Making the Match: The Importance of Local Labor Markets for the Employment Prospects of Refugees
Abstract
:1. Introduction
2. Theory and Prior Research
2.1. Labor Market Integration
2.2. Local Labor Markets
2.2.1. Local Characteristics
2.2.2. Occupational Characteristics
2.2.3. Local-Occupational Opportunities
3. Data and Methods
3.1. Local-Occupational Data
3.2. Individual Data
3.3. Data Structure
3.4. Analytical Approach
4. Results
4.1. Correlations
4.2. Fixed Effects Linear Probability Models
4.2.1. Employment
4.2.2. Occupational Match
5. Summary and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Model Sample M1–M4 | Model Sample M5–M8 | |||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | Min | Max | Mean | SD | Min | Max | |
Dependent Variables | ||||||||
Individual | ||||||||
Employed (in %) | 17.41 | - | 0.00 | 100 | - | - | - | - |
Occupational Match (in %) | ||||||||
2-digit | - | - | - | - | 18.02 | - | 0.00 | 100 |
3-digit | - | - | - | - | 14.38 | - | 0.00 | 100 |
Independent Variables | ||||||||
Local-Occupational a | ||||||||
Open Positions | ||||||||
2-digit, total | 2.38 | 1.70 | 0.00 | 16.81 | 2.65 | 1.87 | 0.07 | 11.99 |
Variation M1/M5 | 0.00 | 1.70 | −2.51 | 14.40 | 0.00 | 1.87 | −2.64 | 9.24 |
Variation M2/M6 | 0.00 | 1.26 | −3.83 | 13.07 | 0.00 | 1.38 | −2.90 | 9.32 |
Variation M3/M7 | 0.00 | 1.44 | −6.67 | 12.25 | 0.00 | 1.30 | −4.93 | 7.29 |
Variation M4/M8 | 0.00 | 0.96 | −4.81 | 11.81 | 0.00 | 0.86 | −3.36 | 8.46 |
3-digit, total | 2.52 | 2.44 | 0.00 | 32.81 | 2.80 | 2.40 | 0.00 | 17.02 |
Variation M1/M5 | 0.00 | 2.44 | −2.68 | 30.40 | 0.00 | 2.40 | −2.92 | 14.10 |
Variation M2/M6 | 0.00 | 1.88 | −6.59 | 28.80 | 0.00 | 1.80 | −5.40 | 14.19 |
Variation M3/M7 | 0.00 | 2.10 | −9.98 | 28.17 | 0.00 | 1.71 | −8.70 | 11.66 |
Variation M4/M8 | 0.00 | 1.52 | −7.24 | 26.13 | 0.00 | 1.21 | −6.80 | 11.78 |
Unemployment Rate | ||||||||
2-digit, total | 7.65 | 6.28 | 0.65 | 79.83 | 6.67 | 5.68 | 0.77 | 79.83 |
Variation M1/M5 | 0.00 | 6.27 | −7.18 | 72.00 | 0.00 | 5.67 | −6.19 | 72.98 |
Variation M2/M6 | 0.00 | 5.26 | −11.75 | 71.18 | 0.00 | 4.78 | −13.79 | 61.85 |
Variation M3/M7 | 0.00 | 4.80 | −21.20 | 57.08 | 0.00 | 3.77 | −22.30 | 45.36 |
Variation M4/M8 | 0.00 | 3.48 | −14.31 | 56.78 | 0.00 | 2.82 | −18.82 | 39.61 |
3-digit, total | 8.01 | 7.27 | 0.00 | 100 | 6.83 | 5.99 | 0.25 | 33.33 |
Variation M1/M5 | 0.00 | 7.27 | −8.13 | 91.87 | 0.00 | 5.99 | −6.63 | 26.45 |
Variation M2/M6 | 0.00 | 5.33 | −14.72 | 54.80 | 0.00 | 4.10 | −11.39 | 19.77 |
Variation M3/M7 | 0.00 | 5.83 | −22.91 | 88.46 | 0.00 | 4.19 | −17.53 | 22.59 |
Variation M4/M8 | 0.00 | 3.46 | −14.47 | 40.76 | 0.00 | 2.25 | −11.21 | 16.18 |
Share Foreigners | ||||||||
2-digit, total | 13.78 | 11.09 | 0.00 | 70.20 | 14.08 | 10.44 | 0.00 | 70.20 |
Variation M1/M5 | 0.00 | 11.02 | −15.96 | 55.54 | 0.00 | 10.37 | −15.34 | 54.51 |
Variation M2/M6 | 0.00 | 8.63 | −24.89 | 44.36 | 0.00 | 7.96 | −25.11 | 41.34 |
Variation M3/M7 | 0.00 | 8.49 | −28.48 | 39.92 | 0.00 | 6.66 | −19.11 | 32.82 |
Variation M4/M8 | 0.00 | 5.44 | −20.02 | 37.54 | 0.00 | 3.97 | −14.19 | 23.36 |
3-digit, total | 14.23 | 12.50 | 0.00 | 74.37 | 14.55 | 11.92 | 0.00 | 74.06 |
Variation M1/M5 | 0.00 | 12.44 | −16.48 | 61.09 | 0.00 | 11.86 | −16.24 | 57.82 |
Variation M2/M6 | 0.00 | 9.64 | −29.68 | 55.80 | 0.00 | 8.51 | −28.30 | 42.59 |
Variation M3/M7 | 0.00 | 10.01 | −30.16 | 59.70 | 0.00 | 8.15 | −23.09 | 36.96 |
Variation M4/M8 | 0.00 | 6.82 | −27.44 | 52.90 | 0.00 | 4.92 | −14.10 | 22.59 |
Local | ||||||||
Population Density | 917 | 1061 | 39 | 4777 | 759 | 1010 | 39.13 | 4777 |
Gross Domestic Product | 40.40 | 16.57 | 15.65 | 133 | 39.87 | 15.26 | 19.76 | 105 |
Individual | ||||||||
Education | ||||||||
low | 0.68 | - | 0 | 1 | 0.65 | - | 0 | 1 |
medium | 0.19 | - | 0 | 1 | 0.22 | - | 0 | 1 |
high | 0.13 | - | 0 | 1 | 0.14 | - | 0 | 1 |
German proficiency | 1.90 | 0.89 | 0.00 | 4.00 | 2.23 | 0.84 | 0.00 | 4.00 |
English proficiency | 0.97 | 1.16 | 0.00 | 4.00 | 1.20 | 1.21 | 0.00 | 4.00 |
Female (0 = male) | 0.17 | - | 0 | 1 | 0.06 | - | 0 | 1 |
Age | 35.90 | 9.85 | 18.00 | 64.00 | 33.53 | 8.34 | 19.00 | 61.00 |
Legal Status | ||||||||
Decision pending | 0.19 | - | 0 | 1 | 0.22 | - | 0 | 1 |
Asylum granted | 0.70 | - | 0 | 1 | 0.66 | - | 0 | 1 |
‘Duldung’ | 0.07 | - | 0 | 1 | 0.08 | - | 0 | 1 |
Other | 0.04 | - | 0 | 1 | 0.03 | - | 0 | 1 |
Residency Restriction | ||||||||
Local restriction | 0.53 | - | 0 | 1 | 0.49 | - | 0 | 1 |
Federal restriction | 0.47 | - | 0 | 1 | 0.51 | - | 0 | 1 |
Years Since Migration | 2.71 | 1.06 | 0.00 | 6.00 | 3.24 | 1.05 | 1.00 | 6.00 |
Marital Status | ||||||||
married | 0.63 | - | 0 | 1 | 0.50 | - | 0 | 1 |
single, widow., divorced | 0.30 | - | 0 | 1 | 0.42 | - | 0 | 1 |
wife/husband abroad | 0.07 | - | 0 | 1 | 0.08 | - | 0 | 1 |
Main Country of Origin | ||||||||
Syria | 0.49 | - | 0 | 1 | 0.46 | - | 0 | 1 |
Iraque | 0.14 | - | 0 | 1 | 0.10 | - | 0 | 1 |
Afghanistan | 0.14 | - | 0 | 1 | 0.13 | - | 0 | 1 |
Other | 0.23 | - | 0 | 1 | 0.31 | - | 0 | 1 |
Survey Year Dummies | ||||||||
2017 | 0.50 | - | 0 | 1 | 0.32 | - | 0 | 1 |
2018 | 0.29 | - | 0 | 1 | 0.34 | - | 0 | 1 |
2019 | 0.21 | - | 0 | 1 | 0.35 | - | 0 | 1 |
N | 3727 | 605 |
LPMs, DV: Employed | 2-Digit | 3-Digit | ||||||
---|---|---|---|---|---|---|---|---|
M1_2 | M2_2 | M3_2 | M4_2 | M1_3 | M2_3 | M3_3 | M4_3 | |
β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | |
Local-Occupational | ||||||||
Open Positions | 1.19 | 0.51 | 1.58 ** | 0.92 | 0.52 | −0.03 | 0.73 ** | 0.35 |
(0.61) | (0.65) | (0.45) | (0.60) | (0.32) | (0.45) | (0.25) | (0.39) | |
Unemployment Rate | −0.20 | −0.44 * | 0.19 | 0.10 | −0.07 | −0.35 ** | 0.21 | 0.12 |
(0.10) | (0.17) | (0.12) | (0.18) | (0.10) | (0.11) | (0.11) | (0.15) | |
Share Foreigners | 0.05 | −0.03 | 0.01 | 0.03 | 0.03 | −0.01 | 0.01 | 0.03 |
(0.06) | (0.07) | (0.07) | (0.10) | (0.05) | (0.04) | (0.05) | (0.06) | |
Local | ||||||||
Population Density | −0.00 ** | −0.00 | −0.02 | −0.02 | −0.00 ** | −0.00 | −0.02 | −0.02 |
(0.00) | (0.00) | (0.05) | (0.05) | (0.00) | (0.00) | (0.04) | (0.04) | |
Gross Domestic Product | 0.01 | 0.02 | −1.27 | −1.26 | 0.03 | 0.01 | −1.24 | −1.30 |
(0.04) | (0.05) | (1.23) | (1.25) | (0.05) | (0.05) | (1.22) | (1.23) | |
Individual | ||||||||
Education | ||||||||
low | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
medium | 0.99 | 2.05 | 2.09 | 2.28 | 1.08 | 1.37 | 2.05 | 1.54 |
(2.11) | (1.97) | (1.91) | (1.87) | (2.24) | (2.21) | (2.06) | (2.11) | |
high | −1.74 | 0.03 | −0.60 | 0.22 | −1.69 | −0.80 | −0.95 | −0.18 |
(2.34) | (2.49) | (2.38) | (2.68) | (2.69) | (2.96) | (2.52) | (2.87) | |
German proficiency | 3.84 *** | 3.88 *** | 3.54 *** | 3.65 *** | 3.84 *** | 3.99 *** | 3.51 *** | 3.79 *** |
(0.52) | (0.52) | (0.71) | (0.74) | (0.67) | (0.66) | (0.75) | (0.71) | |
English proficiency | 1.28 * | 1.49 * | 1.42 * | 1.50 ** | 1.26 | 1.42 | 1.44 * | 1.52 * |
(0.54) | (0.58) | (0.52) | (0.54) | (0.66) | (0.72) | (0.65) | (0.73) | |
Female (0 = male) | −14.74 *** | −13.61 *** | −14.10 *** | −13.21 *** | −14.91 *** | −13.50 *** | −14.82 *** | −13.09 *** |
(1.84) | (1.96) | (2.21) | (2.52) | (1.74) | (2.02) | (2.04) | (2.37) | |
Age | −0.30 ** | −0.28 ** | −0.26 ** | −0.25 ** | −0.31 *** | −0.26 ** | −0.26 *** | −0.24 *** |
(0.10) | (0.09) | (0.08) | (0.08) | (0.08) | (0.08) | (0.07) | (0.07) | |
Legal Status | ||||||||
Decision pending | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Asylum granted | −3.80 * | −3.59 * | −4.05 * | −4.05 * | −3.94 ** | −4.30 ** | −4.20 ** | −4.81 *** |
(1.73) | (1.66) | (1.58) | (1.59) | (1.49) | (1.36) | (1.46) | (1.39) | |
‘Duldung’ | −4.24 | −3.81 | −4.21 | −4.03 | −4.69 | −3.74 | −4.59 | −3.75 |
(3.37) | (3.42) | (3.28) | (3.18) | (3.16) | (3.03) | (3.24) | (2.93) | |
Other | −4.11 | −3.69 | −4.28 | −4.15 | −4.27 | −3.64 | −4.29 | −3.90 |
(3.10) | (3.20) | (3.08) | (3.38) | (2.61) | (2.70) | (2.93) | (3.02) | |
Residency Restriction | ||||||||
Local restriction | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Federal restriction | 4.09 ** | 4.27 ** | 5.07 ** | 4.95 ** | 3.98 ** | 3.71 ** | 5.07 ** | 4.52 ** |
(1.29) | (1.30) | (1.59) | (1.63) | (1.28) | (1.25) | (1.65) | (1.54) | |
Years Since Migration | 6.80 *** | 7.16 *** | 5.65 *** | 5.85 *** | 6.88 *** | 7.07 *** | 5.74 *** | 5.86 *** |
(1.23) | (1.27) | (1.32) | (1.33) | (1.13) | (1.13) | (1.25) | (1.25) | |
Marital Status | ||||||||
married | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
single, widow, divorced | 6.08 *** | 5.68 *** | 5.54 *** | 5.29 *** | 6.10 *** | 5.98 *** | 5.47 *** | 5.32 *** |
(1.52) | (1.52) | (1.14) | (1.16) | (1.43) | (1.42) | (1.12) | (1.12) | |
wife/husband abroad | 7.20 ** | 6.89 * | 6.01 * | 5.91 * | 7.24 ** | 7.01 ** | 6.13 * | 6.00 * |
(2.59) | (2.66) | (2.81) | (2.88) | (2.52) | (2.51) | (2.88) | (2.83) | |
Main Country of Origin | ||||||||
Syria | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Iraque | −4.60 * | −3.96 | −4.42 | −4.19 | −4.47 * | −4.44* | −4.28 * | −4.80 * |
(2.12) | (2.14) | (2.31) | (2.24) | (1.94) | (2.01) | (1.97) | (1.92) | |
Afghanistan | −2.25 | −1.75 | −0.90 | −0.56 | −2.38 | −2.99 | −1.08 | −1.86 |
(2.06) | (1.97) | (2.10) | (2.09) | (2.06) | (2.02) | (1.97) | (2.02) | |
Other | 3.89 * | 4.00 * | 4.01 * | 4.05 | 3.78 | 3.00 | 3.78 | 2.88 |
(1.84) | (1.92) | (1.96) | (2.05) | (1.97) | (2.10) | (2.02) | (2.01) | |
Fixed Effects (FEs) | ||||||||
Local | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ |
Occupational | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
Survey year | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
R2 | 0.13 | 0.14 | 0.22 | 0.23 | 0.12 | 0.16 | 0.22 | 0.25 |
adj. R2 | 0.12 | 0.13 | 0.16 | 0.16 | 0.12 | 0.14 | 0.16 | 0.17 |
within R2 | 0.10 | 0.09 | 0.08 | 0.07 | 0.10 | 0.09 | 0.08 | 0.07 |
adj. within R2 | 0.09 | 0.09 | 0.08 | 0.07 | 0.09 | 0.08 | 0.07 | 0.06 |
N (person-years) | 3727 | 3727 | 3727 | 3727 | 3727 | 3727 | 3727 | 3727 |
n (persons) | 2251 | 2251 | 2251 | 2251 | 2251 | 2251 | 2251 | 2251 |
n (districts) | 236 | 236 | 236 | 236 | 236 | 236 | 236 | 236 |
n (occupations) | 34 | 34 | 34 | 34 | 85 | 85 | 85 | 85 |
LPMs, DV: Occ. Match | 2-Digit | 3-Digit | ||||||
---|---|---|---|---|---|---|---|---|
M5_2 | M6_2 | M7_2 | M8_2 | M5_3 | M6_3 | M7_3 | M8_3 | |
β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | β/(SE) | |
Local-Occupational | ||||||||
Open Positions | 3.30 * | 2.46 | 2.38 | 1.66 | 2.46 ** | 0.49 | 1.68 | −0.02 |
(1.38) | (1.85) | (1.43) | (2.28) | (0.79) | (0.98) | (0.97) | (1.51) | |
Unemployment Rate | −0.51 | −0.64 | −0.16 | −0.36 | −0.49 * | −0.93 *** | 0.04 | 0.23 |
(0.32) | (0.32) | (0.44) | (0.56) | (0.24) | (0.26) | (0.30) | (0.56) | |
Share Foreigners | 0.58 ** | 0.35 | 0.86 ** | 1.03 * | 0.46 ** | 0.24 | 0.54 ** | 0.74 * |
(0.16) | (0.21) | (0.28) | (0.39) | (0.16) | (0.19) | (0.19) | (0.35) | |
Local | ||||||||
Population Density | −0.00 | −0.00 | 0.02 | −0.06 | −0.00 | 0.00 | −0.02 | −0.11 |
(0.00) | (0.00) | (0.20) | (0.26) | (0.00) | (0.00) | (0.22) | (0.24) | |
Gross Domestic Product | −0.14 | −0.17 | −4.19 | −4.66 | −0.12 | −0.11 | −4.28 | −3.82 |
(0.12) | (0.11) | (2.40) | (2.52) | (0.11) | (0.13) | (2.35) | (2.92) | |
Individual | ||||||||
Education | ||||||||
low | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
medium | 3.96 | 1.38 | 2.59 | −1.41 | 0.14 | −2.57 | −0.80 | −3.99 |
(6.72) | (7.40) | (5.95) | (5.22) | (7.03) | (7.41) | (4.97) | (4.06) | |
high | −6.17 | −3.72 | −7.38 | −9.27 | −7.29 | −1.87 | −4.81 | −3.09 |
(7.63) | (8.20) | (6.09) | (6.15) | (6.16) | (7.36) | (5.27) | (4.72) | |
German proficiency | −0.30 | −0.60 | −1.44 | −1.24 | 1.01 | 0.47 | 0.50 | 0.39 |
(1.90) | (1.88) | (2.72) | (2.68) | (1.84) | (1.98) | (2.56) | (2.51) | |
English proficiency | 2.12 | 2.88 | 3.48 | 3.50 | 0.88 | 1.92 | 1.20 | 1.70 |
(1.36) | (1.70) | (2.20) | (2.24) | (1.46) | (1.86) | (1.78) | (1.88) | |
Female (0 = male) | −5.99 | −8.81 | −12.23 | −13.83 | −8.40 * | −12.32 * | −15.01 | −16.12 |
(6.34) | (8.90) | (8.42) | (10.88) | (3.79) | (5.20) | (8.21) | (11.27) | |
Age | 0.47 | 0.37 | 0.47 | 0.37 | 0.65 * | 0.50 | 0.60 | 0.50 |
(0.33) | (0.35) | (0.37) | (0.39) | (0.29) | (0.28) | (0.37) | (0.36) | |
Legal Status | ||||||||
Decision pending | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Asylum granted | −6.76 | −6.99 | −6.67 | −7.51 | −6.14 | −3.35 | −6.54 | −5.35 |
(5.10) | (5.57) | (5.68) | (6.38) | (4.75) | (4.01) | (5.29) | (5.13) | |
‘Duldung’ | 3.22 | 5.61 | 2.21 | 6.55 | −5.44 | −1.26 | −6.03 | −0.32 |
(7.06) | (7.01) | (7.43) | (6.56) | (4.67) | (4.59) | (5.12) | (4.99) | |
Other | 6.28 | 6.84 | 5.31 | 4.20 | 6.81 | 10.25 | 4.95 | 5.18 |
(9.69) | (10.45) | (7.97) | (9.49) | (10.03) | (9.89) | (8.36) | (8.30) | |
Residency Restriction | ||||||||
Local restriction | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Federal restriction | 1.88 | 0.84 | 3.70 | 2.25 | 2.59 | 1.22 | 3.26 | 1.42 |
(2.85) | (2.54) | (3.12) | (3.12) | (2.52) | (2.58) | (2.65) | (2.89) | |
Years Since Migration | 0.47 | 0.99 | −0.14 | 1.31 | 0.68 | 0.11 | 0.40 | 1.08 |
(2.26) | (2.42) | (2.90) | (3.41) | (1.78) | (1.98) | (2.49) | (2.74) | |
Marital Status | ||||||||
married | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
single, widow, divorced | −4.93 | −6.23 | −0.76 | −2.15 | −0.09 | −1.55 | 0.53 | 0.18 |
(4.44) | (4.29) | (5.64) | (5.15) | (2.82) | (2.86) | (4.82) | (4.38) | |
wife/husband abroad | 0.86 | 0.99 | −1.92 | −3.48 | 2.02 | 4.27 | −5.19 | −4.64 |
(4.85) | (5.16) | (7.99) | (9.04) | (4.79) | (5.11) | (5.64) | (6.13) | |
Main Country of Origin | ||||||||
Syria | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. | Ref. |
Iraque | −8.94 | −9.89 | −9.40 | −11.49 | −5.28 | −8.21 | −4.70 | −11.10 |
(6.21) | (6.74) | (7.14) | (8.02) | (6.01) | (6.29) | (6.82) | (6.49) | |
Afghanistan | −14.63 * | −15.82 ** | −20.14 * | −17.96 * | −12.69 * | −15.38 * | −19.90 * | −19.24 ** |
(5.54) | (5.44) | (7.48) | (7.28) | (5.97) | (5.78) | (7.58) | (7.07) | |
Other | −13.35 *** | −12.72 ** | −14.31 * | −10.43 | −12.01 ** | −11.43 ** | −13.08 * | −10.73 * |
(3.57) | (4.14) | (5.67) | (5.75) | (3.93) | (4.00) | (4.93) | (4.92) | |
Fixed Effects (FEs) | ||||||||
Local | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ | ✓ | ✓ |
Occupational | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ | ✗ | ✓ |
Survey year | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
R2 | 0.10 | 0.18 | 0.37 | 0.45 | 0.12 | 0.26 | 0.40 | 0.50 |
adj. R2 | 0.07 | 0.09 | 0.15 | 0.20 | 0.08 | 0.15 | 0.18 | 0.22 |
within R2 | 0.10 | 0.07 | 0.10 | 0.08 | 0.12 | 0.08 | 0.12 | 0.09 |
adj. within R2 | 0.07 | 0.04 | 0.06 | 0.03 | 0.08 | 0.04 | 0.07 | 0.04 |
N (person-years) | 605 | 605 | 605 | 605 | 605 | 605 | 605 | 605 |
n (persons) | 466 | 466 | 466 | 466 | 466 | 466 | 466 | 466 |
n (districts) | 137 | 137 | 137 | 137 | 137 | 137 | 137 | 137 |
n (occupations) | 31 | 31 | 31 | 31 | 55 | 55 | 55 | 55 |
Pearson r, Significances Not Shown a | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Local-Occupational Level | ||||||
2-digits | ||||||
(1) Open Positions | 1.00 | |||||
(2) Unemployment Rate | −0.04 | 1.00 | ||||
(3) Share Foreigners | 0.03 | 0.10 | 1.00 | |||
3-digits | ||||||
(4) Open Positions | 0.76 | −0.04 | 0.02 | 1.00 | ||
(5) Unemployment Rate | −0.03 | 0.77 | 0.06 | −0.02 | 1.00 | |
(6) Share Foreigners | 0.02 | 0.11 | 0.88 | −0.02 | 0.08 | 1.00 |
Pearson r, Significances Not Shown a | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Local-Occupational Level | ||||||
2-digits | ||||||
(1) Open Positions | 1.00 | |||||
(2) Unemployment Rate | −0.02 | 1.00 | ||||
(3) Share Foreigners | −0.05 | 0.09 | 1.00 | |||
3-digits | ||||||
(4) Open Positions | 0.78 | 0.04 | −0.11 | 1.00 | ||
(5) Unemployment Rate | −0.02 | 0.78 | 0.07 | 0.03 | 1.00 | |
(6) Share Foreigners | −0.05 | 0.10 | 0.92 | −0.10 | 0.08 | 1.00 |
1 | Based on the so-called ‘Königstein Key’ (German: ‘Königsteiner Schlüssel’), see https://www.bamf.de/EN/Themen/AsylFluechtlingsschutz/AblaufAsylverfahrens/Erstverteilung/erstverteilung-node.html (accessed on 27 February 2023). |
2 | https://www.arbeitsagentur.de/en (accessed on 27 February 2023). |
3 | https://www.bbsr.bund.de/BBSR/startseite/_node.html (accessed on 27 February 2023). |
4 | The more fine-grained 3-digit version covers 144 occupational groups while the 2-digit version covers only 37 broad occupational groups in total. |
5 | Practically, the 2-digit local-occupational characteristics consist of aggregated information of the local 3-digit occupational characteristics to the respective local 2-digit level. |
6 | Data access via: https://github.com/RegioHub/badata (accessed on 27 February 2023). |
7 | While one could argue that there should be a high correlation between the unemployment rate and open positions, the correlations are empirically very low not only on the local but also on the local-occupational level (see Table A4 and Table A5 in Appendix A for correlation matrices containing all local and local-occupational variables). Practically, this shows that labor demand and labor supply can be analyzed simultaneously without worrying about high collinearity. |
8 | https://www.inkar.de/ (accessed on 27 February 2023); Data access via: https://github.com/RegioHub/inkr (accessed on 27 February 2023). |
9 | Because residency requirements have not been surveyed in 2016, we do not use the first wave of the samples M3 and M4 in 2016 and only include refugees who have been surveyed between 2017 and 2019. |
10 | The dichotomous dependent variables are multiplied by 100 so that the point estimates of the LPMs can directly be interpreted as changes in percentage points. |
References
- Akresh, Ilana Redstone. 2006. Occupational Mobility among Legal Immigrants to the United States. International Migration Review 40: 854–84. [Google Scholar] [CrossRef]
- Alaverdyan, Sevak, and Anna Zaharieva. 2019. Immigration, Social Networks and Occupational Mismatch. SSRN Electronic Journal. [Google Scholar] [CrossRef] [Green Version]
- Aleksynska, Mariya, and Ahmed Tritah. 2013. Occupation–Education Mismatch of Immigrant Workers in Europe: Context and Policies. Economics of Education Review 36: 229–44. [Google Scholar] [CrossRef] [Green Version]
- Allison, Paul David. 2009. Fixed Effects Regression Models. In Quantitative Applications in the Social Sciences 160. Los Angeles: SAGE. [Google Scholar]
- Arendt, Jacob Nielsen. 2022. Labor Market Effects of a Work-First Policy for Refugees. Journal of Population Economics 35: 169–96. [Google Scholar] [CrossRef]
- Aslund, Olof, John Östh, and Yves Zenou. 2010. How Important Is Access to Jobs? Old Question—Improved Answer. Journal of Economic Geography 10: 389–422. [Google Scholar] [CrossRef] [Green Version]
- Auer, Daniel. 2018. Language Roulette—The Effect of Random Placement on Refugees’ Labour Market Integration. Journal of Ethnic and Migration Studies 44: 341–62. [Google Scholar] [CrossRef] [Green Version]
- Azlor, Luz, Anna Piil Damm, and Marie Louise Schultz-Nielsen. 2020. Local Labour Demand and Immigrant Employment. Labour Economics 63: 101808. [Google Scholar] [CrossRef]
- Banerjee, Rupa, Anil Verma, and Tingting Zhang. 2019. Brain Gain or Brain Waste? Horizontal, Vertical, and Full Job-Education Mismatch and Wage Progression among Skilled Immigrant Men in Canada. International Migration Review 53: 646–70. [Google Scholar] [CrossRef]
- Bansak, Kirk, Jeremy Ferwerda, Jens Hainmueller, Andrea Dillon, Dominik Hangartner, Duncan Lawrence, and Jeremy Weinstein. 2018. Improving Refugee Integration through Data-Driven Algorithmic Assignment. Science 359: 325–29. [Google Scholar] [CrossRef] [Green Version]
- Bernard, Josef, Annett Steinführer, Andreas Klärner, and Sylvia Keim-Klärner. 2023. Regional Opportunity Structures: A Research Agenda to Link Spatial and Social Inequalities in Rural Areas. Progress in Human Geography 47: 103–23. [Google Scholar] [CrossRef]
- Bevelander, Pieter. 2011. The Employment Integration of Resettled Refugees, Asylum Claimants, and Family Reunion Migrants in Sweden. Refugee Survey Quarterly 30: 22–43. [Google Scholar] [CrossRef]
- Bevelander, Pieter, and Christer Lundh. 2007. Employment Integration of Refugees: The Influence of Local Factors on Refugee Job Opportunities in Sweden. SSRN Electronic Journal. [Google Scholar] [CrossRef]
- Bloch, Alice. 2004. Labour Market Participation and Conditions of Employment: A Comparison of Minority Ethnic Groups and Refugees in Britain. Sociological Research Online 9: 16–34. [Google Scholar] [CrossRef]
- Brell, Courtney, Christian Dustmann, and Ian Preston. 2020. The Labor Market Integration of Refugee Migrants in High-Income Countries. Journal of Economic Perspectives 34: 94–121. [Google Scholar] [CrossRef] [Green Version]
- Brücker, Herbert, Andreas Hauptmann, and Philipp Jaschke. 2020. Beschränkungen der Wohnortwahl für anerkannte Geflüchtete: Wohnsitzauflagen reduzieren die Chancen auf Arbeitsmarktintegration. Nürnberg: IAB-Kurzbericht. [Google Scholar]
- Brücker, Herbert, Philipp Jaschke, and Yuliya Kosyakova. 2019. Refugee Migration to Germany Revisited: Some Lessons on the Integration of Asylum Seekers. Paper presented at XXI European Conference of the FRDB on How to Manage the Refugee Crisis, Reggio Calabria, Italy, June 15. [Google Scholar]
- Chiswick, Barry R., and Paul W. Miller. 2002. Immigrant Earnings: Language Skills, Linguistic Concentrations and the Business Cycle. Journal of Population Economics 15: 31–57. [Google Scholar] [CrossRef]
- Chiswick, Barry R., and Paul W. Miller. 2010. The Effects of Educational-Occupational Mismatch on Immigrant Earnings in Australia, with International Comparisons. International Migration Review 44: 869–98. [Google Scholar] [CrossRef]
- Chiswick, Barry R., Yew Liang Lee, and Paul W. Miller. 2005. A Longitudinal Analysis of Immigrant Occupational Mobility: A Test of the Immigrant Assimilation Hypothesis. International Migration Review 39: 332–53. [Google Scholar] [CrossRef]
- Correia, Sergio. 2014. REGHDFE: Stata Module to Perform Linear or Instrumental-Variable Regression Absorbing Any Number of High-Dimensional Fixed Effects. Statistical Software Components S457874. Boston: Boston College Department of Economics. [Google Scholar]
- Correia, Sergio. 2015. Singletons, Cluster-Robust Standard Errors and Fixed Effects: A Bad Mix. Technical Note. Durham: Duke University, pp. 1–7. [Google Scholar]
- Damelang, Andreas, and Yuliya Kosyakova. 2021. To Work or to Study? Postmigration Educational Investments of Adult Refugees in Germany—Evidence from a Choice Experiment. Research in Social Stratification and Mobility 73: 100610. [Google Scholar] [CrossRef]
- Damelang, Andreas, Martin Abraham, Sabine Ebensperger, and Felix Stumpf. 2019. The Hiring Prospects of Foreign-Educated Immigrants: A Factorial Survey among German Employers. Work, Employment & Society 33: 1–20. [Google Scholar]
- Damm, Anna Piil. 2009. Ethnic Enclaves and Immigrant Labor Market Outcomes: Quasi-Experimental Evidence. Journal of Labor Economics 27: 281–314. [Google Scholar] [CrossRef] [Green Version]
- Daunfeldt, Sven-Olov, Dan Johansson, and Hans Seerar Westerberg. 2019. Which Firms Provide Jobs for Unemployed Non-Western Immigrants? The Service Industries Journal 39: 762–78. [Google Scholar] [CrossRef]
- Degler, Eva, and Thomas Liebig. 2017. Finding Their Way—Labour Market Integration of Refugees in Germany. Paris: OECD—International Migration Division. [Google Scholar]
- Edin, Per-Anders, Peter Fredriksson, and Olof Åslund. 2003. Ethnic Enclaves and the Economic Success of Immigrants—Evidence from a Natural Experiment. The Quarterly Journal of Economics 118: 329–57. [Google Scholar] [CrossRef] [Green Version]
- Eggenhofer-Rehart, Petra M., Markus Latzke, Katharina Pernkopf, Dominik Zellhofer, Wolfgang Mayrhofer, and Johannes Steyrer. 2018. Refugees’ Career Capital Welcome? Afghan and Syrian Refugee Job Seekers in Austria. Journal of Vocational Behavior 105: 31–45. [Google Scholar] [CrossRef]
- Eisnecker, Von Philipp, and Diana Schacht. 2016. Die Hälfte der Geflüchteten in Deutschland fand ihre erste Stelle über soziale Kontakte. DIW Wochenbericht 35: 9. [Google Scholar]
- Fasani, Francesco, Tommaso Frattini, and Luigi Minale. 2022. (The Struggle for) Refugee Integration into the Labour Market: Evidence from Europe. Journal of Economic Geography 22: 351–93. [Google Scholar] [CrossRef]
- Galster, George C., and Sean P. Killen. 1995. The Geography of Metropolitan Opportunity: A Reconnaissance and Conceptual Framework. Housing Policy Debate 6: 7–43. [Google Scholar] [CrossRef]
- Gericke, Dina, Anne Burmeister, Jil Löwe, Jürgen Deller, and Leena Pundt. 2018. How Do Refugees Use Their Social Capital for Successful Labor Market Integration? An Exploratory Analysis in Germany. Journal of Vocational Behavior 105: 46–61. [Google Scholar] [CrossRef]
- Gërxhani, Klarita, and Yuliya Kosyakova. 2022. The Effect of Co-Ethnic Social Capital on Immigrants’ Labor Market Integration: A Natural Experiment. Comparative Migration Studies 10: 15. [Google Scholar] [CrossRef]
- Glitz, Albrecht. 2014. Ethnic Segregation in Germany. Labour Economics 29: 28–40. [Google Scholar] [CrossRef] [Green Version]
- Haupt, Andreas. 2016. Erhöhen Berufliche Lizenzen Verdienste Und Die Verdienstungleichheit? Zeitschrift Für Soziologie 45: 39–56. [Google Scholar] [CrossRef] [Green Version]
- Hedberg, Charlotta, and Tiit Tammaru. 2013. ‘Neighbourhood Effects’ and ‘City Effects’: The Entry of Newly Arrived Immigrants into the Labour Market. Urban Studies 50: 1165–82. [Google Scholar] [CrossRef]
- Huang, Francis L. 2016. Alternatives to Multilevel Modeling for the Analysis of Clustered Data. The Journal of Experimental Education 84: 175–96. [Google Scholar] [CrossRef]
- IAB-BAMF-SOEP. 2021. Survey of Refugees, Data 2016–2019. Berlin: Deutsches Institut für Wirtschaftsforschung e.V. [Google Scholar] [CrossRef]
- Kalfa, Eleni, and Matloob Piracha. 2018. Social Networks and the Labour Market Mismatch. Journal of Population Economics 31: 877–914. [Google Scholar] [CrossRef] [Green Version]
- Kalter, Frank, and Irena Kogan. 2014. Migrant Networks and Labor Market Integration of Immigrants from the Former Soviet Union in Germany. Social Forces 92: 1435–56. [Google Scholar] [CrossRef]
- Kogan, Irena, and Frank Kalter. 2020. An Empirical–Analytical Approach to the Study of Recent Refugee Migrants in Germany. Soziale Welt 71: 3–23. [Google Scholar] [CrossRef]
- Kosfeld, Reinhold, and Christian Dreger. 2006. Thresholds for Employment and Unemployment: A Spatial Analysis of German Regional Labour Markets, 1992–2000. Papers in Regional Science 85: 523–42. [Google Scholar] [CrossRef] [Green Version]
- Kosyakova, Yuliya, and Hanna Brenzel. 2020. The Role of Length of Asylum Procedure and Legal Status in the Labour Market Integration of Refugees in Germany. Soziale Welt 71: 123–59. [Google Scholar] [CrossRef]
- Kosyakova, Yuliya, and Irena Kogan. 2022. Labor Market Situation of Refugees in Europe: The Role of Individual and Contextual Factors. Frontiers in Political Science 4: 977764. [Google Scholar] [CrossRef]
- Kracke, Nancy, and Christina Klug. 2021. Social Capital and Its Effect on Labour Market (Mis)Match: Migrants’ Overqualification in Germany. Journal of International Migration and Integration 22: 1573–98. [Google Scholar] [CrossRef]
- Krahn, Harvey, Tracey Derwing, Marlene Mulder, and Lori Wilkinson. 2000. Educated and Underemployed: Refugee Integration into the Canadian Labour Market. Journal of International Migration and Integration/Revue de l’integration et de La Migration Internationale 1: 59–84. [Google Scholar] [CrossRef]
- Lens, Dries, Ive Marx, and Sunčica Vujić. 2019. Double Jeopardy: How Refugees Fare in One European Labor Market. IZA Journal of Development and Migration 10: 1–29. [Google Scholar] [CrossRef] [Green Version]
- Liebau, Elisabeth, and Zerrin Salikutluk. 2016. Viele Geflüchtete Brachten Berufserfahrung Mit, Aber Nur Ein Teil Einen Berufsabschluss. DIW-Wochenbericht 83: 732–40. [Google Scholar]
- Martén, Linna, Jens Hainmueller, and Dominik Hangartner. 2019. Ethnic Networks Can Foster the Economic Integration of Refugees. Proceedings of the National Academy of Sciences 116: 16280–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mood, Carina. 2010. Logistic Regression: Why We Cannot Do What We Think We Can Do, and What We Can Do About It. European Sociological Review 26: 67–82. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H. Long. 2023. inkr: Local Access from R to All INKAR Data (v0.1.2). Zenodo. [Google Scholar] [CrossRef]
- Nguyen, H. Long, and Dorian Tsolak. 2023. badata: Regional Job Market Data from the German Federal Employment Agency (Bundesagentur für Arbeit—BA) (v0.1.3). Zenodo. [Google Scholar] [CrossRef]
- Phillimore, Jenny. 2011. Refugees, Acculturation Strategies, Stress and Integration. Journal of Social Policy 40: 575–93. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, Isabel, and Carlos Vargas-Silva. 2017. Are Refugees’ Labour Market Outcomes Different from Those of Other Migrants? Evidence from the United Kingdom in the 2005–2007 Period: Refugees and Other Migrants Labour Market Outcomes: Evidence from the UK. Population, Space and Place 23: e2049. [Google Scholar] [CrossRef]
- Salikutluk, Zerrin, Johannes Giesecke, and Martin Kroh. 2016. Geflüchtete Nahmen in Deutschland Später Eine Erwerbstätigkeit Auf Als Andere MigrantInnen. DIW-Wochenbericht 83: 749–56. [Google Scholar]
- Schmandt, Marco, Constantin Tielkes, and Felix Weinhardt. 2023. Königsteiner Schlüssel verteilt Gelder und Aufgaben zwischen Bundesländern kaum nach Wirtschaftskraft. DIW-Wochenbericht 18: 203–9. [Google Scholar] [CrossRef]
- Shields, Michael A, and Stephen Wheatley Price. 2002. The English Language Fuency and Occupational Success of Ethnic Minority Immigrant Men Living in English Metropolitan Areas. Population Economics 15: 137–60. [Google Scholar] [CrossRef] [Green Version]
- Socio-Economic Panel (SOEP). 2021. Data for Years 1984–2019. SOEP-Core v36, EU Edition. Berlin: German Institute for Economic Research (DIW Berlin). [Google Scholar] [CrossRef]
- Sorensen, Aage B., and Arne L. Kalleberg. 1981. An Outline of a Theory of Matching Persons to Jobs. In Sociological Perspectives on Labor Markets. New York: Academic Press. [Google Scholar]
- Stolzenberg, Ross M. 1975. Occupations, Labor Markets and the Process of Wage Attainment. American Sociological Review 40: 645. [Google Scholar] [CrossRef]
- van Tubergen, Frank. 2011. Job Search Methods of Refugees in the Netherlands: Determinants and Consequences. Journal of Immigrant & Refugee Studies 9: 179–95. [Google Scholar] [CrossRef]
- Vogiazides, Louisa, and Hernan Mondani. 2021. Geographical Trajectories of Refugees in Sweden: Uncovering Patterns and Drivers of Inter-Regional (Im)Mobility. Journal of Refugee Studies 34: 3065–90. [Google Scholar] [CrossRef]
- Wehrle, Katja, Ute-Christine Klehe, Mari Kira, and Jelena Zikic. 2018. Can I Come as I Am? Refugees’ Vocational Identity Threats, Coping, and Growth. Journal of Vocational Behavior 105: 83–101. [Google Scholar] [CrossRef]
- Wiedner, Jonas, and Merlin Schaeffer. 2023. The Refugee Mobility Puzzle: Why Do Refugees Move to Cities with High Unemployment Rates Once Residence Restrictions Are Lifted? SocArXiv. [Google Scholar] [CrossRef]
- Wiemer, Silke, Kim Reimer, and Julia Lewerenz. 2010. Einführung der KldB 2010. Nürnberg: Bundesagentur für Arbeit. [Google Scholar]
Characteristics | Operationalization |
---|---|
Local-Occupational Level | |
Open Positions (BA) | Vacant positions in occupation, per 100 persons employed in this occupation and unemployed within this target occupation (based on regional residents) |
Unemployment Rate (BA) | Unemployed persons in occupation, in percent of employed in this occupation and unemployed within this target occupation (based on regional residents) |
Share Foreigners (BA) | Employees without German passports in this occupation, in percent of all employed in this occupation (based on employees at regional workplaces) |
Controls on Local Level | |
Population Density (INKAR) | Residents per square kilometer |
Gross Domestic Product (INKAR) | Gross domestic product per capita in 1000 € |
Characteristics | Operationalization |
---|---|
Individual Level | |
Employed (SOEP) | 1 = full-time, part-time or marginal employment; 0 = unemployed (Self-employed and in education excluded) |
Occupational Match, 2-digit and 3-digit (SOEP) | 1 = Employed in the same occupational group (KldB 2010) as before migration; 0 = another occupational group |
Controls (SOEP) | Education (3 levels), self-assessed German and English proficiencies (0–4 sum score), sex, age, legal status (4 categories), type of residency restriction (2 categories), years since migration, marital status (3 categories), country of origin (4 categories) |
Employment Sample | |||
Group | Frequency | Unique Group-Combination | Frequency |
Years | 3 | ||
Districts | 236 | District-Years | 625 |
Occupations | District-Occupation-Years | ||
2-digit | 34 | 2-digit | 2795 |
3-digit | 85 | 3-digit | 3054 |
Persons | 2251 | Person-Years | 3727 |
Occupational Match Sample | |||
Group | Frequency | Unique Group-Combination | Frequency |
Years | 3 | ||
Districts | 137 | District-Years | 315 |
Occupations | District-Occupation-Years | ||
2-digit | 31 | 2-digit | 569 |
3-digit | 55 | 3-digit | 583 |
Persons | 466 | Person-Years | 605 |
Correlations | Individual Level | ||
---|---|---|---|
(Pearson’s r, Significance Corrected for Clustering a) | Employed | Occupational Match | |
2-digit | 3-digit | ||
Individual Level | |||
Occupational Match (3-digit) | 0.87 *** | ||
Local-Occupational Level (2-digits) | |||
Open Positions | 0.07 * | 0.16 * | - |
Unemployment Rate | −0.07 ** | −0.08 | - |
Share Foreigners | 0.01 | 0.11 * | - |
Local-Occupational Level (3-digits) | |||
Open Positions | 0.06 * | - | 0.17 ** |
Unemployment Rate | −0.07 ** | - | −0.08 * |
Share Foreigners | 0.01 | - | 0.12 |
N | 3727 | 605 | 605 |
LPMs, DV: Employed | M1_3 | M2_3 | M3_3 | M4_3 |
---|---|---|---|---|
β/(SE) | β/(SE) | β/(SE) | β/(SE) | |
Local-Occupational Variables | ||||
Open Positions | 0.52 | −0.03 | 0.73 ** | 0.35 |
(0.32) | (0.45) | (0.25) | (0.39) | |
Unemployment Rate | −0.07 | −0.35 ** | 0.21 | 0.12 |
(0.10) | (0.11) | (0.11) | (0.15) | |
Share Foreigners | 0.03 | −0.01 | 0.01 | 0.03 |
(0.05) | (0.04) | (0.05) | (0.06) | |
Fixed Effects (FEs) | ||||
Local | ✗ | ✗ | ✓ | ✓ |
Occupational | ✗ | ✓ | ✗ | ✓ |
Survey year | ✓ | ✓ | ✓ | ✓ |
Controls | ||||
Local a | ✓ | ✓ | ✓ | ✓ |
Individual b | ✓ | ✓ | ✓ | ✓ |
R2 | 0.13 | 0.16 | 0.22 | 0.25 |
adj. R2 | 0.12 | 0.14 | 0.16 | 0.17 |
within R2 | 0.10 | 0.09 | 0.08 | 0.07 |
adj. within R2 | 0.09 | 0.08 | 0.07 | 0.06 |
N (person-years) | 3727 | 3727 | 3727 | 3727 |
n (persons) | 2251 | 2251 | 2251 | 2251 |
n (districts) | 236 | 236 | 236 | 236 |
n (occupations) | 85 | 85 | 85 | 85 |
LPMs, DV: Occupational Match | M5_3 | M6_3 | M7_3 | M8_3 |
---|---|---|---|---|
β/(SE) | β/(SE) | β/(SE) | β/(SE) | |
Local-Occupational Variables | ||||
Open Positions | 2.46 ** | 0.49 | 1.68 | −0.02 |
(0.79) | (0.98) | (0.97) | (1.51) | |
Unemployment Rate | −0.49 * | −0.93 *** | 0.04 | 0.23 |
(0.24) | (0.26) | (0.30) | (0.56) | |
Share Foreigners | 0.46 ** | 0.24 | 0.54 ** | 0.74 * |
(0.16) | (0.19) | (0.19) | (0.35) | |
Fixed Effects (FEs) | ||||
Local | ✗ | ✗ | ✓ | ✓ |
Occupational | ✗ | ✓ | ✗ | ✓ |
Survey year | ✓ | ✓ | ✓ | ✓ |
Controls | ||||
Local a | ✓ | ✓ | ✓ | ✓ |
Individual b | ✓ | ✓ | ✓ | ✓ |
R2 | 0.12 | 0.26 | 0.40 | 0.50 |
adj. R2 | 0.08 | 0.15 | 0.18 | 0.22 |
within R2 | 0.12 | 0.08 | 0.12 | 0.09 |
adj. within R2 | 0.08 | 0.04 | 0.07 | 0.04 |
N (person-years) | 605 | 605 | 605 | 605 |
n (persons) | 466 | 466 | 466 | 466 |
n (districts) | 137 | 137 | 137 | 137 |
n (occupations) | 55 | 55 | 55 | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsolak, D.; Bürmann, M. Making the Match: The Importance of Local Labor Markets for the Employment Prospects of Refugees. Soc. Sci. 2023, 12, 339. https://doi.org/10.3390/socsci12060339
Tsolak D, Bürmann M. Making the Match: The Importance of Local Labor Markets for the Employment Prospects of Refugees. Social Sciences. 2023; 12(6):339. https://doi.org/10.3390/socsci12060339
Chicago/Turabian StyleTsolak, Dorian, and Marvin Bürmann. 2023. "Making the Match: The Importance of Local Labor Markets for the Employment Prospects of Refugees" Social Sciences 12, no. 6: 339. https://doi.org/10.3390/socsci12060339