CFD Investigation on the Thermal Comfort for an Office Room
Abstract
1. Introduction
2. CFD Simulation Approach and Setup
2.1. Governing Equations and Boundary Conditions
2.2. The Predicted Mean Vote (PMV)-Related Equations and Approach
2.3. Energy Consumption Calculations
2.4. Mesh Independence Study
2.5. Validating the CFD Approach with Experimental Data
3. Results and Discussions
3.1. Validating the CFD Setup
3.2. Air Velocity Distributions
3.3. Air Temperature Distributions
3.4. Thermal Comfort and Energy Analysis
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Suárez, C.; Iranzo, A.; Salva, J.A.; Tapia, E.; Barea, G.; Guerra, J. Parametric investigation using computational fluid dynamics of the HVAC air distribution in a railway vehicle for representative weather and operating conditions. Energies 2017, 10, 1074. [Google Scholar] [CrossRef]
- Irfan, M.H.; Isa, N.M.; Busu, N.A.; Hariri, A.; Amirul, M.; Hussein, M. Investigation of airflow patterns and thermal efficiency in different ducting configurations by using CFD. Int. J. Mech. Sustain. Eng. Technol. 2024, 1, 46–56. [Google Scholar]
- AlGhamdi, A. Saudi Arabia Energy Report; King Abdullah Petroleum Studies and Research Center: Riyadh, Saudi Arabia, 2020; Available online: https://www.kapsarc.org/our-offerings/publications/saudi-arabia-energy-report/ (accessed on 3 August 2025).
- ANSI/ASHRAE 55-2023: Thermal Environmental Conditions for Human Occupancy. Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 3 August 2025).
- Taleghani, M.; Tenpierik, M.; Kurvers, S.; Van Den Dobbelsteen, A. A review into thermal comfort in buildings. Renew. Sustain. Energy Rev. 2013, 26, 201–215. [Google Scholar] [CrossRef]
- Patel, A.; Dhakar, P.S. CFD analysis of air conditioning in room using Ansys fluent. J. Emerg. Technol. Innov. Res. 2018, 5, 436–441. [Google Scholar] [CrossRef]
- Aziz, M.A.; Gad, I.A.M.; Mohammed, E.S.F.A.; Mohammed, R.H. Experimental and numerical study of influence of air ceiling diffusers on room air flow characteristics. Energy Build. 2012, 55, 738–746. [Google Scholar] [CrossRef]
- Kokash, H.; Burzo, M.G.; Agbaglah, G.; Mazumder, F. Optimized HVAC air distribution for improved air quality using CFD analysis. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE), American Society of Mechanical Engineers (ASME), Columbus, OH, USA, 30 October–3 November 2022. [Google Scholar] [CrossRef]
- Alvin, A.; Barau, B.; Zambri, A.N.; Osman, A.A.; Ahmed, A.M.; Taib, I.; Manshoor, B. Observation on air flow distribution in room by HVAC system using ANSYS Fluent CFD Simulation. JCF J. Complex Flow 2024, 6, 29–37. [Google Scholar]
- Buratti, C.; Palladino, D.; Moretti, E. Prediction of indoor conditions and thermal comfort using CFD simulations: A case study based on experimental data. Energy Procedia 2017, 126, 115–122. [Google Scholar] [CrossRef]
- Li, K.; Song, L.; Zhang, X.; Wang, Q.; Hua, J. Study of influence of boundary condition of diffuser with non-uniform velocity on the jet characteristics and indoor flow field. Energies 2023, 16, 1079. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Bartaria, V.N. An experimental study for air temperature distribution in a conditioned room using various vertical locations of conditioned air ducts. Curr. World Environ. 2024, 19, 482–490. [Google Scholar] [CrossRef]
- Mahajan, S.M.; Bartaria, V.N. Experimental study on impact of inlet duct elevation on the indoor thermal environment. In Advances in Clean Energy Technologies; Dwivedi, G., Verma, P., Shende, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–12. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.-H.; Liu, C. Computational Fluid Dynamics: A Practical Approach, 2nd ed.; Elsevier: Oxford, UK, 2013; ISBN 978-0-08-098243-4. [Google Scholar]
- Semprini, G.; Jahanbin, A.; Pulvirenti, B.; Guidorzi, P. Evaluation of thermal comfort inside an office equipped with a fan coil HVAC system: A CFD approach. Future Cities Environ. 2019, 5, 1–10. [Google Scholar] [CrossRef]
- SBC 501-CR; Saudi Mechanical Code SBC 501-CR Code Requirements; The Saudi Building Code National Committee (SBCNC): Riyadh, Saudi Arabia, 2024. Available online: https://sbc.gov.sa/En/BC/Pages/BuildingCode/BCDetails.aspx?codeId=501&year=2024 (accessed on 3 August 2025).
- Abanto, J.; Barrero, D.; Reggio, M.; Ozell, B. Airflow modelling in a computer room. Build. Environ. 2004, 39, 1393–1402. [Google Scholar] [CrossRef]
- Stamou, A.; Katsiris, I. Verification of a CFD model for indoor airflow and heat transfer. Build. Environ. 2006, 41, 1171–1181. [Google Scholar] [CrossRef]
- Hatif, I.H.; Hariri, A.; Idris, A.F. CFD analysis on effect of air inlet and outlet location on air distribution and thermal comfort in small office. CFD Lett. 2020, 12, 66–77. [Google Scholar] [CrossRef]
- Khatri, R.; Singh, A.P.; Khare, V.R. Identification of ideal air temperature distribution using different location for air conditioner in a room integrated with EATHE—A CFD based approach. Energy Procedia 2017, 109, 11–17. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort Analysis and Applications In Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; 244p. [Google Scholar]
- Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE thermal comfort tool: Online tool for thermal comfort calculations and visualizations. SoftwareX 2020, 12, 100563. [Google Scholar] [CrossRef]
Properties | Value |
---|---|
Density (kg/m3) | 1.225 |
Specific Heat [Cp] (J/kg·K) | 1006.43 |
Thermal Conductivity (W/m·K) | 0.0242 |
Viscosity (kg/m·s) | 1.7894 × 10−5 |
Boundary Name | Location | Type | Value and/or Description |
---|---|---|---|
Inlet | Inlet diffuser | Velocity inlet | Ranges from 1 to 3 m/s with a temperature from 16 to 22 °C |
Outlet | Outlet diffuser | Pressure outlet | Zero |
Wall | Partition walls | Heat flux | Adiabatic wall with zero heat flux |
Door | |||
Outside wall | Convection | U-value = 0.403 (W/m2·K) with free stream temperature of 35 °C and emissivity (ε) of 90% | |
Floor | Heat flux | Adiabatic wall with zero heat flux | |
Roof | Heat flux | Adiabatic wall with zero heat flux | |
Windows | Convection | U-value = 2.668 (W/m2·K) with free stream temperature of 35 °C and emissivity (ε) of 90% | |
Lights | Heat flux | Heat flux = 120 (W/m2) and emissivity (ε) of 90% | |
Desks | Heat flux | Adiabatic wall | |
Computers | Heat flux | Heat flux = 32 (W/m2) for each computer and emissivity (ε) of 95% | |
People | Temperature | The temperature of the faculty (two persons) is assumed to be 36.5 °C with metabolic rate at rest and typing of 1.1 (met) [4] and emissivity (ε) of 95% |
Height (Meters) | Average Experimental Data from Mahajan and Bartaria [12,13] (°C) | CFD Results (°C) | Absolute Temperature Difference (°C) |
---|---|---|---|
0.12 | 24.48 | 25.41 | 0.93 |
0.51 | 24.84 | 25.85 | 1.01 |
1 | 25.08 | 25.71 | 0.63 |
1.5 | 24.91 | 25.74 | 0.83 |
2 | 24.80 | 25.51 | 0.71 |
2.50 | 25.22 | 25.21 | 0.01 |
3 | 25.95 | 25.05 | 0.90 |
Inlet Air Velocity (m/s) | Inlet Air Temperature (°C) | Location (-) | Air Temperature (°C) |
---|---|---|---|
1 | 16 | A | 18.16 |
B | 19.87 | ||
C | 19.18 | ||
18 | A | 19.98 | |
B | 21.71 | ||
C | 20.90 | ||
20 | A | 21.83 | |
B | 23.42 | ||
C | 22.68 | ||
21 | A | 22.75 | |
B | 24.27 | ||
C | 23.57 | ||
22 | A | 23.68 | |
B | 25.12 | ||
C | 24.46 | ||
2 | 16 | A | 17.58 |
B | 19.48 | ||
C | 18.45 | ||
18 | A | 19.41 | |
B | 21.08 | ||
C | 20.17 | ||
20 | A | 21.29 | |
B | 22.80 | ||
C | 21.99 | ||
21 | A | 22.23 | |
B | 23.66 | ||
C | 22.90 | ||
22 | A | 23.24 | |
B | 24.64 | ||
C | 23.90 | ||
3 | 16 | A | 17.22 |
B | 18.87 | ||
C | 17.59 | ||
18 | A | 19.22 | |
B | 19.66 | ||
C | 19.85 | ||
20 | A | 21.11 | |
B | 21.52 | ||
C | 21.69 | ||
21 | A | 22.06 | |
B | 22.44 | ||
C | 22.62 | ||
22 | A | 23.03 | |
B | 23.41 | ||
C | 23.58 |
Inlet Velocity (m/s) | Inlet Temperature (°C) | Measured Locations | Air Velocity at the Measured Locations (m/s) | TMRT (°C) | Operative Temperature (°C) | Predicted Mean Vote (PMV) | Approximate Total Energy Consumption (W) |
---|---|---|---|---|---|---|---|
1 | 16 | A | 0.04 | 21.49 | 19.83 | −1.51 | 353.54 |
B | 0.04 | 23.53 | 21.70 | −0.92 | |||
C | 0.03 | 23.63 | 21.41 | −1.01 | |||
18 | A | 0.04 | 23.14 | 21.56 | −0.9 | 315.27 | |
B | 0.04 | 25.03 | 23.37 | −0.32 | |||
C | 0.03 | 25.13 | 23.02 | −0.43 | |||
20 | A | 0.04 | 24.73 | 23.28 | −0.35 | 282.72 | |
B | 0.04 | 26.45 | 24.93 | 0.19 | |||
C | 0.03 | 26.54 | 24.61 | 0.08 | |||
21 | A | 0.04 | 25.53 | 24.14 | −0.07 | 266.44 | |
B | 0.04 | 27.16 | 25.72 | 0.44 | |||
C | 0.03 | 27.24 | 25.41 | 0.34 | |||
22 | A | 0.04 | 26.33 | 25.00 | 0.21 | 250.11 | |
B | 0.04 | 27.87 | 26.50 | 0.69 | |||
C | 0.03 | 27.95 | 26.21 | 0.6 | |||
2 | 16 | A | 0.08 | 20.25 | 18.91 | −1.74 | 571.36 |
B | 0.08 | 21.99 | 20.74 | −1.19 | |||
C | 0.08 | 22.10 | 20.27 | −1.35 | |||
18 | A | 0.08 | 21.79 | 20.60 | −1.23 | 523.07 | |
B | 0.08 | 23.35 | 22.22 | −0.74 | |||
C | 0.08 | 23.45 | 21.81 | −0.88 | |||
20 | A | 0.08 | 23.47 | 22.38 | −0.69 | 473.71 | |
B | 0.08 | 24.88 | 23.84 | −0.23 | |||
C | 0.08 | 24.96 | 23.48 | −0.36 | |||
21 | A | 0.08 | 24.31 | 23.27 | −0.41 | 449.00 | |
B | 0.08 | 25.64 | 24.65 | 0.02 | |||
C | 0.08 | 25.72 | 24.31 | −0.1 | |||
22 | A | 0.08 | 25.29 | 24.26 | −0.1 | 423.04 | |
B | 0.08 | 26.58 | 25.61 | 0.32 | |||
C | 0.08 | 26.66 | 25.28 | 0.21 | |||
3 | 16 | A | 0.16 | 19.55 | 18.45 | −2.11 | 739.83 |
B | 0.14 | 21.07 | 19.46 | −1.72 | |||
C | 0.14 | 21.16 | 19.61 | −1.66 | |||
18 | A | 0.16 | 21.21 | 20.21 | −1.54 | 674.73 | |
B | 0.14 | 22.57 | 21.12 | −1.18 | |||
C | 0.14 | 22.66 | 21.26 | −1.13 | |||
20 | A | 0.16 | 22.93 | 22.02 | −0.95 | 611.73 | |
B | 0.14 | 24.16 | 22.84 | −0.64 | |||
C | 0.14 | 24.23 | 22.96 | −0.59 | |||
21 | A | 0.16 | 23.79 | 22.93 | −0.66 | 580.17 | |
B | 0.14 | 24.95 | 23.70 | −0.38 | |||
C | 0.14 | 25.02 | 23.82 | −0.34 | |||
22 | A | 0.16 | 24.72 | 23.88 | −0.37 | 550.80 | |
B | 0.14 | 25.83 | 24.62 | −0.1 | |||
C | 0.14 | 25.90 | 24.74 | −0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othayq, M.M. CFD Investigation on the Thermal Comfort for an Office Room. Buildings 2025, 15, 2802. https://doi.org/10.3390/buildings15152802
Othayq MM. CFD Investigation on the Thermal Comfort for an Office Room. Buildings. 2025; 15(15):2802. https://doi.org/10.3390/buildings15152802
Chicago/Turabian StyleOthayq, Mazen M. 2025. "CFD Investigation on the Thermal Comfort for an Office Room" Buildings 15, no. 15: 2802. https://doi.org/10.3390/buildings15152802
APA StyleOthayq, M. M. (2025). CFD Investigation on the Thermal Comfort for an Office Room. Buildings, 15(15), 2802. https://doi.org/10.3390/buildings15152802