The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus
Abstract
:1. Introduction
2. Results
2.1. Susceptibility to Zika Virus Infection
2.2. Disseminated Infection
2.3. Saliva Infection
2.4. Extrinsic Incubation Period (EIP50)
2.5. Viral Load
3. Discussion
4. Materials and Methods
4.1. Mosquitoes
4.2. Virus Isolate and Propagation
4.3. Per os Infection of Mosquitoes
4.4. Processing Mosquitoes and Detection of Zika Virus
4.5. Zika Virus Standard Curve
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dick, G.W.A.; Kitchen, S.F.; Haddow, A.J. Zika virus. I. Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 509–520. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Mosquito Control. 2018. Available online: https://www.cdc.gov/zika/vector/range.html (accessed on 9 August 2021).
- Lanciotti, R.S.; Kosoy, O.L.; Laven, J.; Velez, J.O.; Lambert, A.J.; Johnson, A.J.; Stanfield, S.M.; Duffy, M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008, 14, 1232–1239. [Google Scholar] [CrossRef] [PubMed]
- Pan American Health Organization (PAHO/WHO). Zika Cumulative Cases. 2018. Available online: https://www.paho.org (accessed on 22 February 2019).
- Florida Department of Health (FDOH). Zika Free Florida. 2018. Available online: https://zikafreefl.Org/?utm_source=floridahealth.gov/zikapage (accessed on 14 August 2018).
- Chouin-Carneiro, T.; Vega-Rua, A.; Vazeille, M.; Yebakima, A.; Girod, R.; Goindin, D.; Dupont-Rouzeyrol, M.; Lourenço-de-Oliveira, R.; Failloux, A.-B. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004543. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-de-Brito, A.; Ribeiro, I.P.; de Miranda, R.M.; Fernandes, R.S.; Campos, S.S.; Barbosa da Silva, K.A.; Gonçalves de Castro, M.; Bonaldo, M.C.; Brasil, P.; Lourenço-de-Oliveira, R. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem. Inst. Oswaldo Cruz 2016, 111, 655–658. [Google Scholar] [CrossRef] [Green Version]
- Effler, P.V.; Pang, L.; Kitsutanim, P.; Vorndamm, V.; Nakatam, M.; Ayersm, T.; Elmm, J.; Tomm, T.; Reiterm, P.; Rigau-Perezm, J.G.; et al. Dengue fever, Hawaii, 2001–2002. Emerg. Infect. Dis. 2005, 11, 742–749. [Google Scholar] [CrossRef]
- Kauffman, E.B.; Kramer, L.D. Zika virus mosquito vectors: Competence, biology, and vector control. J. Infect. Dis. 2017, 216, S976–S990. [Google Scholar] [CrossRef] [Green Version]
- Ratsitorahina, M.; Harisoa, J.; Ratovonjato, J.; Biacabe, S.; Reynes, J.-M.; Zeller, H.; Raoelina, Y.; Talarmin, A.; Richard, V.; Soares, J.L. Outbreak of dengue and Chikungunya fevers, Toamasina, Madagascar, 2006. Emerg. Infect. Dis. 2008, 14, 1135–1137. [Google Scholar] [CrossRef]
- Charrel, R.N.; de Lamballerie, X.; Raoult, D. Chikungunya outbreaks-The globalization of vectorborne diseases. N. Engl. J. Med. 2007, 356, 769–771. [Google Scholar] [CrossRef] [Green Version]
- Leroy, E.M.; Nkoghe, D.; Ollomo, B.; Nze-Nkogue, C.; Becquart, P.; Grard, G.; Pourrut, X.; Charrel, R.; Moureau, G.; Ndjoyi-Mbiguino, A.; et al. Concurrent chikungunya and dengue virus infections during simultaneous outbreaks, Gabon 2007. Emerg. Infect. Dis. 2009, 15, 591–593. [Google Scholar] [CrossRef]
- Xu, G.; Dong, H.; Shi, N.; Liu, S.; Zhou, A.; Cheng, Z.; Chen, G.; Liu, J.; Fang, T.; Zhang, H.; et al. An outbreak of Dengue virus serotype 1 infection in Cixi, Ningbo. People’s Republic of China, 2004, associated with a traveler from Thailand and high density of Aedes albopictus. Am. J. Trop. Med. 2007, 76, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Issack, M.I.; Pursem, V.N.; Barkham, T.M.S.; Ng, L.-C.; Inoue, M.; Manraj, S.S. Reemergence of dengue in Mauritius. Emerg. Infect. Dis. 2010, 16, 716–718. [Google Scholar] [CrossRef]
- Paupy, C.; Ollomo, B.; Kamgang, B.; Moutailler, S.; Rousset, D.; Demanou, M.; Hervé, J.P.; Leroy, E.; Simard, F. Comparative role of Aedes albopictus and Aedes aegypti in the emergence of Dengue and Chikungunya in central Africa. Vector-Borne Zoonotic Dis. 2010, 10, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Lounibos, L.P.; Kramer, L.D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J. Infect. Dis. 2016, 214 (Suppl. 5), S453–S458. [Google Scholar] [CrossRef] [Green Version]
- Krow-Lucal, E.R.; Biggerstaff, B.J.; Staples, J. Estimated incubation period for Zika virus disease. Emerg. Infect. Dis. 2017, 23, 841–845. [Google Scholar] [CrossRef]
- Ohm, J.R.; Baldini, F.; Barreaux, P.; Lefevre, T.; Lynch, P.A.; Suh, E.; Whitehead, S.A.; Thomas, M.B. Rethinking the extrinsic incubation period of malaria parasites. Parasit. Vectors 2018, 11, 178. [Google Scholar] [CrossRef] [Green Version]
- Hery, L.; Boullis, A.; Delannay, C.; Vega-Rúa, A. Transmission potential of African, Asian and American Zika virus strains by Aedes aegypti and Culex quinquefasciatus from Guadeloupe (French West Indies). Emerg. Microbes Infect. 2019, 8, 699–706. [Google Scholar] [CrossRef] [Green Version]
- Azar, S.R.; Roundy, C.M.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Fernandez-Salas, I.; Weaver, S.C.; Vitek, C.J.; Paploski, I.A.D.; et al. Differential vector competency of Aedes albopictus populations from the Americas for Zika virus. Am. J. Trop. Med. Hyg. 2017, 97, 330–339. [Google Scholar] [CrossRef]
- Roundy, C.M.; Azar, S.R.; Rossi, S.L.; Huang, J.H.; Leal, G.; Yun, R.; Vasilakis, N. Variation in Aedes aegypti mosquito competence for Zika virus transmission. Emerg. Infect. Dis. 2017, 23, 625–632. [Google Scholar] [CrossRef]
- Tesla, B.; Demakovsky, L.R.; Mordecai, E.A.; Ryan, S.J.; Bonds, M.H.; Ngonghala, C.N.; Brindley, M.A.; Murdock, C.C. Temperature drives Zika virus transmission: Evidence from empirical and mathematical models. Proc. Biol. Sci. 2018, 285, 20180795. [Google Scholar] [CrossRef] [Green Version]
- National Oceanic Administration Association (NOAA). 2020. Available online: http://cdo.ncdc.noaa.gov/ulcd/ULCD (accessed on 6 February 2020).
- Vazeille, M.; Rosen, L.; Mousson, L.; Failloux, A.B. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from Southeast Asia compared with that of Aedes aegypti. Am. J. Trop. Med. Hyg. 2003, 68, 203–208. [Google Scholar] [CrossRef]
- Hugo, R.L.E.; Stassen, L.; La, J.; Gosden, E.; Ekwudu, O.; Winterford, C.; Viennet, E.; Faddy, H.M.; Devine, G.J.; Frentiu, F.D. Vector competence of Australian Aedes aegypti and Aedes albopictus for an epidemic strain of Zika virus. PLoS Negl. Trop. Dis. 2019, 13, e0007281. [Google Scholar] [CrossRef] [Green Version]
- Winokur, O.C.; Main, B.J.; Nicholson, J.; Barker, C.M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0008047. [Google Scholar] [CrossRef] [Green Version]
- Salazar, M.I.; Richardson, J.H.; Sanchez-Vargas, I.; Olson, K.E.; Beaty, B.J. Dengue virus type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Vargas, I.; Scott, J.C.; Poole-Smith, B.K.; Franz, A.W.E.; Barbosa-Solomieu, V.; Wilusz, J.; Olson, K.E.; Blair, C.D. Dengue virus type 2 infections of Aedes aegypti are modulated by the mosquito’s RNA Interference pathway. PLoS Path. 2009, 5, e1000299. [Google Scholar] [CrossRef] [Green Version]
- Alto, B.W.; Wiggins, K.; Eastmond, B.; Velez, D.; Lounibos, L.P.; Lord, C.C. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 2017, 11, e0005724. [Google Scholar] [CrossRef] [Green Version]
- Di Luca, M.; Severini, F.; Toma, L.; Boccolini, D.; Romi, R.; Remoli, M.E.; Sabbatucci, M.; Rizzo, C.; Venturi, G.; Rezza, G.; et al. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Eur. Surveill. 2016, 5, 1–4. [Google Scholar]
- Christofferson, R.C.; Mores, C.N.; Wearing, H.J. Bridging the gap between experimental data and model parameterization for chikunungunya virus transmission predictions. J. Infect. Dis. 2016, 214 (Suppl. 5), S466–S470. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.D.; Tadei, W.P.; Abdalla, F.C.; Paolucci Pimenta, P.F.; Marinotti, O. Multiple blood meals in Anopheles darlingi (Diptera: Culicidae). J. Vector Ecol. 2012, 37, 351–358. [Google Scholar] [CrossRef]
- Ponlawat, A.; Harrington, L.C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 2005, 42, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Stenn, T.; Peck, K.J.; Pereira, G.R.; Burkett-Cadena, N.D. Vertebrate hosts of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus (Diptera: Culicidae) as potential vectors of Zika virus in Florida. J. Med. Entomol. 2019, 56, 10–17. [Google Scholar] [CrossRef]
- Pruszynski, C.A.; Stenn, T.; Acevedo, C.; Leal, A.L.; Burkett-Cadena, N.D. Human blood feeding by Aedes aegypti (Diptera: Culicidae) in the Florida Keys and a review of the literature. J. Med. Entomol. 2020, 57, 1640–1647. [Google Scholar] [CrossRef] [PubMed]
- Dudley, D.M.; Newman, C.M.; Lalli, J.; Stewart, L.M.; Koenig, M.R.; Weiler, A.M.; Semler, M.R.; Barry, G.L.; Zarbock, K.R.; Mohns, M.S.; et al. Infection via mosquito bite alters Zika virus tissue tropism and replication kinetics in rhesus macaques. Nat. Commun. 2017, 8, 2096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjaden, N.B.; Thomas, S.M.; Fischer, D.; Beierkuhnlein, C. Extrinsic incubation period of dengue: Knowledge, backlog, and applications of temperature dependence. PLoS Negl. Trop. Dis. 2013, 7, e2207. [Google Scholar] [CrossRef] [Green Version]
- Alto, B.W.; Connelly, R.C.; O’Meara, G.F.; Hickman, D.; Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 2014, 14, 606–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Mosquito Sample | Factor | DF | χ2 | p-Value |
---|---|---|---|---|
Susceptibility to infection (body) | Species | 1 | 3.26 | 0.0710 |
Time | 7 | 4.21 | 0.7555 | |
Species*Time | 7 | 2.12 | 0.9527 | |
Disseminated infection (legs) | Species | 1 | 2.49 | 0.1145 |
Time | 7 | 70.43 | <0.0001 | |
Species*Time | 7 | 10.62 | 0.1558 | |
Transmission potential (saliva) | Species | 1 | 0.03 | 0.8523 |
Time | 7 | 19.98 | 0.0056 | |
Species*Time | 7 | 14.59 | 0.0416 |
Species | Time (Day) | Mean (No. Samples) | Std Error of Mean | Lower Mean | Upper Mean |
---|---|---|---|---|---|
Ae. aegypti | 3 | 0.6875 (46) | 0.06690 | 0.5444 | 0.8020 |
Ae. aegypti | 6 | 0.7097 (60) | 0.05765 | 0.5855 | 0.8088 |
Ae. aegypti | 9 | 0.7647 (49) | 0.05940 | 0.6299 | 0.8612 |
Ae. aegypti | 12 | 0.7600 (48) | 0.06040 | 0.6233 | 0.8584 |
Ae. aegypti | 15 | 0.7857 (40) | 0.06331 | 0.6370 | 0.8846 |
Ae. aegypti | 18 | 0.7500 (46) | 0.0625 | 0.6095 | 0.8522 |
Ae. aegypti | 21 | 0.8605 (41) | 0.05284 | 0.7224 | 0.9359 |
Ae. aegypti | 24 | 0.7419 (29) | 0.07859 | 0.5626 | 0.8654 |
Ae. albopictus | 3 | 0.8182 (9) | 0.1163 | 0.4930 | 0.9542 |
Ae. albopictus | 6 | 0.9167 (10) | 0.07979 | 0.5868 | 0.9884 |
Ae. albopictus | 9 | 0.8000 (13) | 0.1033 | 0.5302 | 0.9341 |
Ae. albopictus | 12 | 0.7500 (10) | 0.1250 | 0.4482 | 0.9172 |
Ae. albopictus | 15 | 0.8333 (10) | 0.1076 | 0.5228 | 0.9580 |
Ae. albopictus | 18 | 0.7778 (7) | 0.1386 | 0.4210 | 0.9440 |
Ae. albopictus | 21 | 0.9444 (16) | 0.05399 | 0.6935 | 0.9922 |
Ae. albopictus | 24 | 0.8571 (12) | 0.09352 | 0.5732 | 0.9640 |
Species | Time (Day) | Mean (No. Samples) | Std Error of Mean | Lower Mean | Upper Mean |
---|---|---|---|---|---|
Ae. aegypti | 3 | 0.0416 (46) | 0.0288 | 0.0104 | 0.1519 |
Ae. aegypti | 6 | 0.2742 (60) | 0.0566 | 0.1778 | 0.3976 |
Ae. aegypti | 9 | 0.4706 (49) | 0.0698 | 0.3390 | 0.6064 |
Ae. aegypti | 12 | 0.5800 (48) | 0.0698 | 0.4406 | 0.7077 |
Ae. aegypti | 15 | 0.7714 (40) | 0.0709 | 0.6053 | 0.8814 |
Ae. aegypti | 18 | 0.8649 (46) | 0.0562 | 0.7138 | 0.9426 |
Ae. aegypti | 21 | 0.8684 (41) | 0.0548 | 0.7204 | 0.9442 |
Ae. aegypti | 24 | 0.8261 (29) | 0.0790 | 0.6177 | 0.9332 |
Ae. albopictus | 3 | 0.0909 (9) | 0.0867 | 0.0126 | 0.4386 |
Ae. albopictus | 6 | 0.2500 (10) | 0.1250 | 0.0827 | 0.5518 |
Ae. albopictus | 9 | 0.1333 (13) | 0.0877 | 0.0335 | 0.4054 |
Ae. albopictus | 12 | 0.7000 (10) | 0.1449 | 0.3763 | 0.9002 |
Ae. albopictus | 15 | 0.5000 (10) | 0.1443 | 0.2439 | 0.7561 |
Ae. albopictus | 18 | 0.4286 (7) | 0.1870 | 0.1437 | 0.7702 |
Ae. albopictus | 21 | 0.8333 (16) | 0.0878 | 0.5914 | 0.9454 |
Ae. albopictus | 24 | 0.8571 (12) | 0.0935 | 0.5732 | 0.9640 |
Species | Time (Day) | Mean (No. Samples) | Std Error of Mean | Lower Mean | Upper Mean |
---|---|---|---|---|---|
Ae. aegypti | 3 | 0.0213 (46) | 0.0210 | 0.0029 | 0.1362 |
Ae. aegypti | 6 | 0.0483 (60) | 0.0272 | 0.0156 | 0.1396 |
Ae. aegypti | 9 | 0.1961 (49) | 0.0556 | 0.1089 | 0.3275 |
Ae. aegypti | 12 | 0.3000 (48) | 0.0648 | 0.1897 | 0.4397 |
Ae. aegypti | 15 | 0.3095 (40) | 0.0713 | 0.1890 | 0.4630 |
Ae. aegypti | 18 | 0.4167 (46) | 0.0711 | 0.2869 | 0.5591 |
Ae. aegypti | 21 | 0.4419 (41) | 0.0757 | 0.3025 | 0.5910 |
Ae. aegypti | 24 | 0.1935 (29) | 0.0709 | 0.0896 | 0.3691 |
Ae. albopictus | 3 | 0.0909 (9) | 0.0867 | 0.0126 | 0.4386 |
Ae. albopictus | 6 | 0.1667 (10) | 0.1076 | 0.0419 | 0.4772 |
Ae. albopictus | 9 | 0.1333 (13) | 0.0877 | 0.0335 | 0.4054 |
Ae. albopictus | 12 | 0.1667 (10) | 0.1076 | 0.0419 | 0.4772 |
Ae. albopictus | 15 | 0.5000 (10) | 0.1443 | 0.2439 | 0.7561 |
Ae. albopictus | 18 | 0.1112 (7) | 0.1048 | 0.0154 | 0.4999 |
Ae. albopictus | 21 | 0.1667 (16) | 0.0878 | 0.0547 | 0.4086 |
Ae. albopictus | 24 | 0.4286 (12) | 0.1323 | 0.2065 | 0.6837 |
Ae. aegypti | Ae. albopictus | |||||
---|---|---|---|---|---|---|
Probability | dpi | 95% Fiducial Limits | dpi | 95% Fiducial Limits | ||
0.10 | 1.58 | 3.08 | 4.612 | 50.06 | 28.51 | 50.73 |
0.15 | 2.52 | 0.00001 | 5.96 | 40.36 | 25.19 | 95.85 |
0.20 | 3.66 | 0.0002 | 7.35 | 34.02 | 22.68 | 41.14 |
0.25 | 5.04 | 0.0029 | 8.85 | 29.37 | 20.56 | 27.86 |
0.30 | 6.70 | 0.02 | 10.57 | 25.75 | 18.56 | 25.18 |
0.35 | 8.74 | 0.21 | 12.74 | 22.79 | 16.40 | 27.94 |
0.40 | 11.24 | 1.43 | 16.29 | 20.29 | 13.55 | 37.33 |
0.45 | 14.33 | 6.48 | 28.47 | 18.14 | 8.61 | 69.63 |
0.50 | 18.21 | 12.39 | 113.53 | 16.24 | 2.57 | 28.56 |
Ae. aegypti | Ae. albopictus | |||||
---|---|---|---|---|---|---|
dpi | n | Mean (Log10) | Std dev | n | Mean (Log10) | Std dev |
3 | 36 | 2.78 | 0.87 | 8 | 2.70 | 0.54 |
6 | 43 | 4.32 | 0.71 | 10 | 4.14 | 1.22 |
9 | 38 | 4.77 | 0.76 | 11 | 4.89 | 1.05 |
12 | 36 | 5.67 | 0.33 | 8 | 5.70 | 0.25 |
15 | 32 | 5.32 | 0.82 | 9 | 5.50 | 0.54 |
18 | 35 | 5.23 | 1.24 | 6 | 4.40 | 1.65 |
21 | 36 | 5.12 | 1.28 | 16 | 5.73 | 0.36 |
24 | 22 | 5.15 | 0.95 | 11 | 5.35 | 1.31 |
Ae. aegypti | Ae. albopictus | |||||
---|---|---|---|---|---|---|
dpi | n | Mean (Log10) | Std dev | n | Mean (Log10) | Std dev |
3 | 1 | 3.56 | - | - | - | - |
6 | 16 | 2.97 | 3.15 | 1 | 1.71 | - |
9 | 23 | 2.65 | 0.96 | 1 | 4.00 | - |
12 | 21 | 3.87 | 1.00 | 1 | 1.98 | - |
15 | 27 | 3.98 | 1.21 | 5 | 3.90 | 0.61 |
18 | 31 | 4.13 | 0.71 | 3 | 3.10 | 1.60 |
21 | 32 | 4.63 | 0.59 | 14 | 4.01 | 0.91 |
24 | 19 | 4.40 | 0.67 | 11 | 3.87 | 1.34 |
Ae. aegypti | Ae. albopictus | |||||
---|---|---|---|---|---|---|
dpi | n | Mean (Log10) | Std dev | n | Mean (Log10) | Std dev |
3 | - | - | - | - | - | - |
6 | 2 | 3.62 | 3.71 | 1 | 1.17 | - |
9 | 9 | 3.24 | 3.04 | 1 | 2.05 | - |
12 | 14 | 2.49 | 0.83 | 1 | 1.68 | - |
15 | 12 | 2.69 | 0.93 | 5 | 3.92 | 4.06 |
18 | 19 | 2.28 | 0.81 | - | - | - |
21 | 18 | 1.92 | 0.62 | 2 | 1.50 | 0.29 |
24 | 5 | 2.28 | 0.97 | 5 | 2.49 | 1.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zimler, R.A.; Alto, B.W. The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus. Pathogens 2021, 10, 1252. https://doi.org/10.3390/pathogens10101252
Zimler RA, Alto BW. The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus. Pathogens. 2021; 10(10):1252. https://doi.org/10.3390/pathogens10101252
Chicago/Turabian StyleZimler, Rebecca A., and Barry W. Alto. 2021. "The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus" Pathogens 10, no. 10: 1252. https://doi.org/10.3390/pathogens10101252
APA StyleZimler, R. A., & Alto, B. W. (2021). The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus. Pathogens, 10(10), 1252. https://doi.org/10.3390/pathogens10101252