Shrinkage and Cracking Characteristics of Dredged Sludge Containing Straw Fiber Under Different Initial Water Contents
Abstract
:1. Introduction
2. Testing Program
2.1. Materials
2.2. Shrinkage Tests
3. Results and Discussion
3.1. Water Content
3.2. Residual Water Content
3.3. Shrinkage Development
3.4. Final Crack Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, D.B.; Chen, W.B.; Yin, Z.Y.; Song, S.X.; Yin, J.H. Recycling dredged mud slurry using vacuum-solidification combined method with sustainable alkali-activated binder. Geotext. Geomembr. 2023, 51, 104–119. [Google Scholar] [CrossRef]
- Wang, D.; Abriak, N.E.; Zentar, R. Dredged marine sediments used as novel supply of filling materials for road construction. Mar. Georesour. Geotechnol. 2017, 35, 472–480. [Google Scholar] [CrossRef]
- Xu, G.; Gao, Y.; Zhang, H.; Ding, J. Sedimentation Behavior of Four Dredged Slurries in China. Mar. Georesour. Geotechnol. 2012, 30, 143–156. [Google Scholar] [CrossRef]
- Zeng, L.-L.; Hong, Z.-S.; Cui, Y.-J. Time-dependent compression behaviour of dredged clays at high water contents in China. Appl. Clay Sci. 2016, 123, 320–328. [Google Scholar] [CrossRef]
- Zhang, R.; Zheng, Y.; Dong, C.; Zheng, J. Strength behavior of dredged mud slurry treated jointly by cement, flocculant and vacuum preloading. Acta Geotech. 2021, 17, 2581–2596. [Google Scholar] [CrossRef]
- Crocetti, P.; González-Camejo, J.; Li, K.; Foglia, A.; Eusebi, A.L.; Fatone, F. An overview of operations and processes for circular management of dredged sediments. Waste Manag. 2022, 146, 20–35. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Z.; Fan, S.; Mwiya, R.; Xie, M. Effects of straw incorporation on desiccation cracking patterns and horizontal flow in cracked clay loam. Soil Tillage Res. 2018, 182, 130–143. [Google Scholar] [CrossRef]
- Wu, L.; Qiao, Y.; Luo, X.; Li, Y. Approaches of Reutilizing Dredged Sediments from Beijing-Hangzhou Grand Canal. E3S Web Conf. 2023, 393, 3028. [Google Scholar] [CrossRef]
- Jaditager, M.; Sivakugan, N. Influence of Fly Ash–Based Geopolymer Binder on the Sedimentation Behavior of Dredged Mud. J. Waterw. Port Coast. Ocean. Eng. 2017, 143, 1–9. [Google Scholar] [CrossRef]
- Oing, K.; Gröngröft, A.; Eschenbach, A. Ripening reduces the shrinkage of processed dredged material. J. Soils Sediments 2020, 20, 571–583. [Google Scholar] [CrossRef]
- Stark, T.D.; Choi, H.; Schroeder, P.R. Settlement of Dredged and Contaminated Material Placement Areas. I: Theory and Use of Primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill. J. Waterw. Port Coast. Ocean Eng. 2005, 131, 43–51. [Google Scholar] [CrossRef]
- Tang, C.; Shi, B.; Liu, C.; Zhao, L.; Wang, B. Influencing factors of geometrical structure of surface shrinkage cracks in clayey soils. Eng. Geol. 2008, 101, 204–217. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Sun, J.; Peng, H.; Chen, J.; Wang, X.; Wei, M.; Li, W.; Yang, L.; Zhang, Q.; Wang, W.; Mellouki, A. An estimation of CO2 emission via agricultural crop residue open field burning in China from 1996 to 2013. J. Clean. Prod. 2016, 112, 2625–2631. [Google Scholar] [CrossRef]
- Liu, T.; He, G.; Lau AK, H. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci. Total Environ. 2019, 711, 134633. [Google Scholar] [CrossRef]
- Phuong, P.-T.H.; Nghiem, T.-D.; Thao, P.-T.M.; Pham, C.-T.; Thi, T.-T.; Thanh Dien, N. Impact of rice straw open burning on local air quality in the Mekong Delta of Vietnam. Atmos. Pollut. Res. 2021, 12, 101225. [Google Scholar] [CrossRef]
- Chen, J.; Elbashiry, E.M.A.; Yu, T.; Ren, Y.; Guo, Z.; Liu, S. Research progress of wheat straw and rice straw cement-based building materials in China. Mag. Concr. Res. 2018, 70, 84–95. [Google Scholar] [CrossRef]
- Han, G.; Kawai, S.; Umemura, K.; Zhang, M.; Honda, T. Development of high-performance UF-bonded reed and wheat straw medium-density fiberboard. J. Wood Sci. 2001, 47, 350–355. [Google Scholar] [CrossRef]
- Yin, Q.; Yu, M.; Ma, X.; Liu, Y.; Yin, X. The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends. Energies 2023, 16, 3480. [Google Scholar] [CrossRef]
- Qu, J.; Sun, Z. Strength Behavior of Shanghai Clayey Soil Reinforced with Wheat Straw Fibers. Geotech. Geol. Eng. 2015, 34, 515–527. [Google Scholar] [CrossRef]
- Bouhicha, M.; Aouissi, F.; Kenai, S. Performance of composite soil reinforced with barley straw. Cem. Concr. Compos. 2005, 27, 617–621. [Google Scholar] [CrossRef]
- Hao, J.; Huang, J.; Yao, J.; Zhang, Z.; Zhang, H. Unconfined compression strength and mesostructure of reinforced soil with wheat straw. Bull. Eng. Geol. Environ. 2021, 80, 9173–9183. [Google Scholar] [CrossRef]
- El kefafy, S.; Mirdan, A.; Abouelenean, G. Effect of Using Rice Straw Fiber on Slope Stability of sand soil. Port-Said Eng. Res. J. 2015, 19, 1–8. [Google Scholar] [CrossRef]
- Chai, S.X.; Wang, P.; Wang, X.Y. Effect of reinforcing range and cross section of wheat straw on shear strength of reinforced soil. Rock Soil Mech. 2013, 34, 123–127. [Google Scholar] [CrossRef]
- Wu, Y.; Yamamoto, H.; Cui, J.; Cheng, H. Influence of Load Mode on Particle Crushing Characteristics of Silica Sand at High Stresses. Int. J. Geomech. 2020, 20, 04019194. [Google Scholar] [CrossRef]
- Wen, L.W.; Huang, Z.H.; Fu, Q.; Xie, W.F.; Huang, Z.H.; Wu, Y. Effect of complex-grain-size curves on shear modulus degradation of calcareous sand. Mar. Georesources Geotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, J.; Huang, J.; Zhang, W.; Yoshimoto, N.; Wen, L. Correlation of critical state strength properties with particle shape and surface fractal dimension of clinker ash. Int. J. Geomech. 2021, 21, 04021071. [Google Scholar] [CrossRef]
- Ni, J.; Liu, S.; Wang, Y.; Xu, G. Synergistic influence of lime and straw on dredged sludge reinforcement under vacuum preloading. Constr. Build. Mater. 2024, 421, 135642. [Google Scholar] [CrossRef]
- Qiu, C.; Xu, L.; Geng, W.; Xu, G.; Zhang, D. Evolutionary Behaviors of Straw-Reinforced Slurry for Sustainable Management of Dredging Sediment: Rheological and Fertility Properties. Waste Biomass Valorization 2024. [Google Scholar] [CrossRef]
- Wu, F.-H.; Wang, H.; Song, M.-M.; Qiu, C.-C.; Weng, J.-X.; Wang, E.-W. Investigation on strength behavior of cemented dredged clay with straw at various curing stages. Mar. Georesour. Geotechnol. 2024, 42, 213–221. [Google Scholar] [CrossRef]
- Tian, B.-G.; Cheng, Q.; Tang, C.-S.; Zeng, H.; Xu, J.; Shi, B. Effects of compaction state on desiccation cracking behaviour of a clayey soil subjected to wetting-drying cycles. Eng. Geol. 2022, 302, 106650. [Google Scholar] [CrossRef]
- Roderick, N.T. Experimental Investigation on the Desiccation and Fracturing of Clay; Delft University of Technology: Delft, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Mei, L.; Chen, Y.; Wang, L. Sustainable Reuse of Dredged Soil as a Substrate Material by Improvement with Polyacrylamide, Straw, and Superabsorbent Polymer. Adv. Civ. Eng. 2021, 1, 1–12. [Google Scholar] [CrossRef]
- Xu, G.; Gu, J.; Wang, Y.; Ni, J. Influence of straw degradation on consolidation of dredged sludge under vacuum preloading. Proc. Inst. Civ. Eng.-Geotech. Eng. 2024, 1–10. [Google Scholar] [CrossRef]
- ASTM D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: West Conshohocken, PA, USA, 2011.
- Sun, D.; Ge, Y.; Zhou, Y. Punishing and rewarding: How do policy measures affect crop straw use by farmers? An empirical analysis of Jiangsu Province of China. Energy Policy 2019, 134, 110882. [Google Scholar] [CrossRef]
- Xie, X.; Zhou, Z.; Jiang, M.; Xu, X.; Wang, Z.; Hui, D. Cellulosic fibers from rice straw and bamboo used as reinforcement of cement-based composites for remarkably improving mechanical properties. Compos. Part B Eng. 2015, 78, 153–161. [Google Scholar] [CrossRef]
- Tran, K.M.; Bui, H.H.; Sánchez, M.; Kodikara, J. A DEM approach to study desiccation processes in slurry soils. Comput Geotech. 2020, 120, 103448. [Google Scholar] [CrossRef]
- Pak, A.; Samimi, S. Three-dimensional desiccation modeling of very soft soils. In Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering: The Academia and Practice of Geotechnical Engineering, Alexandria, Egypt, 5–9 October 2009; Volume 1, pp. 421–424. [Google Scholar] [CrossRef]
- Khouchkar, M.; Özçoban, M.Ş.; Özaydin, I.K. Crust Formation in Disposed Dredgings. Soft Ground Technol. 2001, 399–409. [Google Scholar] [CrossRef]
- Albrecht, B.A.; Benson, C.H. Effect of Desiccation on Compacted Natural Clays. J. Geotech. Geoenviron. Eng. 2001, 127, 67–75. [Google Scholar] [CrossRef]
- Tang, C.-S.; Shi, B.; Liu, C.; Suo, W.-B.; Gao, L. Experimental characterization of shrinkage and desiccation cracking in thin clay layer. Appl. Clay Sci. 2011, 52, 69–77. [Google Scholar] [CrossRef]
- Morris, P.H.; Graham, J.; Williams, D.J. Cracking in drying soils. Can. Geotech. J. 1992, 29, 263–277. [Google Scholar] [CrossRef]
- Guiyao, W.; Linchuan SH, A.; Wengui CA, O.; Yongjie, Z.; Qiansong, T. An experiment study of cracking properties of rice straw reinforced soil with different ratios. Hydrogeol. Eng. Geol. 2017, 44, 52–58. [Google Scholar]
- Wang, S.; Xu, G.; Luo, F.; Chen, X.; Li, S. Study on the Organic Matter and Nutrients of Dredged Mud after Treated by Vacuum Preloading Combined with Straw Drainage Body. China Rural Water Hydropower 2023, 4, 33–39. [Google Scholar] [CrossRef]
Liquid Limit, wL/% | Plastic Limit, wP/% | Plastic Index, IP | Specific Gravity, GS | Particle Size Distribution (%) | ||
---|---|---|---|---|---|---|
Clay (<5 μm) | Silt (5~75 μm) | Sand (>0.075 mm) | ||||
53.8 | 24.7 | 29.1 | 2.76 | 46.5 | 51.2 | 2.3 |
Test Code | Initial Water Content, w0 (%) | w0/wL | Straw Fiber Content, Cs (%) |
---|---|---|---|
A0 | 80.7 | 1.5 | 0 |
A1 | 80.7 | 1.5 | 1 |
A2 | 80.7 | 1.5 | 3 |
A3 | 80.7 | 1.5 | 5 |
A4 | 80.7 | 1.5 | 8 |
B0 | 107.6 | 2.0 | 0 |
B1 | 107.6 | 2.0 | 1 |
B2 | 107.6 | 2.0 | 3 |
B3 | 107.6 | 2.0 | 5 |
B4 | 107.6 | 2.0 | 8 |
C0 | 134.5 | 2.5 | 0 |
C1 | 134.5 | 2.5 | 1 |
C2 | 134.5 | 2.5 | 3 |
C3 | 134.5 | 2.5 | 5 |
C4 | 134. | 2.5 | 8 |
D0 | 161.4 | 3.0 | 0 |
D1 | 161.4 | 3.0 | 1 |
D2 | 161.4 | 3.0 | 3 |
D3 | 161.4 | 3.0 | 5 |
D4 | 161.4 | 3.0 | 8 |
Test Code | w0/% | Straw Fiber Content, Cs/% | Shrinkage and Crack Pattern |
---|---|---|---|
A0 | 80.7 | 0 | overall shrinkage, small surface crack |
A1 | 80.7 | 1 | overall shrinkage, small surface crack |
A2 | 80.7 | 3 | overall shrinkage, small surface crack |
A3 | 80.7 | 5 | overall shrinkage, small surface crack |
A4 | 80.7 | 8 | overall shrinkage, small surface crack |
B0 | 107.6 | 0 | overall shrinkage, small surface crack |
B1 | 107.6 | 1 | overall shrinkage, small surface crack |
B2 | 107.6 | 3 | overall shrinkage, small surface crack |
B3 | 107.6 | 5 | overall shrinkage, small surface crack |
B4 | 107.6 | 8 | overall shrinkage, small surface crack |
C0 | 134.5 | 0 | overall shrinkage, small surface crack |
C1 | 134.5 | 1 | desiccation cracks, crack through sample |
C2 | 134.5 | 3 | desiccation cracks, crack through sample |
C3 | 134.5 | 5 | overall shrinkage, small surface crack |
C4 | 134.5 | 8 | overall shrinkage, small surface crack |
D0 | 161.4 | 0 | desiccation cracks, crack through sample |
D1 | 161.4 | 1 | desiccation cracks, crack through sample |
D2 | 161.4 | 3 | desiccation cracks, crack through sample |
D3 | 161.4 | 5 | overall shrinkage, small surface crack |
D4 | 161.4 | 8 | overall shrinkage, small surface crack |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, H.; Song, M.; Xu, G.; Qiu, C. Shrinkage and Cracking Characteristics of Dredged Sludge Containing Straw Fiber Under Different Initial Water Contents. Buildings 2025, 15, 97. https://doi.org/10.3390/buildings15010097
Qiao H, Song M, Xu G, Qiu C. Shrinkage and Cracking Characteristics of Dredged Sludge Containing Straw Fiber Under Different Initial Water Contents. Buildings. 2025; 15(1):97. https://doi.org/10.3390/buildings15010097
Chicago/Turabian StyleQiao, Huiping, Miaomiao Song, Guizhong Xu, and Chengchun Qiu. 2025. "Shrinkage and Cracking Characteristics of Dredged Sludge Containing Straw Fiber Under Different Initial Water Contents" Buildings 15, no. 1: 97. https://doi.org/10.3390/buildings15010097
APA StyleQiao, H., Song, M., Xu, G., & Qiu, C. (2025). Shrinkage and Cracking Characteristics of Dredged Sludge Containing Straw Fiber Under Different Initial Water Contents. Buildings, 15(1), 97. https://doi.org/10.3390/buildings15010097