Metformin Improves Biochemical and Pathophysiological Changes in Hepatocellular Carcinoma with Pre-Existed Diabetes Mellitus Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Experimental Design
2.3. DM and HCC Inductions
2.4. Experimental Animals
2.5. Haematological and Biochemical Profiling
2.6. Histopathological Investigations
2.7. Immunohistochemical Staining for PCNA and Caspase-3 Detection
2.8. Statistical Analysis
3. Results
3.1. Injection with STZ, DEN, and MET Treatment Decreased Rats’ Body Weights
3.2. Injection with STZ and DEN Increased the Number of RBCs and WBCs
3.3. Effect of MET/DEN on the Liver Functions, Lipid Profile, and the Antioxidant Biomarkers
3.4. Histological and Immunohistochemical Investigations of Liver Tissues
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donadon, V.; Balbi, M.; Casarin, P.; Vario, A.; Alberti, A. Association between hepatocellular carcinoma and type 2 diabetes mellitus in Italy: Potential role of insulin. World J. Gastroenterol. 2008, 14, 5695–5700. [Google Scholar] [CrossRef]
- Klil-Drori, A.J.; Azoulay, L.; Pollak, M.N. Cancer, obesity, diabetes, and antidiabetic drugs: Is the fog clearing? Nat. Rev. Clin. Oncol. 2016, 14, 85–99. [Google Scholar] [CrossRef]
- Poustchi, H.; Sepanlou, S.; Esmaili, S.; Mehrabi, N.; Ansarymoghadam, A. Hepatocellular Carcinoma in the World and the Middle East. Middle East J. Dig. Dis. 2010, 2, 31–41. [Google Scholar] [PubMed]
- Shebl, F.M.; Capo-Ramos, D.E.; Graubard, B.I.; McGlynn, K.A.; Altekruse, S.F. Socioeconomic Status and Hepatocellular Carcinoma in the United States. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1330–1335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef]
- Enguita-Germán, M.; Fortes, P. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma. World J. Hepatol. 2014, 6, 716–737. [Google Scholar] [CrossRef] [PubMed]
- Chettouh, H.; Lequoy, M.; Fartoux, L.; Vigouroux, C.; Desbois-Mouthon, C. Hyperinsulinaemia and insulin signalling in the pathogenesis and the clinical course of hepatocellular carcinoma. Liver Int. 2015, 35, 2203–2217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyal, A.; Poklepovic, A.; Moyneur, E.; Barghout, V. Population-based risk factors and resource utilization for HCC: US per-spective. Curr. Med. Res. Opin. 2010, 26, 2183–2191. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, P.P.; Singh, A.G.; Murad, M.H.; Sanchez, W. Anti-diabetic medications and the risk of hepatocellular cancer: A sys-tematic review and meta-analysis. Am. J. Gastroenterol. 2013, 108, 881–891. [Google Scholar] [CrossRef]
- Koh, W.P.; Wang, R.; Jin, A.; Yu, M.C.; Yuan, J.M. Diabetes mellitus and risk of hepatocellular carcinoma: Findings from the Singa-pore Chinese Health Study. Br. J. Cancer 2013, 108, 1182–1188. [Google Scholar] [CrossRef] [Green Version]
- Facciorusso, A. The influence of diabetes in the pathogenesis and the clinical course of hepatocellular carcinoma: Recent find-ings and new perspectives. Curr. Diabetes Rev. 2013, 9, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-H.; Lai, H.-Y.; Chen, Y.-C.; Li, C.-F.; Huang, H.-S.; Liu, H.-S.; Tsai, Y.-S.; Wang, J.-M. Metformin promotes apoptosis in hepatocellular carcinoma through the CEBPD-induced autophagy pathway. Oncotarget 2017, 8, 13832–13845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monami, M.; Lamanna, C.; Balzi, D.; Marchionni, N.; Mannucci, E. Sulphonylureas and cancer: A case–control study. Acta Diabetol. 2008, 46, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, J.M.; Donnelly, L.A.; Emslie-Smith, A.M.; Alessi, D.R.; Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330, 1304–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, W.; Fang, L.; Fang, Q.; Zheng, X.; Huang, P. Effects of metformin on survival outcomes of pancreatic cancer patients with diabetes: A meta-analysis. Mol. Clin. Oncol. 2017, 8, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Tang, G.H.; Satkunam, M.; Pond, G.R.; Steinberg, G.R.; Blandino, G.; Schünemann, H.J.; Muti, P. Association of Metformin with Breast Cancer Incidence and Mortality in Patients with Type II Diabetes: A GRADE-Assessed Systematic Review and Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2018, 27, 627–635. [Google Scholar] [CrossRef] [Green Version]
- Higurashi, T.; Nakajima, A. Metformin and Colorectal Cancer. Front. Endocrinol. 2018, 9, 622. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.; Gandhi, J.; Joshi, G.; Smith, N.L.; Khan, S.A. The anticancer potential of metformin on prostate cancer. Prostate Cancer Prostatic Dis. 2019, 22, 351–361. [Google Scholar] [CrossRef]
- Turacli, I.D.; Candar, T.; Yuksel, E.B.; Kalay, S.; Oguz, A.K.; Demirtas, S. Potential effects of metformin in DNA BER system based on oxidative status in type 2 diabetes. Biochimie 2018, 154, 62–68. [Google Scholar] [CrossRef]
- Fu, N.; Yao, H.; Nan, Y.; Qiao, L. Role of Oxidative Stress in Hepatitis C Virus Induced Hepatocellular Carcinoma. Curr. Cancer Drug Targets 2017, 17, 498–504. [Google Scholar] [CrossRef]
- Li, J.; Hernanda, P.Y.; Bramer, W.M.; Peppelenbosch, M.P.; Van Luijk, J.; Pan, Q. Anti-Tumor Effects of Metformin in Animal Models of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0127967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-P.; Shieh, J.-J.; Chang, C.-C.; Chen, T.-T.; Lin, J.-T.; Wu, M.-S.; Lin, J.-H.; Wu, C.-Y. Metformin decreases hepatocellular carcinoma risk in a dose-dependent manner: Population-based and in vitro studies. Gut 2013, 62, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Huang, D.; Lu, N.; Luo, L. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Oncol. Rep. 2015, 34, 2821–2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caton, P.W.; Nayuni, N.K.; Kieswich, J.; Khan, N.Q.; Yaqoob, M.M.; Corder, R. Metformin suppresses hepatic gluconeogenesis through induction of SIRT1 and GCN5. J. Endocrinol. 2010, 205, 97–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brøndum, E.; Nilsson, H.; Aalkjaer, C. Functional Abnormalities in Isolated Arteries from Goto-Kakizaki and Streptozotocin-treated Diabetic Rat Models. Horm. Metab. Res. 2005, 37, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Deperalta, D.K.; Wei, L.; Ghoshal, S.; Schmidt, B.; Lauwers, G.Y.; Lanuti, M.; Chung, R.T.; Tanabe, K.K.; Fuchs, B.C. Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis. Cancer 2016, 122, 1216–1227. [Google Scholar] [CrossRef] [Green Version]
- Thefeld, W.; Hoffmeister, H.; Busch, E.W.; Koller, P.U.; Vollmar, J. Reference Values for the Determination of GOT, GPT, and Alka-line Phosphatase in Serum with Optimal Standard Methods. Dtsch. Med. Wochenschr. 1974, 99, 343–351. [Google Scholar] [CrossRef]
- Kepka-Lenhart, D.; Ash, D.E.; Morris, S.M. Determination of Mammalian Arginase Activity. Methods Enzymol. 2008, 440, 221–230. [Google Scholar] [CrossRef]
- Belfield, A.; Goldberg, D. Revised Assay for Serum Phenyl Phosphatase Activity Using 4- Amino—Antipyrine. Enzyme 1971, 12, 561–573. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar]
- Burtis, C.; Bruns, D. Tietz Fundamentals of Clinical Chemistry, 6th ed.; Saunders: Philadelphia, PA, USA, 2007. [Google Scholar]
- Walter, M.; Gerade, H. A colorimetric method for determination bilirubin in serum and plasma. Micro Chem. 1970, 15, 231–236. [Google Scholar]
- Thomas, L. Urea and blood urea nitrogen (BUN). In Clinical Laboratory Diagnostics. Use and Assessment of Clinical Laboratory Results; Thomas, L., Ed.; TH-Books Verlagsgesellschaft: Frankfurt am Main, Germany, 1998; pp. 374–377. [Google Scholar]
- Newman, D.J.; Thakkar, H.; Edwards, R.G.; Wilkie, M.; White, T.; Grubb, A.O.; Price, C.P. Serum cystatin C measured by automated im-munoassay: A more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995, 47, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allain, C.C.; Poon, L.S.; Chan, C.S.G.; Richmond, W.; Fu, P.C. Enzymatic Determination of Total Serum Cholesterol. Clin. Chem. 1974, 20, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Fossati, P.; Prencipe, L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin. Chem. 1982, 28, 2077–2080. [Google Scholar] [CrossRef]
- Burstein, M.; Scholnick, H.R.; Morfin, R. Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 1970, 11, 583–595. [Google Scholar]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Paoletti, F.; Mocali, A. Determination of superoxide dismutase activity by purely chemical system based on NAD(P)H oxida-tion. Methods Enzymol. 1990, 186, 209–220. [Google Scholar]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar]
- Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxi-dase. J. Lab. Clin. Med. 1967, 70, 158–169. [Google Scholar]
- Li, X.-Y.; Chow, C.K. An improved method for the measurement of malondialdehyde in biological samples. Lipids 1994, 29, 73–75. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Stevens, A. Theory and Practical of Histological Techniques, 4th ed.; Churchill Livingstone: New York, NY, USA; Edinburg/London, UK, 1996. [Google Scholar]
- Zhang, H.; Gao, C.; Fang, L.; Yao, S.-K. Increased international normalized ratio level in hepatocellular carcinoma patients with diabetes mellitus. World J. Gastroenterol. 2013, 19, 2395–2403. [Google Scholar] [CrossRef] [PubMed]
- Golay, A. Metformin and body weight. Int. J. Obes. 2007, 32, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyton, K.Z.; Kensler, T.W. Oxidative mechanisms in carcinogenesis. Br. Med. Bull. 1993, 49, 523–544. [Google Scholar] [CrossRef] [PubMed]
- Urakami, T.; Morimoto, S.; Owada, M.; Harada, K. Usefulness of the addition of metformin to insulin in pediatric patients with type 1 diabetes mellitus. Pediatr. Int. 2005, 47, 430–433. [Google Scholar] [CrossRef] [PubMed]
- Obi, B.C.; Okoye, T.C.; Okpashi, V.E.; Igwe, C.N.; Alumanah, E.O. Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats. J. Diabetes Res. 2016, 2016, 1635361. [Google Scholar] [CrossRef] [Green Version]
- Ohno, T.; Shimizu, M.; Shirakami, Y.; Baba, A.; Kochi, T.; Kubota, M.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. Metformin Suppresses Diethylnitrosamine-Induced Liver Tumorigenesis in Obese and Diabetic C57BL/KsJ-+Leprdb/+Leprdb Mice. PLoS ONE 2015, 10, e0124081. [Google Scholar] [CrossRef] [Green Version]
- Arboatti, A.S.; Lambertucci, F.; Sedlmeier, M.G.; Pisani, G.; Monti, J.; Alvarez, M.D.L.; Francés, D.E.; Ronco, M.T.; Carnovale, E.C. Diethylnitrosamine Increases Proliferation in Early Stages of Hepatic Carcinogenesis in Insulin-Treated Type 1 Diabetic Mice. BioMed Res. Int. 2018, 2018, 9472939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholz, W.; Schütze, K.; Kunz, W.; Schwarz, M. Phenobarbital enhances the formation of reactive oxygen in neoplastic rat liver nodules. Cancer Res. 1990, 50, 7015–7022. [Google Scholar]
- Cerutti, P.; Amstad, P. Inflammation and Oxidative Stress in Carcinogenesis. In Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury; Springer Science and Business Media LLC: Berlin, Germany, 1993; pp. 387–390. [Google Scholar]
- Pradeep, K.; Mohan, C.V.; Gobianand, K.; Karthikeyan, S. Silymarin modulates theoxidant–antioxidant imbalance during di-ethylnitrosamine induced oxidativestress in rats. Eur. J. Pharmacol. 2007, 560, 110–116. [Google Scholar] [CrossRef]
- Pradeep, K.; Victor, C.; Mohan, R.; Gobianand, K.; Karthikeyan, S. Protective effect of Cassiafistula Linn. on diethylnitrosamine induced hepatocellular damage and oxidativestress in ethanol pretreated rats. Biol. Res. 2010, 43, 113–125. [Google Scholar] [CrossRef]
- Sun, H.; Yu, L.; Wei, H.; Liu, G. A Novel Antihepatitis Drug, Bicyclol, Prevents Liver Carcinogenesis in Diethylnitrosamine-Initiated and Phenobarbital-Promoted Mice Tumor Model. J. Biomed. Biotechnol. 2012, 2012, 584728. [Google Scholar] [CrossRef] [PubMed]
- Liao, D.J.; Blanck, A.; Eneroth, P.; Gustafsson, J.A.; Hallstrom, I.P. Diethylnitrosamine causes pituitary damage, disturbs hormone levels, and reduces sexual dimorphism of certain liver functions in the rat. Environ. Health Perspect. 2001, 109, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Farombi, E.O.; Shrotriya, S.; Surh, Y.J. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-kappaB and AP-1. Life Sci. 2009, 84, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Chasseaud, L. The Role of Glutathione and Glutathione S-Transferases in the Metabolism of Chemical Carcinogens and Other Electrophilic Agents. Adv. Cancer Res. 1979, 29, 175–274. [Google Scholar] [CrossRef]
- Jo, W.; Yu, E.; Chang, M.; Park, H.; Choi, H.; Ryu, J.; Jang, S.; Lee, H.; Jang, J.; Son, W.; et al. Metformin inhibits early stage diethylnitrosamine-induced hepato-carcinogenesis in rats. Mol. Med. Rep. 2016, 13, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Winder, W.W.; Hardie, D.G. AMP-activated protein kinase, a metabolic master switch: Possible roles in Type 2 diabetes. Am. J. Physiol. Metab. 1999, 277, E1–E10. [Google Scholar] [CrossRef]
- Zakikhani, M.; Dowling, O.R.J.; Fantus, G.I.; Sonenberg, N.; Pollak, M. Metformin Is an AMP Kinase–Dependent Growth Inhibitor for Breast Cancer Cells. Cancer Res. 2006, 66, 10269–10273. [Google Scholar] [CrossRef] [Green Version]
- Rocha, G.Z.; Dias, M.M.; Ropelle, E.R.; Osório-Costa, F.; Rossato, F.A.; Vercesi, A.E.; Saad, M.J.; Carvalheira, J.B. Metformin Amplifies Chemotherapy-Induced AMPK Activation and Antitumoral Growth. Clin. Cancer Res. 2011, 17, 3993–4005. [Google Scholar] [CrossRef] [Green Version]
- Kourelis, T.V.; Siegel, R.D. Metformin and cancer: New applications for an old drug. Med Oncol. 2012, 29, 1314–1327. [Google Scholar] [CrossRef]
- Memmott, R.M.; Dennis, P.A. LKB1 and mammalian target of rapamycin as predictive factors for the anticancer efficacy of met-formin. J. Clin. Oncol. 2009, 27, e226. [Google Scholar] [CrossRef]
- Pandini, G.; Frasca, F.; Mineo, R.; Sciacca, L.; Vigneri, R.; Belfiore, A. Insulin/Insulin-like Growth Factor I Hybrid Receptors Have Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. J. Biol. Chem. 2002, 277, 39684–39695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sachdev, D.; Singh, R.; Fujita-Yamaguchi, Y.; Yee, D. Down-regulation of insulin receptor by antibodies against the type I insu-lin-like growth factor receptor: Implications for anti-insulin-like growth factor therapy in breast cancer. Cancer Res. 2006, 66, 2391–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13, 1016–1023. [Google Scholar] [CrossRef] [PubMed]
- Hardie, D.G. AMPK: Positive and negative regulation, and its role in whole-body energy homeostasis. Curr. Opin. Cell Biol. 2015, 33, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Greenhill, C. Gastric cancer. Metformin improves survival and recurrence rate in patients with diabetes and gastric cancer. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.J.; Gallagher, E.J.; Sigel, K.; Mhango, G.; Galsky, M.D.; Smith, C.B.; Leroith, D.; Wisnivesky, J.P. Survival of Patients with Stage IV Lung Cancer with Diabetes Treated with Metformin. Am. J. Respir. Crit. Care Med. 2015, 191, 448–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Gui, Y.; Ren, J.; Liu, X.; Feng, Y.; Zeng, Z.; He, W.; Yang, J.; Dai, C. Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction. Sci. Rep. 2016, 6, 23975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Groups | Hb (g/dL) | Hct (%) | Platelets (×103/µL) | RBCs (×106/µL) | WBCs (×103/µL) |
---|---|---|---|---|---|
Negative control | 12.5 ± 2.36 | 39.3 ± 6.19 | 623.2 ± 168.9 b | 5.95 ± 1.54 b | 10.3 ± 1.34 b |
STZ/DEN | 14.64 ± 0.93 | 43.7 ± 3.16 | 584.6 ± 122.6 b | 9.35 ± 0.78 a | 17.02 ± 2.89 a |
STZ /MET/DEN | 14.12 ± 2.75 | 46.2 ± 10.8 | 640.8 ± 78.21 b | 10.11 ± 1.65 a | 10.08 ± 1.41 b |
STZ/DEN/MET | 15.82 ± 1.34 | 44.16 ± 3.13 | 1718.8± 285 a | 8.52 ± 0.49 a,b | 15.6 ± 2.81 a,b |
STZ/MET/DEN/MET | 13.78 ± 1.06 | 42.02 ± 2.97 | 793 ± 70.29 b | 7.9 ± 0.89 a,b | 14.72 ± 2.50 a,b |
F-Value | 1.31 | 0.55 | 25.45 | 7.60 | 5.73 |
p-Value | 0.332 n.s. | 0.707 n.s. | 0.000 | 0.004 | 0.012 |
Groups | ALT (U/L) | AST (U/L) | TB (mg/dL) | TP (g/dL) | Alb. (g/dL) |
---|---|---|---|---|---|
Negative control | 60 ± 5.5 d | 141 ± 8.5 d | 0.35 ± 0.04 b | 5.7 ± 0.35 a | 2.57 ± 0.28 a |
STZ/DEN | 122.3 ± 8.7 a | 250.3 ± 11.2 a | 0.85 ± 0.07 a | 3.14 ± 0.48 c | 1.053 ± 0.2 c |
STZ/MET/DEN | 92.3 ± 8.7 b,c | 191.3 ± 13.7 b,c | 0.47 ± 0.06 b | 4.15 ± 0.36 b,c | 1.8 ± 0.1 b |
STZ/DEN/MET | 104.3 ± 8.7 a,b | 211.3 ± 10.03 b | 0.42 ± 0.05 b | 4.24 ± 0.44 b | 1.7 ± 0.29 b |
STZ/MET/DEN/MET | 79.3 ± 7.8 c,d | 164.3 ± 11.1 c,d | 0.44 ± 0.053 b | 4.34 ± 0.32 b | 2 ± 0.25 a,b |
F-Value | 26.57 | 43.95 | 37.90 | 16.05 | 16.33 |
p-Value | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 | ˂0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mobasher, M.A.; Germoush, M.O.; Galal El-Tantawi, H.; Samy El-Said, K. Metformin Improves Biochemical and Pathophysiological Changes in Hepatocellular Carcinoma with Pre-Existed Diabetes Mellitus Rats. Pathogens 2021, 10, 59. https://doi.org/10.3390/pathogens10010059
Mobasher MA, Germoush MO, Galal El-Tantawi H, Samy El-Said K. Metformin Improves Biochemical and Pathophysiological Changes in Hepatocellular Carcinoma with Pre-Existed Diabetes Mellitus Rats. Pathogens. 2021; 10(1):59. https://doi.org/10.3390/pathogens10010059
Chicago/Turabian StyleMobasher, Maysa A., Mousa O. Germoush, Hala Galal El-Tantawi, and Karim Samy El-Said. 2021. "Metformin Improves Biochemical and Pathophysiological Changes in Hepatocellular Carcinoma with Pre-Existed Diabetes Mellitus Rats" Pathogens 10, no. 1: 59. https://doi.org/10.3390/pathogens10010059