Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand
Abstract
:1. Introduction
2. Results
2.1. Entomological Study in Dengue Case Areas
2.1.1. Adult Mosquito Infestation in Dengue Transmission Areas
2.1.2. Infection Status of the Collected Mosquitoes
2.1.3. Larval Indices and Breeding Container Availability in Dengue Transmission Areas
2.2. Annual Entomological Surveillance
2.2.1. Adult Mosquito Infestation
2.2.2. Larval Indices
2.2.3. Breeding Container Classification
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Study Sites
4.3. Entomological Risk Assessment
- Adult Mosquito Collection Procedures
- Larval and Container Survey Procedures
- The Larval Indices
4.3.1. Entomological Study in Dengue Case Areas
- Sample Preparation and Nested RT-PCR for DENV Detection in Mosquitoes
4.3.2. Annual Entomological Surveillance Study
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Strategy for Dengue Prevention and Control 2012–2020; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- WHO. Dengue Guidelines for Diagnosis, Treatment, Prevention and Control; WHO: Geneva, Switzerland, 2009; p. 147. [Google Scholar]
- Gubler, D.J. Prevention and control of Aedes aegypti-borne diseases: Lesson learned from past successes and failures. AsPac. J. Mol. Biol. Biotechnol. 2011, 19, 111–114. [Google Scholar]
- WHO. Vector-Borne Diseases, 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 26 March 2020).
- Bureau of Epidemiology D.O.D.C.; Ministry of Public Health, Thailand. Dengue Situations in Thailand 2020. Available online: http://www.boe.moph.go.th/boedb/surdata/disease.php?ds=66 (accessed on 2 November 2020).
- Kweka, E.J.; Baraka, V.; Mathias, L.; Mwang’onde, B.; Baraka, G.; Lyaruu, L.; Mahande, A.M. Ecology of Aedes mosquitoes, the Major Vectors of Arboviruses in Human Population, in Dengue Fever—A Resilient Threat in the Face of Innovation; IntechOpen: London, UK, 2018; pp. 39–56. [Google Scholar]
- Ponlawat, A.; Scott, J.G.; Harrington, L.C. Insecticide Susceptibility of Aedes aegypti and Aedes albopictus across Thailand. J. Med. Èntomol. 2005, 42, 821–825. [Google Scholar] [CrossRef]
- Saeung, M.; Ngoen-Klan, R.; Thanispong, K.; Muenworn, V.; Bangs, M.J.; Chareonviriyaphap, T. Susceptibility of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to temephos in Thailand and surrounding countries. J. Med. Entomol. 2020, 57, 1207–1220. [Google Scholar] [CrossRef] [PubMed]
- Lerdthusnee, K.; Chareonviriyaphap, T. Comparison of isozyme patterns of Aedes aegypti populations collected from pre- and post-Bacillus thuringiensis israelensis treatment sites in Thailand. J. Am. Mosq. Control Assoc. 1999, 15, 48–52. [Google Scholar] [PubMed]
- Lowe, R.; Barcellos, C.; Brasil, P.; Cruz, O.G.; Honório, N.A.; Kuper, H.; Carvalho, M.S. The Zika virus epidemic in Brazil: From discovery to future implications. Int. J. Environ. Res. Public Health 2018, 15, 96. [Google Scholar] [CrossRef] [Green Version]
- Napoli, C.; Salcuni, P.; Pompa, M.G.; Declich, S.; Rizzo, C. Estimated imported infections of chikungunya and dengue in Italy, 2008 to 2011. J. Travel Med. 2012, 19, 294–297. [Google Scholar] [CrossRef] [Green Version]
- Ponlawat, A.; Harrington, L.C. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J. Med. Entomol. 2005, 42, 844–849. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti—a review. Memórias Instituto Oswaldo Cruz 2013, 108, 11–17. [Google Scholar] [CrossRef] [PubMed]
- WHO. Vector surveillance and control. In Dengue Haemorrhagic Fever: Diagnosis, Treatment, Prevention and Control; WHO: Geneva, Switzerland, 1997; p. 84. [Google Scholar]
- Mammen, M.P., Jr.; Pimgate, C.; Koenraadt, C.J.M.; Rothman, A.L.; Aldstadt, J.; Nisalak, A.; Jarman, R.G.; Jones, J.W.; Srikiatkhachorn, A.; Ypil-Butac, C.A.; et al. Spatial and temporal clustering of dengue virus transmission in Thai villages. PLoS Med. 2008, 5, e205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endy, T.P.; Anderson, K.B.; Nisalak, A.; Yoon, I.-K.; Green, S.; Rothman, A.L.; Thomas, S.J.; Jarman, R.G.; Libraty, D.H.; Gibbons, R.V. Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand. PLoS Negl. Trop. Dis. 2011, 5, e975. [Google Scholar] [CrossRef]
- Yoon, I.-K.; Getis, A.; Aldstadt, J.; Rothman, A.L.; Tannitisupawong, D.; Koenraadt, C.J.M.; Fansiri, T.; Jones, J.W.; Morrison, A.C.; Jarman, R.G.; et al. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl. Trop. Dis. 2012, 6, e1730. [Google Scholar] [CrossRef] [PubMed]
- Harrington, L.C.; Edman, J.D.; Kittayapong, P.; Coleman, R.C.; Clark, G.G.; Sithiprasasna, R.; Kitthawee, S.; Lerdthusnee, K.; Scott, T.W.; Costero, A.; et al. Dispersal of the dengue vector Aedes aegypti within and between rural communities. Am. J. Trop. Med. Hyg. 2005, 72, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Esu, E.; Lenhart, A.; Smith, L.; Horstick, O. Effectiveness of peridomestic space spraying with insecticide on dengue transmission; systematic review. Trop. Med. Int. Health 2010, 15, 619–631. [Google Scholar] [CrossRef]
- Bhoomiboonchoo, P.; Gibbons, R.V.; Huang, A.; Yoon, I.-K.; Buddhari, D.; Nisalak, A.; Chansatiporn, N.; Thipayamongkolgul, M.; Kalanarooj, S.; Endy, T.; et al. The spatial dynamics of dengue virus in Kamphaeng Phet, Thailand. PLoS Negl. Trop. Dis. 2014, 8, e3138. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.J.; Endy, T.P.; Iamsirithaworn, S.; Lambrechts, L.; Ponlawat, A.; Gibbons, R.V.; Richardson, J.H.; Buddhari, D.; Rothman, A.L.; Yoon, I.-K.; et al. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet province, Thailand, using an enhanced spatiotemporal surveillance strategy. Am. J. Trop. Med. Hyg. 2015, 93, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Ferreira-de-Lima, V.H.; Lima-Camara, T.N. Natural vertical transmission of dengue virus in Aedes aegypti and Aedes albopictus: A systematic review. Parasites Vectors 2018, 11, 77. [Google Scholar] [CrossRef]
- Stoddard, S.T.; Forshey, B.M.; Morrison, A.C.; Paz-Soldan, V.; Vazquez-Prokopec, G.M.; Astete, H.; Reiner, R.C.; Vilcarromero, S.; Elder, J.P.; Halsey, E.S.; et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 2013, 110, 994–999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koenraadt, C.J.M.; Jones, J.W.; Sithiprasasna, R.; Scott, T.W. Standardizing container classification for immature Aedes aegypti surveillance in Kamphaeng Phet, Thailand. J. Med. Entomol. 2007, 44, 938–944. [Google Scholar] [CrossRef] [PubMed]
- Saleh, F.; Kitau, J.; Konradsen, F.; Alifrangis, M.; Lin, C.-H.; Juma, S.; Mchenga, S.S.; Saadaty, T.; Schiøler, K.L. Habitat characteristics for immature stages of Aedes aegypti in Zanzibar city, Tanzania. J. Am. Mosq. Control Assoc. 2018, 34, 190–200. [Google Scholar] [CrossRef]
- Koenraadt, C.J.M.; Tuiten, W.; Scott, T.W.; Jones, J.W.; Kijchalao, U.; Sithiprasasna, R. Dengue knowledge and practices and their impact on Aedes aegypti populations in Kamphaeng Phet, Thailand. Am. J. Trop. Med. Hyg. 2006, 74, 692–700. [Google Scholar] [CrossRef] [Green Version]
- Kamgang, B.; Ngoagouni, C.; Manirakiza, A.; Nakouné, E.; Paupy, C.; Kazanji, M. Temporal patterns of abundance of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) and mitochondrial DNA analysis of Ae. albopictus in the Central African Republic. PLoS Negl. Trop. Dis. 2013, 7, e2590. [Google Scholar] [CrossRef] [Green Version]
- Wilson-Bahun, T.A.; Kamgang, B.; Lenga, A.; Wondji, C.S. Larval ecology and infestation indices of two major arbovirus vectors, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazzaville, the capital city of the Republic of the Congo. Parasites Vectors 2020, 13, 492. [Google Scholar] [CrossRef] [PubMed]
- Dieng, H.; Satho, T.; Meli, N.K.K.B.; Abang, F.; Nolasco-Hipolito, C.; Hakim, H.; Miake, F.; Zuharah, W.F.; Kassim, N.F.A.; Ab Majid, A.H.; et al. Occurrence of sweet refuse at disposal sites: Rainwater retention capacity and potential breeding opportunities for Aedes aegypti. PLoS Negl. Trop. Dis. 2018, 25, 13833–13843. [Google Scholar] [CrossRef] [PubMed]
- Russell, P.K.; Yuill, T.M.; Nisalak, A.; Udomsakdi, S.; Gould, D.J.; Winter, P.E. An insular outbreak of dengue hemorrhagic fever: III. Identification of vectors and observations on vector ecology. Am. J. Trop. Med. Hyg. 1968, 17, 609–618. [Google Scholar]
- Kamgang, B.; Happi, J.Y.; Boisier, P.; Njiokou, F.; Hervé, J.-P.; Simard, F.; Paupy, C. Geographic and ecological distribution of the dengue and chikungunya virus vectors Aedes aegypti and Aedes albopictus in three major Cameroonian towns. Med. Veter. Entomol. 2010, 24, 132–141. [Google Scholar] [CrossRef]
- Bowman, L.; Runge-Ranzinger, S.; McCall, P.J. Assessing the relationship between vector indices and dengue transmission: A systematic review of the evidence. PLoS Negl. Trop. Dis. 2014, 8, e2848. [Google Scholar] [CrossRef]
- Office K.P.P.H. Dengue Investigation Report. 2020. Available online: http://kpo.moph.go.th/webkpo/SFRDHF/dhfevent_menu.php (accessed on 17 December 2020).
- WHO. Guidelines for Prevention and Control of Dengue Haemorrhagic Fever; National Institute of Communicable Diseases: Sham Nath Marg, Delhi, India, 2006. [Google Scholar]
- Klungthong, C.; Gibbons, R.V.; Thaisomboonsuk, B.; Nisalak, A.; Kalayanarooj, S.; Thirawuth, V.; Nutkumhang, N.; Mammen, M.P.; Jarman, R.G. Dengue virus detection using whole blood for reverse transcriptase PCR and virus isolation. J. Clin. Microbiol. 2007, 45, 2480–2485. [Google Scholar] [CrossRef] [Green Version]
Adult Mosquito Collection | Day 1 | Day 14 | Total | p-Value |
---|---|---|---|---|
Dengue case | 35 | 35 | ||
Index houses (n) | 35 | 35 | 70 | |
Neighbor houses (n) | 16 | 16 | 32 | |
Total inspected houses (n) | 51 | 51 | 102 | |
House with the presence of Aedes * female vectors (n) | 44 | 40 | 84 | |
BG traps (n) | 102 | 102 | 204 | |
Total collected mosquitoes (n) | 741 a | 475 b | 1216 | 0.002 |
Total collected Aedes * female vectors (n) | 311 a | 181 b | 492 | 0.002 |
Average of Aedes * female vectors per trap | 3 | 2 | 2 | |
Other collected mosquitoes ** (n) | 430 a | 294 b | 724 | 0.019 |
PCR-tested mosquito samples (n) | 286 | 165 | 451 | |
DENV-positive mosquito samples (n) | 19 | 3 | 22 | |
Mosquito infection rate (%) | 6.64 a | 1.82 b | 4.9 | 0.023 |
Index houses | ||||
PCR-tested mosquito samples (n) | 210 | 116 | 326 | |
DENV-positive mosquito samples (n) | 18 | 3 | 21 | |
Mosquito infection rate (%) | 8.57 a | 2.57 b | 6.44 | 0.036 |
Neighboring houses | ||||
PCR-tested mosquito samples (n) | 76 | 49 | 125 | |
DENV-positive mosquito samples (n) | 1 | 0 | 1 | |
Mosquito infection rate (%) | 1.3 | 0 | 0.8 | |
DENV serotypes (No. positive mosquito samples) | DENV-1 (6) | DENV-3 (2) | ||
DENV-2 (5) | DENV-4 (1) | |||
DENV-3 (4) | ||||
DENV-4 (4) |
Study Households | House Inspected (n) | PCR-Tested Mosquito Samples (n) | DENV Infection Rate in Mosquito Samples (%) | χ2 | df | p-Value | |
---|---|---|---|---|---|---|---|
Pos+ve | Neg+ve | ||||||
Index houses | 70 | 21 | 305 | 6.44 a | 6.198 | 1 | 0.012 |
Neighboring houses | 32 | 1 | 124 | 0.8 b | |||
Total | 102 | 22 | 429 |
Study Households | House Inspected (n) | Container Inspected (n) | Larval-Pos+ve Container (%) | χ2 | df | p-Value | |
---|---|---|---|---|---|---|---|
A | Index houses | 35 | 573 | 18.67 a | 6.38 | 1 | 0.012 |
Neighboring houses | 16 | 227 | 11.01 b | ||||
Total | 51 | 800 | |||||
B | Houses with DENV-Pos+ve mosquitoes | 12 | 248 | 26.61 a | 25.63 | 1 | <0.001 |
Houses with DENV-Neg+ve mosquitoes | 39 | 552 | 11.96 b | ||||
Total | 51 | 800 |
Study Area | 2016 | 2017 | 2018 | 2019 | 2020 | Total | |
---|---|---|---|---|---|---|---|
A | All study areas | ||||||
Houses inspected (n) | 71 | 96 | 90 | 104 | 140 | 501 | |
BG trap (n) | 142 | 192 | 180 | 208 | 280 | 1002 | |
Total mosquitoes (Mean ± SE) | 1519 (21.39 ± 3.91) | 1901 (19.80 ± 2.11) | 1158 (12.87 ± 2.19) | 1809 (17.39 ± 2.48) | 533 (3.81 ± 0.53) | 6920 (13.81 ± 1.00) | |
Aedes * female vectors (Mean ± SE) | 687 (9.68 ± 2.20) | 1166 (12.15 ± 1.38) | 647 (7.19 ± 1.36) | 932 (8.96 ± 1.47) | 221 (1.58 ± 0.21) | 3653 (7.29 ± 0.59) | |
Aedes * female vectors (%) | 45.23 | 61.34 | 55.87 | 51.52 | 41.46 | 52.79 | |
B | Muang district (commercial city) | ||||||
Houses inspected (n) | 71 | 71 | 68 | 65 | 103 | 378 | |
BG trap (n) | 142 | 142 | 136 | 130 | 206 | 756 | |
Total mosquitoes (Mean ± SE) | 1519 (21.39 ± 3.91) | 1250 (17.61 ± 2.17) | 697 (10.25 ± 1.84) | 1418 (21.82 ± 3.66) | 220 (2.14 ± 0.28) | 5104 (13.50 ± 1.17) | |
Aedes * female vectors (Mean ± SE) | 687 (9.68 ± 2.20) | 791 (11.14 ± 3.91) | 402 (5.91 ± 1.28) | 701 (10.78 ± 2.13) | 109 (1.06 ± 0.14) | 2690 (7.12 ± 0.69) | |
Aedes * female vectors (%) | 45.23 | 63.28 | 57.68 | 49.44 | 49.55 | 52.70 | |
C | KhanuWoralaksaburi district (rural area) | ||||||
Houses inspected (n) | 0 | 25 | 22 | 39 | 37 | 123 | |
BG trap (n) | NA | 50 | 44 | 78 | 74 | 246 | |
Total mosquitoes (Mean ± SE) | NA | 651 (26.04 ± 5.14) | 461 (20.95 ± 6.76) | 391 (10.03 ± 2.09) | 313 (8.46 ± 1.63) | 1816 (14.76 ± 1.88) | |
Aedes * female vectors (Mean ± SE) | NA | 375 (15.00 ± 3.30) | 245 (11.14 ± 3.85) | 231 (5.92 ± 1.61) | 112 (3.03 ± 0.62) | 963 (7.83 ± 1.16) | |
Aedes * female vectors (%) | NA | 57.60 | 53.15 | 59.08 | 35.78 | 53.03 |
Study Year | House Inspected (n) | House with Aedes Larvae (n) | Container Inspected (n) | Container with Aedes Larvae (n) | Container per House (n) | Larval Indices | |||
---|---|---|---|---|---|---|---|---|---|
HI (95% CI) | CI (95% CI) | BI | |||||||
A | All study areas | ||||||||
2016 | 108 | 89 | 1835 | 305 | 17 | 82.4 (74.4–88.7) | 16.6 (15.0–18.4) | 282.4 | |
2017 | 107 | 97 | 1922 | 505 | 18 | 90.7 (84.1–95.1) | 26.3 (24.3–28.3) | 472.0 | |
2018 | 136 | 124 | 2769 | 626 | 20 | 91.2 (85.5–95.1) | 22.6 (21.1–24.2) | 460.3 | |
2019 | 167 | 132 | 2798 | 430 | 17 | 79.0 (72.4–84.7) | 15.4 (14.1–16.7) | 257.5 | |
2020 | 214 | 188 | 3904 | 784 | 18 | 87.9 (83.0–91.7) | 20.1 (18.8–21.4) | 366.4 | |
Total | 732 | 630 | 13,228 | 2650 | 18 | 86.1 (83.4–88.4) | 20.0 (19.4–20.7) | 362.0 | |
B | Muang district (commercial city) | ||||||||
2016 | 85 | 68 | 1449 | 234 | 17 | 80.0 (70.6–87.4) | 16.1 (16.1–18.1) | 275.3 | |
2017 | 73 | 66 | 1371 | 366 | 19 | 90.4 (82.1–95.6) | 26.7 (24.4–29.1) | 501.4 | |
2018 | 79 | 71 | 1650 | 419 | 21 | 89.9 (81.8–95.1) | 25.4 (23.3–27.5 | 530.4 | |
2019 | 94 | 77 | 1717 | 290 | 18 | 81.9 (73.2–88.7) | 16.9 (15.2–18.7) | 308.5 | |
2020 | 164 | 141 | 3136 | 609 | 19 | 86.0 (80.0–90.6) | 19.4 (18.1–20.8) | 371.3 | |
Total | 495 | 423 | 9323 | 1918 | 19 | 85.5 (82.1–88.4) | 20.6 (19.8–21.4) | 387.5 | |
C | Khanu Woralaksaburi district (rural area) | ||||||||
2016 | 23 | 21 | 386 | 71 | 17 | 91.3 (74.9–98.1) | 18.4 (14.8–22.5) | 308.7 | |
2017 | 34 | 31 | 551 | 139 | 16 | 91.2 (78.3–97.5) | 25.2 (21.7–19.0) | 408.8 | |
2018 | 57 | 53 | 1119 | 207 | 20 | 93.0 (84.2–97.6) | 18.5 (16.3–20.9) | 363.2 | |
2019 | 73 | 55 | 1081 | 140 | 15 | 75.3 (64.6–84.1) | 13.0 (11.0–15.1) | 191.8 | |
2020 | 50 | 47 | 768 | 175 | 15 | 94.0 (84.8–98.3) | 22.8 (19.9–25.9) | 350.0 | |
Total | 237 | 207 | 3905 | 732 | 16 | 87.3 (82.7–91.1) | 18.7 (17.5–20.0) | 308.9 |
Variable | House Index | Container Index | |||||
---|---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | ||
A | All study areas | ||||||
Commercial city: Rural area | 1.227 | 0.766–1.968 | 0.395 | 0.886 | 0.804–0.976 | 0.014 | |
2017 | 2.030 | 0.894–4.606 | 0.090 | 1.805 | 1.538–2.117 | <0.001 | |
2018 | 2.119 | 0.974–4.611 | 0.058 | 1.500 | 1.287–1.748 | <0.001 | |
2019 | 0.770 | 0.410–1.443 | 0.414 | 0.930 | 0.792–1.093 | 0.379 | |
2020 | 1.538 | 0.808–2.927 | 0.190 | 1.259 | 1.088–1.456 | 0.002 | |
Constant | 4.494 | <0.001 | 0.204 | <0.001 | |||
B | Muang district (commercial city) | ||||||
2017 | 2.357 | 0.918–6.053 | 0.075 | 1.891 | 1.573–2.273 | <0.001 | |
2018 | 2.219 | 0.899–5.478 | 0.084 | 1.767 | 1.478–2.113 | <0.001 | |
2019 | 1.132 | 0.536–2.391 | 0.744 | 1.055 | 0.874–1.274 | 0.576 | |
2020 | 1.533 | 0.768–3.057 | 0.226 | 1.251 | 1.060–1.477 | 0.008 | |
Constant | 4.000 | <0.001 | 0.193 | <0.001 | |||
C | KhanuWoralaksaburi district (rural area) | ||||||
2017 | 0.984 | 0.151–6.404 | 0.987 | 1.497 | 1.085–2.064 | 0.014 | |
2018 | 1.262 | 0.215–7.416 | 0.797 | 1.007 | 0.747–1.357 | 0.963 | |
2019 | 0.291 | 0.062–1.364 | 0.117 | 0.660 | 0.483–0.902 | 0.009 | |
2020 | 1.492 | 0.232–9.601 | 0.674 | 1.309 | 0.962–1.781 | 0.086 | |
Constant | 10.500 | 0.001 | 0.225 | <0.001 |
Category | Container Classification | Container Inspected (%) | Pos+ve Container (%) | χ2 | df | p-Value | |
---|---|---|---|---|---|---|---|
A | Container usage types | ||||||
Routine use container | 8845 (77.6) | 1589 (18.0) a | 165.78 | 1 | <0.001 | ||
Discarded container | 2546 (22.4) | 756 (29.7) b | |||||
Total container inspected | 11,391 | 2345 (20.6) | |||||
B | Container types | ||||||
Jar/pot | 2007 (17.6) | 512 (25.5) a | 930.58 | 9 | <0.001 | ||
Tank/pond/cistern | 1295 (11.4) | 311 (24.0) a,b | |||||
Vase/cup/bowl/bottle/can | 2184 (19.2) | 193 (8.8) c | |||||
Pail/bucket/basin/box | 2796 (24.5) | 426 (15.2) d | |||||
Drum/gallon | 1003 (8.8) | 258 (25.7) a | |||||
Tire | 628 (5.5) | 374 (59.6) e | |||||
Dish/plate/saucer/tray/ant trap | 380 (3.3) | 119 (31.3) a | |||||
Cover/sheet | 467 (4.1) | 60 (12.8) d | |||||
Natural containers | 118 (1.0) | 14 (11.9) b,c,d | |||||
Other containers * | 513 (4.5) | 78 (15. 2) d | |||||
Total container inspected | 11,391 | 2345 (20.6) | |||||
C | Material types | ||||||
Clay | 2610 (23.5) | 561 (21.5) a | 625.67 | 6 | <0.001 | ||
Plastic | 5486 (48.7) | 929 (16.9) b | |||||
Metal | 751 (6.7) | 111 (14.8) b | |||||
Cement | 1379 (12.2) | 327 (23.7) a | |||||
Glass | 313 (2.8) | 13 (4.2) c | |||||
Rubber | 690 (6.1) | 381 (55.2) d | |||||
Other materials ** | 44 (0.4) | 9 (20.5) a,b | |||||
Total container inspected | 11,273 | 2331 (20.7) | |||||
D | Natural container types | ||||||
Coconut shell | 87 (73.7) | 8 (9.2) a | 17.38 | 4 | 0.005 | ||
Bamboo stump | 5 (4.2) | 2 (40.0) a,b | |||||
Tree hole | 5 (4.2) | 3 (60.0) b | |||||
Snail shell | 7 (5.9) | 1 (14.3) a,b | |||||
Plant parts | 14 (11.9) | 0 (0.0) a | |||||
Total container inspected | 118 | 14 (11.9) |
Container Usage Type | Clay (%) | Plastic (%) | Metal (%) | Cement (%) | Glass (%) | Rubber (%) | Others * (%) | Total (%) | |
---|---|---|---|---|---|---|---|---|---|
A | Routine use containers | ||||||||
Jar/Pot | 1726 | 30 | 39 | 147 | 1 | 1943 (22.0) | |||
Tank/Pond/Cistern | 32 | 67 | 7 | 1133 | 21 | 1260 (14.2) | |||
Vase/Cup/Bowl/Bottle/Can | 689 | 551 | 95 | 51 | 236 | 1 | 1623 (18.3) | ||
Pail/Bucket /Basin/Box | 28 | 2280 | 87 | 14 | 2 | 2411 (27.3) | |||
Drum/Gallon | 1 | 875 | 25 | 901 (10.2) | |||||
Dish/Plate/Saucer/Tray/Ant trap | 35 | 207 | 31 | 1 | 274 (3.1) | ||||
Cover/Sheet | 3 | 148 | 20 | 171 (1.9) | |||||
Others ** | 5 | 48 | 177 | 7 | 23 | 2 | 262 (3.0) | ||
Total | 2519 (28.5) | 4206 (47.6) | 481 (5.4) | 1352 (15.3) | 259 (2.9) | 23 (0.3) | 5 (0.1) | 8845 | |
B | Discarded containers | ||||||||
Jar/Pot | 54 | 1 | 5 | 4 | 64 (2.5) | ||||
Tank/Pond/Cistern | 9 | 5 | 19 | 2 | 35 (1.4) | ||||
Vase/Cup/Bowl/Bottle/Can | 14 | 390 | 90 | 1 | 48 | 18 | 561 (22.0) | ||
Pail /Bucket/Basin/Box | 316 | 56 | 13 | 385 (15.1) | |||||
Drum/Gallon | 95 | 7 | 102 (4.0) | ||||||
Tire | 628 | 628 (24.7) | |||||||
Dish/Plate/Saucer/Tray/Ant trap | 4 | 79 | 19 | 1 | 1 | 2 | 106 (4.2) | ||
Cover/Sheet | 275 | 21 | 296 (11.6) | ||||||
Natural container | 118 (4.6) | ||||||||
Others ** | 19 | 115 | 67 | 2 | 3 | 39 | 6 | 251 (9.9) | |
Total | 91 (3.6) | 1280 (50.3) | 270 (10.6) | 27 (1.1) | 54 (2.1) | 667 (26.2) | 39 (1.5) | 2546 |
Positive Discarded Containers | Clay (%) | Plastic (%) | Metal (%) | Cement (%) | Glass (%) | Rubber (%) | Others * (%) | Total (%) |
---|---|---|---|---|---|---|---|---|
Jar/Pot | 17 | 2 | 1 | 20 (2.6) | ||||
Tank/Pond/Cistern | 3 | 2 | 11 | 1 | 17 (2.2) | |||
Vase/Cup/Bowl/Bottle/Can | 2 | 47 | 21 | 1 | 5 | 3 | 79 (10.4) | |
Pail /Bucket/Basin/Box | 90 | 13 | 2 | 105 (13.9) | ||||
Drum/Gallon | 33 | 33 (4.4) | ||||||
Tire | 374 | 374 (49.5) | ||||||
Dish/Plate/Saucer/Tray/Ant trap | 20 | 7 | 27 (3.6) | |||||
Cover/Sheet | 35 | 2 | 37 (4.9) | |||||
Others ** | 3 | 23 | 13 | 1 | 7 | 3 | 50 (6.6) | |
Natural container | NA | NA | NA | NA | NA | NA | NA | 14 (1.9) |
Total | 22 (2.9) | 251 (33.2) | 60 (7.9) | 13 (1.7) | 7 (0.9) | 381 (50.4) | 8 (1.1) | 756 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fansiri, T.; Buddhari, D.; Pathawong, N.; Pongsiri, A.; Klungthong, C.; Iamsirithaworn, S.; Jones, A.R.; Fernandez, S.; Srikiatkhachorn, A.; Rothman, A.L.; et al. Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand. Pathogens 2021, 10, 1234. https://doi.org/10.3390/pathogens10101234
Fansiri T, Buddhari D, Pathawong N, Pongsiri A, Klungthong C, Iamsirithaworn S, Jones AR, Fernandez S, Srikiatkhachorn A, Rothman AL, et al. Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand. Pathogens. 2021; 10(10):1234. https://doi.org/10.3390/pathogens10101234
Chicago/Turabian StyleFansiri, Thanyalak, Darunee Buddhari, Nattaphol Pathawong, Arissara Pongsiri, Chonticha Klungthong, Sopon Iamsirithaworn, Anthony R. Jones, Stefan Fernandez, Anon Srikiatkhachorn, Alan L. Rothman, and et al. 2021. "Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand" Pathogens 10, no. 10: 1234. https://doi.org/10.3390/pathogens10101234
APA StyleFansiri, T., Buddhari, D., Pathawong, N., Pongsiri, A., Klungthong, C., Iamsirithaworn, S., Jones, A. R., Fernandez, S., Srikiatkhachorn, A., Rothman, A. L., Anderson, K. B., Thomas, S. J., Endy, T. P., & Ponlawat, A. (2021). Entomological Risk Assessment for Dengue Virus Transmission during 2016–2020 in Kamphaeng Phet, Thailand. Pathogens, 10(10), 1234. https://doi.org/10.3390/pathogens10101234