K.; Lawlor, C.; Knox, M.R.; Chambers, M.; Lamb, J. Field evaluation of Duddingtonia flagrans IAH 1297 for the reduction of worm burden in grazing animals: Tracer studies in sheep. Vet. Parasitol. 2018, 253, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Braga, F.R.; Ferraz, C.M.; da Silva, E.N.; de Araújo, J.V. Efficiency of the Bioverm® (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 2020, 10, 1–5. [Google Scholar] [CrossRef]
- Hernández, J.Á.; Sánchez-Andrade, R.; Cazapal-Monteiro, C.F.; Arroyo, F.L.; Sanchís, J.M.; Paz-Silva, A.; Arias, M.S. A combined effort to avoid strongyle infection in horses in an oceanic climate region: Rotational grazing and parasiticidal fungi. Parasites Vectors 2018, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Voinot, M.; Cazapal-Monteiro, C.; Hernández, J.Á.; Palomero, A.M.; Arroyo, F.L.; Sanchís, J.; Pedreira, J.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Integrating the control of helminths in dairy cattle: Deworming, rotational grazing and nutritional pellets with parasiticide fungi. Vet. Parasitol. 2020, 278, 109038. [Google Scholar] [CrossRef]
- Palomero, A.M.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Paz-Silva, A.; Sánchez-Andrade, R.; Arias, M.S. Soil fungi enable the control of gastrointestinal nematodes in wild bovidae captive in a zoological park: A 4-year trial. Parasitology 2020, 147, 791–798. [Google Scholar] [CrossRef]
- Vijayasarathi, M.K.; Sreekumar, C.; Venkataramanan, R.; Raman, M. Influence of sustained deworming pressure on the anthelmintic resistance status in strongyles of sheep under field conditions. Trop. Anim. Health Prod. 2016, 48, 1455–1462. [Google Scholar] [CrossRef]
- Seyoum, Z.; Demessie, Y.; Bogale, B.; Melaku, A. Field evaluation of the efficacy of common anthelmintics used in the control of gastrointestinal nematodes of sheep in Dabat district, Northwest Ethiopia. Ir. Vet. J. 2017, 70, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondragon, J.; Olmedo-Juárez, A.; Reyes-Guerrero, D.E.; Ramírez-Vargas, G.; Ariza-Román, A.E.; López-Arellano, M.E.; De Gives, P.M.; Napolitano, F. Detection of gastrointestinal nematode populations resistant to albendazole and ivermectin in sheep. Animals 2019, 9, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, M.S.R.; Sundaram, S.M.; Gnanaraj, P.T.; Bandeswaran, C.; Harikrishnan, T.J.; Sivakumar, T.; Azhahiannambi, P. Influence of intensive rearing, continuous and rotational grazing systems of management on parasitic load of lambs. Vet. World 2019, 12, 1188–1194. [Google Scholar] [CrossRef] [Green Version]
- Burke, J.; Miller, J.; Terrill, T. Impact of rotational grazing on management of gastrointestinal nematodes in weaned lambs. Vet. Parasitol. 2009, 163, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Buzatti, A.; Santos, C.D.P.; Fernandes, M.A.M.; Yoshitani, U.Y.; Sprenger, L.K.; dos Santos, C.D.; Molento, M.B. Duddingtonia flagrans in the control of gastrointestinal nematodes of horses. Exp. Parasitol. 2015, 159, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Malagón, J.Á.H.; Cazapal-Monteiro, C.F.; Quintero, R.B.; Salinero, A.M.P.; Torres, M.I.S.; Messnier, M.V.; Pena, M.V.; Blanco, Á.R. Advantageous Fungi against Parasites Transmitted through Soil. In Fungal Infection; IntechOpen: London, UK, 2019; pp. 1–15. [Google Scholar]
- Fontenot, M.; Miller, J.; Peña, M.; Larsen, M.; Gillespie, A. Efficiency of feeding Duddingtonia flagrans chlamydospores to grazing ewes on reducing availability of parasitic nematode larvae on pasture. Vet. Parasitol. 2003, 118, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Vilela, V.L.R.; Feitosa, T.F.; Braga, F.R.; Vieira, V.D.; De Lucena, S.C.; De Araújo, J.V. Control of sheep gastrointestinal nematodes using the combination of Duddingtonia flagrans and Levamisole Hydrochloride 5%. Rev. Bras. Parasitol. Vet. 2018, 27, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saumell, C.; Fernández, A.; Echevarria, F.; Gonçalves, I.; Iglesias, L.; Sagües, M.; Rodríguez, E. Lack of negative effects of the biological control agent Duddingtonia flagrans on soil nematodes and other nematophagous fungi. J. Helminthol. 2016, 90, 706–711. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.Á.; Arroyo, F.L.; Suárez, J.; Monteiro, C.; Romasanta, Á.; López-Arellano, M.E.; Pedreira, J.; de Carvalho, L.M.M.; Sánchez-Andrade, R.; Arias, M.S.; et al. Feeding horses with industrially manufactured pellets with fungal spores to promote nematode integrated control. Vet. Parasitol. 2016, 229, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.A.; Vázquez-Ruiz, R.A.; Cazapal-Monteiro, C.F.; Valderrábano, E.; Arroyo, F.L.; Francisco, I.; Miguélez, S.; Sánchez-Andrade, R.; Paz-Silva, A.; Arias, M.S. Isolation of ovicidal fungi from fecal samples of captive animals maintained in a zoological park. J. Fungi 2017, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Viña, C.; Silva, M.I.; Palomero, A.M.; Voinot, M.; Vilá, M.; Hernández, J.Á.; Paz-Silva, A.; Sánchez-Andrade, R.; Cazapal-Monteiro, C.F.; Arias, M.S. The Control of Zoonotic Soil-Transmitted Helminthoses Using Saprophytic Fungi. Pathogens 2020, 9, 1071. [Google Scholar] [CrossRef] [PubMed]
- MAFF. Manual of Veterinary Parasitological Laboratory Techniques, 3rd ed.; Ministry of Agriculture, Fisheries and Food. Her Majesty’s Stationary Office (HMSO): London, UK, 1986. [Google Scholar]
- Geary, T.G.; Hosking, B.C.; Skuce, P.J.; von Samson-Himmelstjerna, G.; Maeder, S.; Holdsworth, P.; Pomroy, W.; Vercruysse, J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) Guideline: Anthelmintic combination products targeting nematode infections of ruminants and horses. Vet. Parasitol. 2012, 190, 306–316. [Google Scholar] [CrossRef] [Green Version]
- VanWyk, J.; Cabaret, J.; Michael, L.M. Morphological identification of nematode larvae of small ruminants and cattle simplified. Vet. Parasitol. 2004, 119, 277–306. [Google Scholar] [CrossRef] [PubMed]
Year 1 | Year 2 | |||||||
---|---|---|---|---|---|---|---|---|
FECR (%) | IPCR (%) | FECR (%) | IPCR (%) | |||||
Month | CT1 | FS1 | CT1 | FS1 | CT2 | FS2 | CT2 | FS2 |
Sep | Deworming | Deworming | ||||||
Oct | 97 | 96 | 62.5 | 62.5 | 95 | 96 | 50 | 75 |
Nov | 76 | 85 | 0 | 25 | 63 | 84 | 0 | 50 * |
Jan | 45 | 71* | 0 | 25 | 46 | 70 * | 0 | 0 |
Mar | 37 | 67* | 0 | 25 | 27 | 66 * | 0 | 0 |
May | 0 | 57* | 0 | 0 | 0 | 69* | 0 | 0 |
Reference Values | Red Blood Cell Parameters | White Blood Cell Parameters | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RBC | HGB | HCT | MCV | MCH | MCHC | WBC | LYM | GRA | MON | ||||||||||||
9–15 106/mL | 10–15 g/dL | 27–42% | 24–32 fL | 8–12 pg | 32–42 g/dL | 5–14 106/mL | 40–70% | 10–63% | 0–7% | ||||||||||||
Month | Statistics | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 | CT1 | FS1 |
Sep | Mean | 9.88 | 9.88 | 10.00 | 10.00 | 28.75 | 28.75 | 27.00 | 28.25 | 10.13 | 10.38 | 37.50 | 37.50 | 8.00 | 8.25 | 64.50 | 63.00 | 32.75 | 34.13 | 2.75 | 2.88 |
SD | 0.64 | 0.64 | 0.54 | 0.30 | 1.39 | 1.58 | 2.33 | 2.12 | 0.35 | 0.74 | 2.20 | 2.20 | 0.76 | 0.89 | 4.69 | 5.76 | 4.56 | 5.44 | 0.71 | 0.99 | |
Oct | Mean | 9.50 | 9.85 | 9.80 | 10.15 | 28.00 | 28.75 | 27.00 | 28.25 | 8.75 | 10.50 * | 32.38 | 37.50 * | 8.00 | 8.12 | 61.88 | 60.13 | 35.63 | 36.63 | 2.63 | 3.13 |
SD | 0.54 | 0.46 | 0.76 | 0.46 | 1.31 | 1.58 | 2.33 | 1.91 | 0.89 | 0.76 | 1.19 | 2.07 | 0.93 | 1.46 | 3.68 | 7.77 | 3.89 | 6.23 | 0.52 | 1.96 | |
Nov | Mean | 9.88 | 10.50 | 10.38 | 10.38 | 30.75 | 29.13 | 30.00 | 27.50 | 9.00 | 9.38 | 37.75 | 37.88 | 7.13 | 6.62 | 61.88 | 56.13 | 35.63 | 41.00 | 2.63 | 2.75 |
SD | 0.35 | 0.76 | 0.52 | 0.52 | 1.98 | 1.13 | 2.78 | 2.07 | 1.07 | 0.92 | 3.15 | 2.30 | 1.13 | 0.74 | 3.68 | 6.79 | 3.89 | 7.15 | 0.52 | 1.91 | |
Jan | Mean | 8.75 | 10.00 * | 9.75 | 10.00 | 26.63 | 28.50 | 25.00 | 29.25 | 9.00 | 11.25 * | 33.25 | 37.63 * | 7.13 | 6.25 * | 68.25 | 59.13 * | 29.63 | 36.63 * | 1.87 | 4.13 * |
SD | 0.71 | 0.76 | 0.71 | 1.07 | 0.92 | 2.56 | 1.77 | 2.12 | 0.76 | 0.71 | 1.67 | 1.19 | 0.84 | 0.46 | 1.67 | 2.17 | 1.60 | 3.11 | 0.35 | 2.17 | |
Mar | Mean | 8.75 | 9.38 | 9.50 | 10.38 * | 27.50 | 28.75 | 26.38 | 29.88 * | 8.88 | 11.00 * | 33.00 | 37.13 * | 7.38 | 6.13 * | 67.88 | 55.50 * | 29.50 | 40.88 * | 2.62 | 3.63 |
SD | 0.71 | 0.74 | 0.54 | 0.52 | 0.54 | 2.49 | 2.13 | 2.03 | 0.64 | 0.54 | 0.93 | 2.10 | 0.92 | 0.35 | 3.40 | 4.14 | 3.51 | 4.09 | 0.74 | 1.19 | |
May | Mean | 9.25 | 10.38 * | 9.88 | 10.25 | 28.00 | 28.88 | 26.50 | 27.25 | 8.88 | 10.13 * | 33.88 | 36.63 * | 7.50 | 6.25 * | 65.00 | 60.00 * | 31.88 | 38.00 * | 2.88 | 2.13 |
SD | 0.46 | 0.92 | 0.35 | 0.71 | 1.07 | 1.25 | 1.41 | 2.77 | 0.35 | 0.64 | 1.13 | 2.67 | 0.54 | 0.46 | 2.33 | 1.60 | 2.85 | 2.27 | 0.84 | 1.55 | |
ANOVA | F = | 22.429 | 8.672 | 2.086 | 8.255 | 55.479 | 29.801 | 7.326 | 35.109 | 30.157 | 4.129 | ||||||||||
p = | 0.001 | 0.004 | 0.152 | 0.005 | 0.001 | 0.001 | 0.008 | 0.001 | 0.001 | 0.045 |
Red Blood Cell Parameters | White Blood Cell Parameters | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reference values | RBC | HGB | HCT | MCV | MCH | MCHC | WBC | LYM | GRA | MON | |||||||||||
9–15 106/mL | 10–15 g/dL | 27–42% | 24–32 fL | 8–12 pg | 32–42 g/dL | 5–14 106/mL | 40–70% | 10–63% | 0–7% | ||||||||||||
Month | Statistics | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 | CT2 | FS2 |
Sep | Mean | 9.75 | 10.03 | 10.00 | 9.25 | 26.25 | 25.38 | 25.25 | 24.88 | 9.13 | 9.50 | 32.38 | 31.25 | 8.50 | 8.38 | 64.50 | 65.50 | 32.25 | 30.88 | 3.25 | 3.88 |
SD | 0.46 | 0.99 | 0.54 | 0.71 | 1.28 | 3.50 | 1.58 | 0.64 | 0.64 | 0.54 | 0.92 | 3.88 | 0.54 | 0.74 | 4.69 | 3.12 | 4.74 | 3.31 | 1.17 | 0.99 | |
Oct | Mean | 9.25 | 9.75 | 9.63 | 9.25 | 26.88 | 25.63 | 25.88 | 23.88 | 8.75 | 9.38 | 33.00 | 30.88 * | 8.25 | 8.13 | 64.50 | 64.00 | 33.00 | 33.50 | 2.38 | 2.75 |
SD | 0.71 | 0.71 | 0.52 | 0.71 | 0.64 | 1.85 | 2.42 | 1.36 | 0.46 | 0.92 | 2.00 | 1.36 | 0.71 | 0.99 | 4.07 | 2.20 | 5.16 | 2.14 | 0.74 | 0.71 | |
Nov | Mean | 8.75 | 9.37 * | 10.25 | 11.50 * | 30.13 | 30.88 | 30.13 | 30.25 | 9.00 | 9.13 | 32.50 | 38.12 | 7.13 | 6.50 * | 63.38 | 57.00 * | 34.13 | 41.13 * | 2.50 | 2.00 |
SD | 0.46 | 0.52 | 0.46 | 0.76 | 1.73 | 2.95 | 1.55 | 1.49 | 0.76 | 0.64 | 1.69 | 1.43 | 0.64 | 0.54 | 5.61 | 2.93 | 5.87 | 3.09 | 1.07 | 0.54 | |
Jan | Mean | 8.88 | 11.13 * | 9.88 | 10.50 * | 29.75 | 31.38 | 27.88 | 28.88 | 8.38 | 10.13 * | 32.63 | 34.13 | 7.50 | 6.38 * | 63.38 | 59.13 | 34.13 | 38.00 | 2.50 | 2.88 |
SD | 0.35 | 0.99 | 0.35 | 0.54 | 1.91 | 2.26 | 2.23 | 2.80 | 0.52 | 1.13 | 0.92 | 2.36 | 0.54 | 0.52 | 5.61 | 4.55 | 5.87 | 4.34 | 1.07 | 0.64 | |
Mar | Mean | 9.00 | 10.38 * | 10.00 | 11.13 * | 26.75 | 29.75 * | 24.00 | 30.50 * | 8.00 | 9.75 * | 32.00 | 32.13 | 7.50 | 6.75 | 64.62 | 59.63 * | 31.63 | 38.00 * | 3.75 | 2.38 * |
SD | 0.60 | 0.74 | 1.10 | 0.84 | 0.89 | 1.58 | 0.76 | 1.31 | 0.30 | 0.71 | 0.54 | 1.13 | 0.76 | 0.89 | 2.39 | 3.20 | 2.88 | 2.98 | 0.71 | 0.92 | |
May | Mean | 9.00 | 10.88 * | 9.75 | 11.00 * | 26.75 | 33.38 * | 23.88 | 28.75 * | 8.13 | 10.13 * | 32.00 | 35.50 * | 7.38 | 6.63 * | 66.13 | 59.38 * | 31.38 | 38.13 * | 2.50 | 2.87 |
SD | 0.40 | 0.84 | 0.46 | 0.76 | 0.46 | 1.41 | 0.35 | 1.91 | 0.35 | 0.64 | 1.10 | 2.39 | 0.52 | 0.74 | 3.09 | 6.46 | 3.58 | 6.56 | 0.93 | 0.84 | |
ANOVA | F | 52.981 | 8.808 | 7.254 | 6.190 | 52.411 | 0.856 | 9.230 | 15.361 | 14.865 | 0.011 | ||||||||||
p | 0.001 | 0.004 | 0.008 | 0.015 | 0.001 | 0.357 | 0.001 | 0.001 | 0.011 | 0.919 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voinot, M.; Bonilla, R.; Sousa, S.; Sanchís, J.; Canhão-Dias, M.; Romero Delgado, J.; Lozano, J.; Sánchez-Andrade, R.; Sol Arias, M.; Madeira de Carvalho, L. Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores. Pathogens 2021, 10, 1338. https://doi.org/10.3390/pathogens10101338
Voinot M, Bonilla R, Sousa S, Sanchís J, Canhão-Dias M, Romero Delgado J, Lozano J, Sánchez-Andrade R, Sol Arias M, Madeira de Carvalho L. Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores. Pathogens. 2021; 10(10):1338. https://doi.org/10.3390/pathogens10101338
Chicago/Turabian StyleVoinot, Mathilde, Rodrigo Bonilla, Sérgio Sousa, Jaime Sanchís, Miguel Canhão-Dias, José Romero Delgado, João Lozano, Rita Sánchez-Andrade, María Sol Arias, and Luís Madeira de Carvalho. 2021. "Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores" Pathogens 10, no. 10: 1338. https://doi.org/10.3390/pathogens10101338
APA StyleVoinot, M., Bonilla, R., Sousa, S., Sanchís, J., Canhão-Dias, M., Romero Delgado, J., Lozano, J., Sánchez-Andrade, R., Sol Arias, M., & Madeira de Carvalho, L. (2021). Control of Strongyles in First-Season Grazing Ewe Lambs by Integrating Deworming and Thrice-Weekly Administration of Parasiticidal Fungal Spores. Pathogens, 10(10), 1338. https://doi.org/10.3390/pathogens10101338